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Abstract
Background Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Although 
marker genes associated with CRC have been identified previously, only a few have fulfilled the therapeutic demand. 
Therefore, based on differentially expressed genes (DEGs), this study aimed to establish a promising and valuable 
signature model to diagnose CRC and predict patient’s prognosis.

Methods The key genes were screened from DEGs to establish a multiscale embedded gene co-expression network, 
protein-protein interaction network, and survival analysis. A support vector machine (SVM) diagnostic model was 
constructed by a supervised classification algorithm. Univariate Cox analysis was performed to construct two 
prognostic signatures for overall survival and disease-free survival by Kaplan–Meier analysis, respectively. Independent 
clinical prognostic indicators were identified, followed by univariable and multivariable Cox analysis. GSEA was used 
to evaluate the gene enrichment analysis and CIBERSORT was used to estimate the immune cell infiltration. Finally, 
key genes were validated by qPCR and IHC.

Results In this study, four key genes (DKC1, FLNA, CSE1L and NSUN5) were screened. The SVM diagnostic model, 
consisting of 4-gene signature, showed a good performance for the diagnostic (AUC = 0.9956). Meanwhile, the 
four-gene signature was also used to construct a risk score prognostic model for disease-free survival (DFS) and 
overall survival (OS), and the results indicated that the prognostic model performed best in predicting the DFS and 
OS of CRC patients. The risk score was validated as an independent prognostic factor to exhibit the accurate survival 
prediction for OS according to the independent prognostic value. Furthermore, immune cell infiltration analysis 
demonstrated that the high-risk group had a higher proportion of macrophages M0, and T cells CD4 memory resting 
was significantly higher in the low-risk group than in the high-risk group. In addition, functional analysis indicated that 
WNT and other four cancer-related signaling pathways were the most significantly enriched pathways in the high-risk 
group. Finally, qRT-PCR and IHC results demonstrated that the high expression of DKC1, CSE1L and NSUN5, and the 
low expression of FLNA were risk factors of CRC patients with a poor prognosis.
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Background
Colorectal cancer (CRC) is a common malignant tumor 
worldwide and also one of the leading causes of can-
cer-related mortality [1]. The mortality rate of CRC is 
second and third highest-ranking cancer in male and 
female patients, respectively, in the USA and fifth in 
China [2, 3]. The 5-year survival rate of CRC patients is 
exceed 90% when diagnosed at early stages. Due to the 
lack of adequate diagnostic methods, CRC is often diag-
nosed at an advanced stage, and the 5-year survival rate 
for CRC patients diagnosed with metastasis is low at 
approximately 12% [4]. At present, despite the significant 
improvements in diagnosis and treatment, the early diag-
nosis of CRC continues to be a global problem [5]. It is 
urgently needed that more effective diagnosis and prog-
nostic evaluation systems to provide personalized medi-
cine and improve outcome for CRC patients [6]. With 
the development of biology, biomarkers exhibited an 
increasingly important role in the early diagnosis, prog-
nostication, survival, and clinical treatment monitoring 
of cancers. They have driven the development of per-
sonalized therapy and had a positive impact on patient 
outcomes [7]. Therefore, it is significant to identify and 
explore sensitive diagnostic and prognostic biomarkers 
for CRC.

With the advancement of gene chips and high-through-
put second-generation sequencing technologies, the 
amount of publicly available high-throughput data is 
stored in global databases. Therefore, the combination 
of gene expression data with bioinformatics methods 
can be used to elucidate the expression of differentially 
expressed genes (DEGs) in the development and progres-
sion of CRC, as well as identify potential targets for the 
treatment of CRC. Recent studies have proposed DEGs 
as potential diagnostic and prognostic markers in CRC. 
Huang et al. identified hundreds of CRC-associated 
DEGs based on the Gene Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) database. There-
into, five could be used as diagnostic biomarkers for CRC 
patients [8]. Hou et al. identified a cluster of DEGs and 
DNA methylation aberrations in CRC. The results indi-
cated that the combination of DEGs, DNA methylation 
aberrations, and tumor stages results in effective prog-
nostic evaluation of patients with CRC [9]. Although 
some multigene-based prognostic signatures that can 
assess the prognostic risk of CRC had been established 
over the past 20 years, the robustness of most markers 

is less than expected and rarely could be used for CRC 
diagnosis, due to the inherent genetic heterogeneity of 
CRC [7, 10]. Therefore, finding effective and reliable sig-
natures for the diagnosis and prognosis assessment of 
CRC patients is paramount and urgent.

In this study, four hub genes were identified from the 
DEGs by constructing a multiscale embedded gene co-
expression network analysis (MEGENA), protein-protein 
interaction (PPI) network, and survival analysis. Then, to 
explore whether these key genes related to the diagnosis 
and prognosis of CRC, we constructed an SVM model 
and established a multi-gene signature for the progno-
sis of CRC patients by univariate and multivariable Cox 
regression analyses. This model adequately predicted 
the overall survival (OS) and disease-free survival (DFS) 
of CRC patients and provided a theoretical basis for the 
future study of CRC diagnosis and the underlying molec-
ular mechanism.

