
Mancini et al. Biology Direct           (2023) 18:82  
https://doi.org/10.1186/s13062-023-00435-0

RESEARCH

Involvement of transcribed lncRNA uc.291 
in hyperproliferative skin disorders
Mara Mancini1,2  , Simone Sergio2  , Angela Cappello3  , Timea Farkas1  , Francesca Bernassola2  , 
Claudia Scarponi1  , Cristina Albanesi1  , Gerry Melino2   and Eleonora Candi1,2*   

Abstract 

The uc.291 transcript controls keratinocytes differentiation by physical interaction with ACTL6A and subsequent 
induction of transcription of the genes belonging to the epidermal differentiation complex (EDC). Uc.291 is also impli-
cated in the dedifferentiation phenotype seen in poorly differentiated cutaneous squamous cell carcinomas. 
Here, we would like to investigate the contribution of uc.291 to the unbalanced differentiation state of keratino-
cytes observed in hyperproliferative skin disorders, e. g., psoriasis. Psoriasis is a multifactorial inflammatory disease, 
caused by alteration of keratinocytes homeostasis. The imbalanced differentiation state, triggered by the infiltration 
of immune cells, represents one of the events responsible for this pathology. In the present work, we explore the role 
of uc.291 and its interactor ACTL6A in psoriasis skin, using quantitative real-time PCR (RT-qPCR), immunohistochem-
istry and bioinformatic analysis of publicly available datasets. Our data suggest that the expression of the uc.291 
and of EDC genes loricrin and filaggrin (LOR, FLG) is reduced in lesional skin compared to nonlesional skin of psoriatic 
patients; conversely, the mRNA and protein level of ACTL6A are up-regulated. Furthermore, we provide evidence 
that the expression of uc.291, FLG and LOR is reduced, while ACTL6A mRNA is up-regulated, in an in vitro psoriasis-like 
model obtained by treating differentiated keratinocytes with interleukin 22 (IL-22). Furthermore, analysis of a publicly 
available dataset of human epidermal keratinocytes treated with IL-22 (GSE7216) confirmed our in vitro results. Taken 
together, our data reveal a novel role of uc.291 and its functional axis with ACTL6A in psoriasis disorder and a proof 
of concept that biological inhibition of this molecular axis could have a potential pharmacological effect against pso-
riasis and, in general, in skin diseases with a suppressed differentiation programme.
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Introduction
The human skin is a physical and immune barrier whose 
essential function is to protect the body against water 
loss, mechanical insults, and pathogen infection. This 
tissue has an active metabolic and renewing profile and 

is composed of two distinct compartments: the dermis 
and the epidermis [1, 2]. The dermis is the innermost, 
fibrous layer supporting tissue architecture, vasculature, 
and innervation; within the dermis reside various types 
of immune cells, which give the skin the ability to serve 
as an immune organ [3]. Given its fundamental role in 
protecting the organism under so many physiological 
aspects, the skin must be subject to very refined meta-
bolic and/or gene transcriptional regulation to main-
tain its homeostasis [4, 5]. However, many problems can 
occur during skin regeneration/renewal, especially at 
the immune level, leading to skin disorders such as skin 
cancer and inflammation-mediated skin diseases, such 
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as lichen planus, atopic dermatitis, and psoriasis, col-
lectively known as immune-mediated skin inflamma-
tory diseases (sIMIDs) [6–10]. Among them, psoriasis is 
an immune-mediated skin disorder that affects around 
2% of the population worldwide, although its incidence 
and prevalence vary between different countries [11]. In 
addition, this pathology is often associated with a higher 
risk of cardiovascular diseases and comorbidities, such 
as obesity, metabolic syndrome, diabetes, arthritis, and 
others [12, 13]. Clinicians identified various subtypes of 
psoriasis, including guttate, pustular, and erythrodermic 
[11]. However, the most common and well-recognised 
morphological presentation of psoriasis is plaque-type 
psoriasis. The disease is characterised by the formation 
of demarked erythematous plaques. Scales are the result 
of a hyperproliferative epidermis with premature matura-
tion of keratinocytes and incomplete cornification, with 
retention of nuclei in the stratum corneum (parakera-
tosis). In skin plaques, impaired keratinocyte differen-
tiation is also observed in the upper layers and massive 
immune cell infiltration in the dermis [14, 15].