Results
Identification of DEGs
The current study is illustrated in the flow chart (Fig. 1). 
In order to determine the DEGs between the CRC 
tumors and adjacent tissues, p < 0.01 and |log2FC| > 2 
were used as the threshold. The DEGs were displayed 
in the heatmap and volcano plot (Fig.  2  A and B). The 
results showed that compared with paracancerous tissue, 
3409 genes were significantly upregulated and 3410 genes 
were significantly downregulated in CRC tissue.

Identification of node genes
To identify the compact gene modules based on the 6819 
DEGs, MEGENA method was used to construct a gene-
gene causal network. The results showed that a total of 
237 genes were cluster analyzed to identify the DEGs 
(Fig.  2  C). Finally, these gene networks identified 337 
highly connected DEGs for downstream analyses.

PPI network analysis of DEGs
The STRING platform was used to construct a PPI net-
work of 337 DEGs (Fig.  2D). A total of 61 nodes were 
included in the network based on the interaction score 
criteria (degree > 10). A total of 61 genes (MCM7, 
AURKA, MCM2, KIF23, PLK1, TPX2, ANLN, BIRC5, 
BUB1, CD4, CDC20, CDK4, WDR12, RUVBL1, KIF2C, 
NCAPH, CDCA, GTPBP4, TTK, DKC1, PKMYT1, 
NOP58, RRP9, DDX56, DCAF13, METTL, FTSJ1, 

Conclusion In this study, diagnosis and prognosis models were constructed based on the screened genes of DKC1, 
FLNA, CSE1L and NSUN5. The four-gene signature exhibited an excellent ability in CRC diagnosis and prognostic 
prediction. Our study supported and highlighted that the four-gene signature is conducive to better prognostic risk 
stratification and potential therapeutic targets for CRC patients.

Keywords Colorectal cancer, Differentially expressed genes, Diagnostic model, Prognostic model
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LMNB2, PUS7, KIF18A, PNO1, RNASEH2A, COL1A1, WDR75, PUS1, TRIM28, DNMT1, COL1A2, DDX31, 

Fig. 2 Identification of a four-gene signature in CRC patients. (A) Heatmap of significant DEGs based on the expression level; (B) The volcano figure 
to show the upregulated and downregulated genes; (C) MEGENA among differentially expressed genes; (D) PPI network among node genes from the 
MEGENA; (E) Kaplan–Meier curves with the log-rank test were performed on disease free survival analysis of hub genes (DKC1, NSUN5, FLNA and CSE1L) 
from the PPI network

 

Fig. 1 Flowchart of the study
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THY1, KIAA1524, NSUN5, IKZF1, FLNA, COL5A2, 
CD79A, CAD, MYL9, MYLK, IL10RA, CNN1, CSE1L, 
CBX3, DDR2, PHGDH, COL11A1, GNA11, AHCY-
PLOD3, COL8A1 and C1QC) were selected as the hub 
genes.

Survival analysis of hub genes
To further identify the key genes, we analyzed the cor-
relation between hub gene expression and bioinformatics 
of CRC, and found that the DFS rate of high-expressing 
DKC1 was lower than that of the low-expressing mol-
ecule (p = 0.0335). Compared to the low-expressing 
NSUN5, the DFS rate of high-expressing NSUN5 was 
lower (p = 0.0365). Compared to the low-expressing 
FLNA, the DFS rate of the high-expression group of 
FLNA was lower (p = 0.0228). Meanwhile, the DFS rate 
of the high-expression of CSE1L was lower than the low-
expressing CSE1L (p = 0.0231). No significant correlation 
was established between the expression of the other 57 
hub genes and CRC prognosis (p > 0.05). These results 
identified DKC1, NSUN5, FLNA and CSE1L as the four 
key genes (Fig. 2E).

Establishment and validation of the diagnostic model
All four genes were statistically significant (p < 0.05) in 
the COADREAD dataset from TCGA after survival anal-
ysis. To construct and validate the four-gene diagnostic 
model, a total of 689 CRC samples in COADREAD data-
sets from TCGA were divided into the training (n = 482) 
and test sets (n = 207). A python 3.8 package scikit-learn 
was employed to construct the four-gene diagnostic 
model of SVM using the training set. The overall accuracy 
(fraction of correctly classified samples) of the binomial 

classifier for cross-validation on the training datasets was 
0.9685 (Fig. 3 A), and the optimal parameter combination 
of the diagnostic model was determined (“C”: 23.2676, 
“gamma”: 0.4498). To further validate the current model, 
we evaluated the classifier on the test datasets; the area 
under curve (AUC) was 0.9956 (Fig.  3B). These results 
indicated that the constructed SVM-based classifier had 
high diagnostic values for the CRC patients.