The appearance of psoriasis is the result of aberrant 
crosstalk between epidermal keratinocytes and immune 
cells that reside within the skin. Regarding the aetiology 
of the disease, its appearance is mainly due to environ-
mental stimuli, including stress, UV irradiation, exposure 
to autoantigens, Streptococcal infections, which occur in 
genetically susceptible individuals [16, 17]. In fact, several 
genomic loci have been identified as the cause of genetic 
susceptibility to psoriasis [18]. In recent years, besides 
the contribution of genetic and environmental compo-
nents to the pathogenesis of psoriasis, some evidence 
identified the role of epigenetic mechanisms, and those 
exerted by noncoding RNAs (ncRNAs) [19, 20]. NcRNAs 
represent a subclass of RNAs that are transcribed but not 
translated with different lengths, structures, and func-
tions. Interestingly, their interactions with other cellular 
RNAs and/ or proteins contribute to the creation of an 
intricate network capable of shaping cellular phenotypes 
through the regulation of both cellular transcription and 
translation, so that ncRNAs act as epigenetic regulators 
[21] which impact on cell proliferation, differentiation, 
cell death and metabolism, especially in cancer [22–25]. 
Long Non-Coding RNA (lncRNAs), a group of ncRNA 
longer than 200 nucleotides, are already known to play 
important roles in skin homeostasis, such as for example 
the Anti-Differentiation ncRNA (ANCR) and the Ter-
minal-Differentiation Induced ncRNA (TINCR), which 
can regulate epidermal proliferation and differentiation, 
respectively [26, 27]. Different lncRNAs are involved in 
epidermal inflammatory response and in psoriasis insur-
gence, such as XIST, MEG3, FABP5B3, PRINS, and KLD-
HC7B-DT [28–30].

Ultra-conserved lncRNAs (T-UCR) represent a pecu-
liar class of lncRNAs containing Ultra-Conserved 
genomic regions (UCR) within the transcript among 
mouse, rat, and human genomes, and are transcribed 
from almost 500 genomic loci containing UCRs that span 
in length from 200 to 779 bases [31–33]. Previously, we 
have demonstrated the importance of a lncRNA, namely 
uc.291, in inducing the transcription of keratinocyte dif-
ferentiation genes located in the Epidermal Differentia-
tion Complex (EDC), via interaction with ACTL6A [34]. 
In fact, during differentiation of keratinocytes, uc.291 can 
dislodge the binding of ACTL6A on EDC locus, allow-
ing the release of chromatin by the SWI / SNF complex 
and determining the activation of differentiation genes 
located in the EDC locus, including loricrin (LOR) and 
filaggrin (FLG). Furthermore, dysregulation of uc.291-
ACTL6A-SWI/SNF complex and consequent loss of dif-
ferentiation program was also observed also in cutaneous 
tumours (basal cell carcinoma and squamous cell carci-
noma) [35].

Given that impaired differentiation of keratinocytes 
occurs in psoriasis, we decided to focus our attention on 
the involvement of uc.291 and its interactor ACTL6a in 
this patology.

Materials and methods
Seven patients with mild to severe chronic plaque pso-
riasis (Psoriasis area and severity index: 4–45) were 
included in this study. Biopsies were taken from skin 
plaques in both lesional and non-lesional areas (3  cm 
from the developing plaque), all from the same psoriatic 
patient. In parallel, skin biopsies were also taken from 9 
healthy volunteers undergoing plastic surgery. Biopsies 
were cut in half and used for both RT-PCR and immu-
nohistochemical studies. This study was approved by the 
Ethics Committee of the IDI-IRCCS Hospital, Rome (reg-
istration number: 475/1/2016) and carried out accord-
ing to the Declaration of Helsinki. Informed consent was 
signed by all study subjects.

RNA extraction, reverse transcription, and quantitative 
real‑time PCR analysis
Total RNA was extracted from skin biopsies using the 
RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Ger-
many) and retrotranscribed using a SuperScript™ IV 
VILO™ Master Mix (thermo Fisher Scientific) according 
to the manufacturer’s protocol. Real-time PCR was per-
formed using SYBR™ Green Master Mix (Thermo Sci-
entific, Applied Biosystems). The primers used are listed 
in Additional file 1: Table 1. Expression of each gene was 
defined by the threshold cycle (Ct), and relative expres-
sion levels were calculated using the  2−ΔΔCt method after 



Page 3 of 9Mancini et al. Biology Direct           (2023) 18:82  

normalisation with reference to expression of TBP as a 
housekeeping gene.

Cell culture and cell treatment
Human epidermal keratinocytes, neonatal (HEKn), were 
purchased from ThermoFisher Scientific (Gibco ™) and 
cultured in EpiLife ™ medium (ThermoFisher scientific, 
Gibco TM) supplemented with Human Keratinocyte 
Growth Supplement (HKGS) (ThermoFisher scientific, 
Gibco™) [36]. HEKn were differentiated with 1.2  mM 
 CaCl2 added to culture medium and collected at the fol-
lowing time points: 0 and 3 days. To induce the model of 
in vitro psoriasis, interleukin 22 (IL-22) (50 ng/µl, R&D 
systems) was added for 24 h to the differentiated cell cul-
ture medium. Then, untreated and treated cells were col-
lected, and the cell pellet was processed.

Immunohistochemical staining
Immunohistochemical staining for ACTL6A, Filaggrin, 
and Loricrin was performed using an anti-ACTL6A 
antibody (Cat. No. 76682, Cell Signalling), anti-Filaggrin 
antibody (Cat. No. PRB-417P, BioLegend) and anti-
Loricrin antibody (Cat. No. PRB-145P, Covance) fol-
lowing the manufacturer’s instructions. For staining, 
sections were dewaxed and rehydrated and incubated 
to block endogenous peroxidases in a 0.03% solution of 
hydrogen peroxide in methanol [37]. Antigen retrieval 
was then performed by boiling the sample in 0.01 M cit-
rate buffer pH 6.0 for 15 min in a 96 °C water bath. The 
slides were incubated with an anti-ACTL6A antibody 
(1: 400), a -Filaggrin antibody (1:200) or a -Loricrin anti-
body (1:1000) for 1 h at room temperature. Signals were 
detected using an UltraTek HRP antipolyvalent DAB 
staining system (ScyTek, Logan, UT, USA), and the slides 
were then counterstained with haematoxylin, dehydrated, 
and mounted. The slides were scanned using a DMI6 
microscope, Leica microsystems.

Bioinformatic analysis
Normalised values for the expression of ACTL6A, filag-
grin, and loricrin RNA in healthy, psoriatic skin samples 
and IL-22 treated keratinocytes were obtained from the 
NCBI GEO portal. Normal, nonlesional, and lesional skin 
accession number: GSE13355; not treated: GSE7216.

Statistical analysis
All statistical analyses were performed with GraphPad 
Prism 8.0 software (San Diego, CA, USA). For the analy-
sis of the gene array data, the significance level (p) was 
calculated using Welch’s t test of unequal variances. Val-
ues of p < 0.05 were considered significant.

Results
uc.291 and ACTL6A expression is down‑ and up‑ regulated 
in lesional psoriasis, respectively
The contribution of uc.291 to the regulation of human 
keratinocytes differentiation by the interaction with 
ACTL6A protein has already been shown [34], however, 
the implication of this molecular mechanism in skin 
disorders like psoriasis, where keratinocyte differentia-
tion is one of the events that are mainly affected, has not 
been elucidated yet. Therefore, we collected and analysed 
skin biopsies obtained from 9 healthy donors and from 
7 patients with mild to severe chronic plaque psoriasis. 
Biopsies were taken from skin plaques of patients with 
psoriasis in both lesional and non-lesional areas, all from 
the same patient. Quantitative real-time PCR (RT-qPCR) 
analysis reveals that uc-291 expression is significantly 
up-regulated in nonlesional psoriatic skin samples com-
pared to healthy skin, while resulting significantly down-
modulated in the lesional counterparts (Fig. 1A). On the 
contrary, ACTL6A expression is slightly but significantly 
overexpressed in nonlesional psoriatic skin compared to 
healthy skin, and even more in the lesional skin counter-
part (Fig. 1B). To further confirm these data, we analysed 
a publicly available GEO data set (GSE13355) contain-
ing 64 human normal skin, 54 psoriatic non-lesional skin 
and 54 counterparts of lesional skin biopsies. ACTL6A 
expression value is significantly increased in the lesional 
skin compared to the non-lesional one, while there are 
non-significant differences between the normal and non-
lesional skin (Fig. 1C). Furthermore, at the protein level, 
detected by immunohistochemistry, ACTL6A is also 
increased in psoriatic lesional skin compared to the nor-
mal skin (Fig. 1D). Taken together, these data suggest that 
in psoriatic lesional skin, the down regulation of uc.291 
could account for impaired keratinocyte differentiation, 
mediated by ACTL6A.