Establishment and validation of prognostic model
A total of 221 CRC patients with the DFS data collected 
from the merged cohort of the TCGA and clinical infor-
mation (DFS) were recruited, the detailed clinical fea-
tures of ccRCC patients were listed in Supplementary 
material Table S1. Four genes were selected by survival 
analysis for constructing the prognostic model of DFS. 
The risk score formula consisting of the four DEGs was 
established for the prognostic model as follows: Risk 
score = (0.6374×DKC1)+(0.7798×NSUN5)+(0.2717×
FLNA)+(-0.2354×CSE1L) (Table  1). Then, 221 CRC 
patients were divided into the training set (n = 111) and 

Table 1 Univariate regression analysis of four-signature genes 
for DFS
Symbol Beta Hazard ratio 

(95% CI)
Wald Test p-

value
DKC1 0.6374 1.8916(0.7266–

4.9248)
1.3057 0.1917

NSUN5 0.7798 2.1811(0.8753–
5.4346)

1.6741 0.0941

FLNA 0.2717 1.3122(0.9170–
1.8777)

1.4860 0.1373

CSE1L -0.2354 0.7902(0.3783–
1.6507)

-0.6264 0.5311

Fig. 3 Establishment and validation of the diagnostic model of SVM. (A) ROC curve of SVM based on four genes as features based on training data. The 
x-axis indicates the false positive rate, and the y-axis indicates the true positive rate. The five-fold cross-validation is represented. The final fitted average 
is denoted by the black dotted line; (B) The ROC curve analysis for model efficacy based on testing data. The x-axis represented the FPR, and the y-axis 
represented the TPR. ROC: receiver operating characteristic, FPR: false-positive rate, TPR, true-positive rate
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test set (n = 110). Next, we presented the risk score dis-
tribution curve and survival status of the training set 
(Fig.  4  A). The results showed that there were more 
deaths in the high-risk group, while most of the patients 
in the low-risk group stayed alive during the follow-up. 
The heatmap revealed the expression patterns of four 
DEGs between the two risk groups (Fig. 4 A). Based on 
the median prognostic risk score, the patients in the 
training set were divided into either the high-risk group 
(n = 56) or the low-risk group (n = 55). The K–M survival 
curve suggested that the patients of high prognostic risk 
group had poor DFS than the low risk patients (p < 0.05, 
Fig.  4B). The time-dependent ROC curve analysis was 

used to evaluate the predictive value of the signature. 
The AUCs of the training set at 1, 2, 3, 4, and 5 years 
were 0.5523, 0.6946, 0.7179, 0.7179, and 0.5712, respec-
tively (Fig. 4 C). The formula mentioned above was used 
to calculate the risk scores, and the patients were also 
classified into high- and low-risk groups in the test and 
total sets based on the median value of 8.5343. The risk 
score distribution curve, survival status, and four genes 
expression heatmap of the test and total sets are shown 
in Fig. 4 A. Similarly, the predictive capability and clini-
cal utility of the prognostic model was validated in both 
datasets. The results showed that the DFS of the high-risk 
group was significantly shorter than that of the low-risk 

Fig. 4 Establishment and validation of the prognostic model for DFS of patients in the training set, the test set, and the entire cohort. (A) The distribution 
of risk scores, gene expression levels, and patient relapse status; (B) Kaplan–Meier curves of DFS of the low-risk and high-risk groups; (C) ROC curve for the 
1-, 2-, 3-, 4-, and 5-year survival prediction by the four-gene signature, respectively. The black dotted line represents the median risk score cutoff dividing 
the patients into low- and high- groups
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group in both the test and totals set, according to the 
K–M survival analysis (p < 0.05, Fig. 4B), and the AUC for 
1-, 2-, 3-, 4-, and 5-year DFS was 0.7308, 0.6998, 0.6746, 
0.7518, and 0.7765 in the test set, respectively (Fig. 2E). 
In the total set, the AUCs for 1-, 2-, 3-, 4-, and 5-year DFS 
were 0.6317, 0.6923, 0.6932, 0.7318, and 0.675, respec-
tively (Fig.  4  C). These results indicated the four-gene 
prognostic signature had the ability to predict DFS.

Simultaneously, to determine the association between 
the gene expression signatures of these four genes and 
the CRC patient OS, the risk score of the four DEGs 
was calculated using univariate Cox regression analysis 
as follows: Risk score = (-0.1051×DKC1)+(0.3303×NSU
N5)+(0.0960×FLNA)+(-0.2391×CSE1L) (Table  2). The 
detailed clinical features of ccRCC patients were listed in 
Supplementary material Table S1. A total of 587 patients 
with OS data were divided into the training set (n = 294) 
and test set (n = 293). Based on the median risk score of 
-0.0477, the training set (n = 294), the test set (n = 293), 
and the total set (n = 587) were divided into the high- 
and low-risk groups. The risk score distribution curve, 
survival status, and the four genes’ expression heatmap 
of the training, test, and total sets are shown in Fig. 5 A. 
The results showed that the patients of high prognostic 
risk group had a higher mortality than the patients of low 
prognostic risk group. The heatmap revealed the expres-
sion patterns of four DEGs between the two risk groups. 
Compared to the low-risk group, a significantly poor OS 
was observed in the high-risk group by the K–M survival 
curve analysis (p < 0.05, Fig. 5B). We also performed the 
time-dependent ROC curve analysis, and the AUCs for 
1-, 2-, 3-, 4-, and 5-year DFS were 0.6532, 0.6479, 0.5693, 
0.598, and 0.5723, respectively, in the test set (Fig. 5 C). 
In the total set, the AUCs for 1-, 2-, 3-, 4-, and 5-year DFS 
were 0.641, 0.6793, 0.5992, 0.57, and 0.5557, respectively 
(Fig.  5  C). These results indicated that the prognostic 
model performed best in predicting the OS risk of CRC 
patients.

Gene set enrichment analyses (GSEA) of the prognostic 
signature
We performed GSEA on the two risk groups to further 
explore the critical KEGG pathways. The results showed 
that 164 KEGG enriched pathways were active in the 
high-risk group, while 13 were active in the low-risk 
group. Furthermore, 101 statistically significant KEGG 

pathways (p < 0.05, FDR < 0.25) were screened, among 
which 100 were active in the high-risk group, while only 
one was active in the low-risk group. The top 10 pathways 
with the highest NES (normalized enrichment score) 
in the high-risk group and one pathway in the low-risk 
group (Table  3) were selected for visualization analysis 
(Fig. 6 A–B). The results showed that focal adhesion [11], 
ECM receptor interaction [12], AXON guidance [13], 
basal cell carcinoma [14], and WNT signaling pathway 
[15], which were onsidered to be associated with the poor 
prognosis of CRC, were the most significantly pathways 
enriched in the high-risk group.

Independent prognosis analysis in the TCGA dataset
Independent prognosis analyses of clinical character-
istics (age, gender, tumor stage and pathological TNM 
(tumor-node-metastasis)) and risk score determined the 
patient survival. Univariate and multivariate Cox regres-
sion analyses were performed on the clinical charac-
teristics and risk scores of the overall samples from the 
TCGA dataset. As shown in Table 4, the univariate Cox 
regression analyses evaluated the prognostic value of the 
signature (high risk/low risk, p = 0.0022), N stage (N0/N1, 
p = 0.0328), and gender (female/male). However, the mul-
tivariate Cox regression analysis showed that risk score 
and gender were significantly related to prognosis for 
OS. Therefore, the results of univariate Cox and further 
multivariate Cox analyses validated that risk score was 
an independent prognostic factor for CRC. These results 
suggested that the prognostic signature was an accurate 
model for predicting prognosis of patients with CRC.

Analysis of immune cell infiltration of the prognostic 
signature
Increasing evidence shows that the prognosis and clini-
cal outcome of CRC patients are strongly influenced by 
immune cell infiltration in the tumor microenvironment 
[16]. Comprehensive evaluation of immune infiltrates 
integrating both the quantity and variety of tumor-infil-
trating immune cells and incorporation of composite 
scores encompassing clinically biomarkers, is emerging 
as a promising strategy potentially capable of risk strati-
fication and optimizing patient selection [17]. Thus, to 
further investigate the correlation between immune cell 
infiltration and the prognostic signature, we used the 
CIBERSORT algorithm to calculate the content of 22 
immune cell populations in each CRC sample by setting 
p < 0.05 as the threshold for screening. The results showed 
that macrophages M0 were the most abundant infiltrat-
ing cells, followed by CD4 memory T cells (Fig. 7 A, B). 
We also observed differences in immune cell infiltration 
between the two risk groups. As the results showed in 
Fig. 7 C, the proportion of T cells gamma delta, eosino-
phils, neutrophils, macrophages M2, and CD4 memory 

Table 2 Univariate regression analysis of four-signature genes 
for OS
Symbol Beta Hazard ratio (95% CI) Wald test p-value
DKC1 -0.1051 0.9002(0.5513–1.4700) -0.4202 0.6744

NSUN5 0.3303 1.3915(0.9472–2.0441) 1.6835 0.0923

FLNA 0.0960 1.1007 (0.9529–1.2714) 1.3046 0.1920

CSE1L -0.2391 0.7873 (0.5377–1.1529) -1.2286 0.2192
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T cells were significantly enriched in the low-risk group 
compared to the high-risk group (p < 0.05), while a high 
proportion of regulatory T cells (Tregs), naïve B cells, 
and M0 macrophages were significantly in the high-risk 
group than in the low-risk group (p < 0.05).