The expression of epidermal differentiation complex 
genes, filaggrin (FLG) and loricrin (LOR), is affected 
in psoriasis
Since lncRNA uc.291 can dislodge ACTL6A-chro-
matin binding on the EDC locus, allowing the activa-
tion of transcription of differentiation genes residing 
at the EDC locus, including filaggrin and loricrin, we 
decided to determine their expression in patients with 
psoriasis skin and in healthy donors. Using RT-qPCR, 
we found that the mRNA expression of both differen-
tiation genes, FLG and LOR, increases in non-lesional 
skin as compared with normal biopsies, while it is 
slightly decreased in the lesional counterparts (Fig. 2A). 
Then we examined publicly available GEO datasets 
(GSE13355) and showed that the expression value of 
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FLG as well as LOR is significantly decreased in pso-
riatic lesional skin from patients compared to healthy 
skin samples from donors (Fig.  2B). Furthermore, 
immunohistochemical staining of normal and psoriatic 
lesional skin biopsies reveals that Filaggrin expression 
is drastically reduced at the protein level in psoriasis 
(Fig.  2C). These results confirm that during psoriasis, 
skin differentiation and expression of some of its medi-
ator genes (FLG and LOR) are primarily affected.

The expression of uc.291, ACTL6A and EDC genes 
is impaired in in‑vitro psoriasis‑like model
Among all the inflammatory stimuli responsible for the 
development of psoriasis, interleukin 22 (IL-22) can 
induce an imbalanced keratinocytes proliferation and 
differentiation[11]. To support our hypothesis on the 
involvement of uc.291 and its competitor ACTL6A in 
modulating keratinocyte differentiation, we decided 
to establish an in  vitro model of psoriasis by treating 
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Fig. 1 Expression of uc.291 and ACTL6A in normal epidermis and psoriatic non-lesional and lesional skin. A RT-qPCR analysis of uc.291 
was performed on human normal skin (n = 9), and non-lesional (n = 7) and lesional (n = 7) areas in the skin of psoriatic patients. B ACTL6A mRNA 
expression level was performed by RT-qPCR on normal human skin (n = 5), non-lesional skin (n = 5), and lesional skin (n = 5). C Bioinformatic analysis 
of ACTL6A expression on normal human skin (n = 64) and from non-lesional (n = 54) and lesional (n = 54) areas of skin psoriatic patients (GSE13355). 
D Immunohistochemistry of ACTL6A on normal human skin (n = 3) and human skin affected by psoriasis (n = 3). Scale bar, 250 μm (left panels) 
and 100 μm (right panels). A representative experiment of three is shown. For all experiments and datasets analysis of data sets, the p-value 
was obtained using a t-test student; p < 0.05; n.s. not significant. Replicae are biological replicates
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differentiated cells with IL-22. Relative quantification of 
uc.291 and ACTL6A expression shows that they are sig-
nificantly down- and up-regulated, respectively, in IL-22 
treated keratinocytes compared to non-treated ones. 
(Fig. 3A). The expression value was also evaluated in the 
publicly available GEO dataset GSE7216, where 3 bio-
logical replicates of human keratinocytes treated with 
IL-22 versus 3 untreated counterparts were analysed. We 
showed that ACTL6A expression is slightly, but not sta-
tistically significantly, increased in IL-22 treated keratino-
cytes (Fig. 3B). Finally, to demonstrate that keratinocyte 
differentiation is impaired by deficiencies in filaggrin and 
loricrin, a RT-qPCR was used to measure their mRNA 
expression. The relative quantification of FLG and LOR 
expression shows that they are significantly reduced after 
IL-22 treatment compared to untreated cells (Fig.  3C). 
Furthermore, the analysis of the GSE7216 dataset shows 
that LOR mRNA expression is significantly down-reg-
ulated in IL-22 treated keratinocytes, while there is 
no change in FLG mRNA level between treated and 
untreated cells. In general, these results confirmed that in 

a model similar to psoriasis, induced by cytokines, down-
regulation of uc.291 correlates to an impaired expression 
of FLG and LOR. This may be due to the overexpression 
of ACTL6A and to its permanence on the chromatin of 
the EDC locus due to uc.291 down-regulation, resulting 
in inhibition of the transcription of differentiation genes 
(Fig. 4).