Experimental verification of key genes by qRT-PCR and IHC
In order to further analyze the expression of the hub 
genes in patients, CRC and adjacent normal tissues of 
patients were collected (Supplemental material Table 
S2). To analyze the mRNA levels of DKC1, FLNA, CSE1L 
and NSUN5, qRT-PCR was performed. The mRNA lev-
els of DKC1, CSE1L and NSUN5 were higher in the colon 

cancer tissues than in the paired adjacent normal tissues, 
while the level of FLNA was lower (p < 0.05, Fig.  8  A). 
IHC staining of the five pairs of CRC and adjacent nor-
mal tissues showed that DKC1, CSE1L and NSUN5 
expression levels were significantly higher in the CRC 
tissues compared to the paired adjacent normal tissue, 
while FLNA protein level was significantly lower in the 
CRC tissues (Fig. 8B). Taken together, these results sug-
gested that DKC1, CSE1L and NSUN5 were dramatically 
overexpressed while FLNA was significantly downregu-
lated in colorectal cancer.

Fig. 5 Establishment and validation of the prognostic model for OS of patients in the training set, the test set, and the entire cohort. (A) The distribution 
of risk scores, gene expression levels, and patient relapse status; (B) Kaplan–Meier curves of DFS of the low- and high-risk groups; (C) ROC curve for the 
1-, 2-, 3-, 4-, and 5-year survival prediction by the four-gene signature, respectively. The black dotted line represents the median risk score cutoff dividing 
patients into low- and high- groups
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Discussion

CRC is the most common cancer worldwide, with the 
third-highest mortality rate [18]. It has been one of the 
leading causes of cancer-related deaths, and hence, the 
prognosis of CRC has always been a major concern. Over 
the past few decades, although the traditional therapies 
and combination chemotherapy has had a significant 
effect on the CRC, the treatment of recurrent and meta-
static CRC patients did not improve [19–21]. Meanwhile, 
there is a lack of research on the molecular mechanism 
associated with metastasis of CRC [22–24]. Therefore, 
developing new biomarkers with high prognostic val-
ues to estimate the treatment response and survival 
outcomes of CRC patients is crucial. In this study, bio-
informatics was used to screen the CRC-related genes 
based on the gene expression data of CRC patients in 
the TCGA database. A total of 6819 DEGs were explored 
from the TCGA database, followed by MEGENA and PPI 
to deduce the gene co-expression networks. A total of 
337 candidate genes were identified. Finally, based on the 
survival analysis of the 337 candidate genes, we screened 

Table 3 Ten KEGG pathways in the high-group and one in the 
low-group
Name NES p-val FDR
High-risk group

KEGG_FOCAL_ADHESION 2.9114 0 0

KEGG_ECM_RECEPTOR_INTERACTION 2.8482 0 0

KEGG_AXON_GUIDANCE 2.6994 0 0

KEGG_VASCULAR_SMOOTH_MUSCLE_CON-
TRACTION

2.6843 0 0

KEGG_BASAL_CELL_CARCINOMA 2.6754 0 0

KEGG_SPLICEOSOME 2.6402 0 0

KEGG_WNT_SIGNALING_PATHWAY 2.5723 0 0

KEGG_MELANOGENESIS 2.5571 0 0

KEGG_REGULATION_OF_ACTIN_CYTOSKEL-
ETON

2.5567 0 0

KEGG_PATHWAYS_IN_CANCER 2.5515 0 0

Low-risk group

KEGG_ASCORBATE_AND_ALDARATE_METABO-
LISM

-
1.5729

0.0143 0.172

Fig. 6 Functional enrichment analysis of genes correlated with signature genes in the high- and low-risk groups via GSEA. (A) Top 10 of KEGG enrichment 
analysis of signature genes in the high-risk group; (B) Only one in the low-risk group
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four-gene expression signatures, including DKC1, 
NSUN5, FLNA and CSE1L.

Diagnosis and prediction are the most important steps 
in the management of CRC patients. To screen the candi-
date biomarkers that may be helpful for the diagnosis and 
prognosis for CRC, a four-gene signature was identified 
by our data processing system. Then, these genes were 
used to construct a diagnostic model. The AUCs of the 
four-gene signature showed a perfect diagnostic ability 
in CRC gene expression samples in the training and test 
sets from the TCGA database. Next, to provide a robust 
indicator for the prognostic evaluation on the DFS and 
OS with CRC, we also constructed a prognostic model 
and illustrated the impact of the prognostic signature for 
CRC patients, based on a combination of the risk score 
distribution, survival status scatter plot, and gene expres-
sion heatmap. In addition, the expressions of DKC1, 
NSUN5, FLNA and CSE1L were validated by qRT-PCR 
and IHC, and found that DKC1, CSE1L and NSUN5 were 
highly expressed and FLNA was underexpressed in CRC 
tumor tissues, consistent with the data in TCGA data-
base. These results suggested that expression changes 
of DKC1, NSUN5, FLNA and CSE1L could be associ-
ated with the the prognosis of CRC patients. Because 
the number of samples collected in this study is limited, 
it can be used as a basis for prognosis and diagnosis of 
the hub genes in CRC patiens. Large clinical specimens 
to further evaluate the value of the four hub genes as a 
prognostic and diagnostic evaluation indicator of CRC is 
our next major study objectives.

DKC1 is an X-linked gene which encodes dyskeratosis 
protein on the X chromosome (Xq28) and participates 

in the occurrence of congenital keratosis [25]. DKC1 is a 
major component of telomerase ribonucleoprotein com-
plex and has a major impact on the functional stability of 
telomerase ribonucleoprotein complex. The upregulation 
of DKC1 is closely related to poor prognosis in prostate 
cancer, neuroblastoma, and hepatocellular carcinoma 
[26–28]. FLNA is located on the X chromosome and is 
a critical signal transduction scaffold protein [29, 30]. 
Previous studies have shown that FLNA promotes cell 
proliferation, migration, and invasion [31]. However, 
some studies have reported that FLNA is significantly 
upregulated in cervical cancer, and has a good predic-
tive effect, which can be used as a prognostic signature 
of cervical cancer [32]. The involvement of chromo-
some 20 in human cancers is well-documented. CSE1L is 
mapped to 20q13, which encodes a protein that mediates 
the nuclear export of importin-α [33, 34]. CSE1L is dif-
ferentially expressed in various malignant tumors and is 
related to the ability of tumor invasion, metastasis, and 
proliferation [35–37]. NSUN5 is generally upregulated in 
human cancers, including CRC, which may be attributed 
to the hypomethylation of NSUN5 promoter. The cancer 
patients with an overexpressed NSUN5 have a poorer 
prognosis, and this condition is positively correlated with 
NSUN5 translation. Epidemiologic study demonstrated 
that high expression of NSUN5 was associated with 
advanced tumor stages (III, IV), which possibly relate 
to its promotion of cell proliferation through regulat-
ing cell cycle in CRC [38]. Our study provides a different 
approach to establishing the prediction model and select-
ing the candidate oncogenes or biomarkers that exhibit a 
marked capacity for diagnosis and prognosis of CRC.

Table 4 Analysis of clinical characteristics and risk-score for the effectiveness of the prognostic signature
Variables Univariate analysis Multivariable analysis

HR 95% CI of HR p HR 95% CI of HR p
Risk score

Low-risk

High-risk 5.1908 1.8055–14.924 0.0022 4.838 1.6668–14.044 0.0037

Age

< 60

≥ 60 0.8458 0.3945–1.8134 0.667

Stage

I-II

III-IV 1.1476 0.526–2.5039 0.7294

 N stage

N0

N1 2.662 1.0831–6.5424 0.0328 2.09 0.8423–5.184 0.1119

T stage

T1-T2

T3-T4 2.1384 0.7408–6.1725 0.1599

gender

Female

Male 2.2676 1.0336–4.9749 0.0411 2.378 1.0811–5.232 0.0313
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In order to elucidate the mechanisms underlying the 
signature, we performed GSEA to analyze the KEGG 
pathways between the two risk groups. The most sig-
nificantly enriched pathways in the high-risk group were 
focal adhesion, ECM receptor interaction, AXON guid-
ance, basal cell carcinoma, and WNT signaling pathway. 
These pathways were considered to be associated with 
the poor prognosis of CRC [11–15]. These results sug-
gested that the interaction of these pathways and the four 
hub genes (DKC1, NSUN5, FLNA and CSE1L) perhaps 
an important reason for the poor prognosis in the high-
risk group.

Furthermore, the clinical features of CRC are vital fac-
tors that influence the prognosis of patients. In this study, 

we established a robust prognostic signature, which 
could categorize CRC patients into high- and low-risk 
groups with statistically different OS outcomes. Next, we 
systematically analyzed the patient risk score and clini-
cal information in TCGA (including age, gender, tumor 
stage, T stage, and N stage) for the OS by univariate and 
multivariate Cox regression analysis. The results indi-
cated that our signature could be used as an independent 
prognostic factor to predict the prognosis of patients. In 
terms of clinical relevance, the prognostic signature was 
significantly correlated with gender.

Additionally, epidemiologic studies had revealed that 
the immune microenvironment affect the develop-
ment and prognosis of colorectal cancer [39]. Zhang et 

Fig. 7 Immune cell subtypes in CRC were analyzed using CIBERSORT. (A) Bar chart displaying the proportion of immune cell subsets. The x-axis shows 
sample names, and the y-axis shows the percentage of 22 immune cell subsets; (B) Box plot of the percentage of 22 immune cell subsets; (C) Proportion 
of 22 immune cell subsets in the high- and low-risk groups. ***p < 0.001, **p < 0.01, *p < 0.05
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al. found that the patient with a higher degree of tumor 
immune invasion had a better clinical prognosis [40]. 
Therefore, exploring the correlation between prognosis 
and tumor immune function has guiding significance 
for the diagnosis and treatment of colorectal cancer. The 
current signature identified an association between the 
increased number of M0 macrophages in the high-risk 
patients and CD4 memory resting T cells, which was sig-
nificantly higher in the low-risk group than in the high-
risk group. We also observed differences in immune cell 
infiltration between the two risk groups. However, addi-
tional data are required to draw a conclusion. Previous 
studies focused on macrophages and Tregs in the immu-
nological landscape of CRC. Tregs may contribute to 
cancer development, and macrophages may be associated 
with cancer metastasis and immune suppression. Zhang 
et al. found that CD4 memory resting T cells were asso-
ciated with patients with advanced CRC, indicating that 
these cells predicted survival [41]. Jiang et al. indicated 
that patients with high numbers of M0 macrophages in 
the tumor environment have an increased risk of mortal-
ity [42]. A possible explanation is that M0 macrophages, 
together with other suppressor cells, such as Tregs, con-
tribute to an immunosuppressive environment. Taken 

together, the infiltration of immune cells in CRC indi-
cates the immune status of patients, which might under-
lie the difference in survival outcomes between the two 
risk groups.