Discussion
Physiological keratinocyte proliferation, differentia-
tion, and stratification are fundamental for normal skin 
homeostasis and to maintain its protective role against 
external stimuli[1, 38] The balance between prolif-
eration and differentiation in the epidermis is strictly 
regulated; however, different environmental and geneti-
cal issues can occur that cause cellular and molecular 
alterations responsible for different skin pathologies. 
Psoriasis is a chronic and inflammatory skin pathol-
ogy, triggered by an unbalanced ratio between the 
proliferation and differentiation of human keratino-
cytes caused by hyperactivation and altered infiltration 
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of inflammatory cells at dermis, in the sites of skin 
lesions[15]. Moreover, psoriasis is one of the most com-
mon health problems worldwide, and the effects on 
patient lives can be severe and also affect psychologi-
cal health[11, 39]. Since psoriasis is an inflammatory 
disease, the risk that patients with severe forms may 
also develop a malignant skin disease or other systemic 
diseases is very high. In particular, non-melanoma skin 
cancers and lymphoproliferative malignant diseases are 
among the most common forms of cancer that can be 
associated with long-term severe psoriasis[40]. Given 
that human psoriasis is mainly caused by the alteration 
of keratinocyte proliferation and differentiation pro-
grammes, we decided to further understand the role of 
lnc-RNA uc-291, its molecular interactor ACTL6A, and 
the epidermal differentiation genes FLG and LOR in 
this disorder, considering that the involvement of this 
molecular axis has just been elucidated in physiological 

differentiation conditions[34]. This class of non-coding 
RNA is involved in different molecular processes due 
to their multifaceted functions and a dysregulation of 
their expression is often responsible for abnormal cel-
lular homeostasis and for the insurgence and/or the 
maintenance of several pathologies, including cancer 
[41–44]. This is true for example for melanoma cancer, 
in which lncRNA alteration is responsible for cancer 
progression and malignant behavior of cells [45, 46]. 
In fact, taken into account their regulatory functions, 
lncRNAs represent good candidates for cancer diag-
nosis, prognosis, and treatment [47] and in particular 
in melanoma, the chemical inhibitor of the lncRNA 
LINC01212 has already been used as a treatment[48]. 
Here, we first demonstrated that uc.291 is down-reg-
ulated in lesional psoriatic skin compared to the non-
lesional, while ACTL6A is upregulated, also at protein 
level, as shown by immunohistochemistry. Our data 
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of keratinocytes is important to allow the expression of EDC genes by binding and inhibiting ACTL6A. On psoriasis lesional skin (bottom 
panel), the expression of ACTL6A increases while uc.291 is reduced. As a consequence, the proliferating layer is thicker than in healthy skin 
and the differentiation process is affected
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are in line with the results obtained after the analy-
sis of the publicly available GEO dataset (GSE13355), 
which confirmed ACTL6A overexpression in lesional 
skin samples compared to nonlesional and normal 
ones (Fig.  1). Then, we demonstrated that the expres-
sion of EDC genes FLG and LOR is slightly decreased 
in lesional psoriasis compared to non-lesional one 
and significantly decreased in lesional samples of the 
GSE13355 dataset. In addition, immunohistochemis-
try shows a strong reduction in Filaggrin expression in 
the upper differentiated layer of human psoriatic skin 
compared to the normal counterpart (Fig.  2). Finally, 
we used an in vitro model of psoriasis in which human 
differentiated keratinocytes are treated with interleukin 
22 (IL-22). This treatment induced a decrease of uc.291 
expression but an increase in ACTL6A mRNA level and 
a notable decrease of FLG and LOR expression. These 
results are partially confirmed by the bioinformatical 
analysis of the publicly available GEO dataset GSE7216 
(Fig.  3). Therefore, we propose a molecular model in 
which the decrease of uc.291 and increase of ACTL6A 
trigger EDC genes (FLG and LOR) expression in human 
lesional psoriatic skin (Fig.  4). Collectively, these data 
highlight the role of uc.291 not only in skin physiology 
under normal conditions but also in psoriasis, mak-
ing it an interesting candidate for further studies and 
future potential drug development for hyperprolifera-
tive skin disorders.
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