Nevertheless, the present study has some limitations. 
Firstly, our findings are based on public databases with a 
limited number of patients. Secondly, this is a retrospec-
tive study, and prospective studies are needed to verify 
our signature. Finally, we initially used a small number 
of clinical samples to verify the genes screened by the 
model. However, more clinical samples, basic experi-
ments and the molecular mechanisms for this signature 
need to be further substantiated in future studies.

Conclusion
In conclusion, we constructed a diagnostic model based 
on the SVM. Our results revealed that this model has a 
relatively high diagnostic efficiency for CRC. Moreover, 
we identified a 4-gene prognostic signature as poten-
tial prognostic predictor for CRC patients. These find-
ings would provide a theoretical reference for the future 
exploring the potential biomarkers for diagnosis and 
prognosis prediction of CRC patients.

Fig. 8 The mRNA and protein expression of the four hub genes in CRC tissues and normal tissues. (A) The mRNA expression of DKC1, CSE1L, FLAN and 
NSUN5 were analyzed by RT-PCR, ***p < 0.001, **p < 0.01, *p < 0.05; (B) Protein levels of the four genes in CRC tissues and normal tissues were analyzed by 
IHC assay. N: normal tissues, T: CRC tissues
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Materials and methods
Collection of clinical samples
Five human CRC and adjacent normal tissues were 
obtained from patients diagnosed with CRC and received 
surgery at the People’s Hospital of Longhua, Shen-
zhen, from October to November 2021. No patient had 
received preoperative chemotherapy or radiotherapy. The 
procedure of this study was approved by the Ethics Com-
mittee of the People’s Hospital of Longhua, Shenzhen 
(approval number: Ethical review of the People’s Hospi-
tal of Longhua (Institute) [2021] No. 120), and the utili-
zation of clinical samples followed the guidelines of the 
Ethics Committee of the hospital. Informed consent was 
obtained from all participants.

Data download
We downloaded CRC RNA-seq raw count data from the 
TCGA database (https://portal.gdc.cancer.gov), which 
were preprocessed and normalized using the R package 
“Deseq2” and R package “pre-process Core.” The clinical 
information of CRC patients was downloaded from cBio-
Portal (http://www.cbioportal.org/).

Data preprocessing and DEGs analysis
Differential analysis between CRC tissues and non-can-
cerous adjacent tissues was performed using the R pack-
age “limma.” Then, the Benjamini–Hochberg method 
was utilized for differential analysis to obtain DEGs. 
Fold-change (FC) and adjusted p-values (adj. p-value) 
were used to screen the DEGs. |log (FC)| ≥ 1 and adj. 
p-value < 0.05 were defined as the screening criteria for 
DEGs [43].

MEGENA of DEGs
MEGENA is an algorithm for mining module informa-
tion from expression spectrum data [44]. According to 
the algorithm, modules are defined as a group of genes 
with similar expression profiles. If some genes always 
have similar expression changes in a physiological pro-
cess or different tissues, they are defined as a module. 
MEGENA consists of three major steps: (1) The correla-
tion between any two genes is calculated, and the genes 
are sorted according to the correlation; (2) Fast Planar 
Filtered Network construction (FPFNC) by introducing 
parallelization, early termination, and prior quality con-
trol; (3) PFNs are iteratively processed by three criteria: 
the shortest path distance, local path index, and overall 
modularity to obtain accurate gene classification.

PPI analysis of node genes
The node genes were obtained by MEGENA algorithm. 
The PPI analysis of the node genes was performed 
using String10.0. The results of the analysis were estab-
lished using a gene expression network and mapped by 

R package “igraph” and R package “ggraph”. The interac-
tion correlation (degree ≥ 10) was taken as the criterion 
to screen out the hub genes with high connectivity in the 
gene expression network.

Survival analysis of hub genes
The R package survival was applied to explore the roles 
of hub genes in disease-free survival (DFS) based on the 
tumor sample from the TCGA database. CRC patients 
were divided into two groups based on the median 
expression values of the hub genes. Then, the Kaplan–
Meier (K–M) survival curve was established by com-
bining the survival information of CRC patients in the 
high- and low-expression groups. p < 0.01 was considered 
statistically significant by the log-rank test.

Construction and validation of the diagnostic model by 
SVM
The significant risk genes were screened out through sur-
vival analysis. An SVM model was trained using ten-fold 
cross-validation [45]. The SVM model is a supervised 
classification algorithm of machine learning using python 
(version 3.8) package scikit-learn, which distinguishes 
and predicts the samples through Eigenvalues of the can-
didate genes in each sample and evaluates the probability 
of belonging to a specific category, thereby realizing the 
prediction between CRC tumor and normal samples. The 
true and false-positive rates were estimated, and the area 
under the ROC curve (AUC) was employed to estimate 
the performance of the model on the training and test 
sets from the TCGA database.

Establishment and validation of the prognostic model
Patients with clinical information (age, gender, stage, N 
stage, T stage, and OS time) were contained in the sub-
sequent prognostic analysis. A total of 589 patients from 
the TCGA database were analyzed for the clinical cor-
relation. These patients were divided into the training 
and test sets at a ratio of 1:1 using the R package “caret.” 
The training set was used to identify the survival-related 
DEGs and establish a prognostic signature, while the test 
and the total sets were used as internal validation sets.

The formula of the risk score for the prediction of 
CRC patients’ prognosis was as follows: risk score = ∑ βi 
* expgenei (βi: the coefficient of expgenei. expgenei: the 
expression level of genei). CRC patients were divided 
into high-risk and low-risk groups based on the median 
risk score of the training set. The survival analysis of 
the two groups was based on DFS and OS. The K–M 
survival curves were drawn using the R package “sur-
vival” and “survminer.” Next, we calculated the values of 
AUC to verify the feasibility and accuracy of our prog-
nostic model and the clinical characteristics in predict-
ing the patients’ prognosis. Finally, both univariate and 

https://portal.gdc.cancer.gov
http://www.cbioportal.org/
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multivariate Cox regression analyses were conducted 
using clinical parameters and risk scores to evaluate the 
independent prognostic value of the signature.

Gene set enrichment analysis
Patient samples were divided into high- and low-risk 
groups based on the risk score. Then, GSEA were per-
formed to identify the KEGG pathways in the two groups 
using the Molecular Signatures Database (http://www.
gsea-msigdb.org/gsea/downloads.jsp). At p < 0.05, nor-
malized enrichment scores (NES) > 1.0, and a false-dis-
covery rate (FDR) q < 0.25, the pathway was considered 
significant.

Estimation of infiltrating immune cells
Tumor-infiltrating immune cells (TIICs) were estimated 
between the two risk groups using the CIBERSORT 
algorithm [46]. The algorithm utilized normalized gene 
expression data and the annotated gene signature matrix 
(LM22) to determine 22 immune cell subtypes. The 
LM22 file was downloaded from the CIBERSORT web 
portal (https://cibersort.stanford.edu/). Samples from 
CIBERSORT (p < 0.05) were considered significant and 
screened for further analysis.

Quantitative real-time polymerase chain reaction (qRT-
PCR) analysis
Total RNA was extracted from clinical tissue samples 
(cancer and pared normal tissue) using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA). An equivalent of 1 µg of 
RNA was reverse transcribed into cDNA with oligo (dT) 
primers using the cDNA synthesis kit (Takara, Dalian, 
China). qRT-PCR was performed using SYBR Green 
qPCR Master Mix (Roche, Shanghai, China) according to 
manufacturer’s instructions. β-actin was used as a house-
keeping gene for normalization, and the sequences of the 
qRT–PCR primers are listed in Supplementary material 
Table S3. The qRT-PCR amplification reaction was as fol-
lows: initial denaturation at 95 °C for 10 min, followed by 
40 cycles of 95 °C for 15 s and 60 °C for 45 s. The reac-
tions were carried out in triplicates, and the relative 
quantification was performed using the comparative CT 
(2−∆∆CT) method.

Immunohistochemistry (IHC) staining analysis
Tumor and paired normal tissue from the CRC patients 
were fixed in 10% formalin. Following standard proto-
cols, 3-µm-thick sections were prepared and stained. 
The IHC staining was conducted using the UJltraSensi-
tive™ SP (Mouse/Rabbit) IHC kit (MX Biotechnologies, 
Fuzhou, China), which contained endogenous per-
oxidase blocking solution, serum, secondary antibody, 
streptavidin-peroxidase, and DAB substrate-chromo-
gen. The tissue sections were incubated with the rabbit 

polyclonal antibodies of anti-DKC1 (1:100, Servicebio, 
Wuhan, China), anti-FLNA (1:100, Abcam, MA, USA), 
anti-NSUN5 (1:200, Abcam, MA, USA) and anti-CSE1L 
(1:100, Abcam, MA, USA) overnight at 4 °C.

Data analysis and statistics
Statistical analyses of this study were conducted using 
the R software. The ROC curve analysis with the AUC 
was utilized to assess the predictive performance of the 
diagnostic and prognostic model. K–M curves with the 
log-rank test were plotted using the R package survival 
program. Additionally, univariate and multivariate Cox 
regression analyses were utilized to confirm the indepen-
dent prognostic factors within clinicopathological char-
acteristics. P < 0.05 indicated statistical significance for all 
analyses [47].
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