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Abstract 

Background: Cancer metabolism is largely altered compared to normal cells. This study aims to explore critical 
metabolism pathways in colon adenocarcinoma (COAD), and reveal the possible mechanism of their role in cancer 
progression.

Methods: Expression data and sequencing data of COAD samples were obtained from The Cancer Genome Atlas 
and Gene Expression Omnibus databases. The expression profiles between tumor and normal samples were com-
pared to identify differential metabolism pathways through single sample gene set enrichment analysis.

Results: Fatty acid synthesis was identified as a key metabolism pathway in COAD. Based on fatty acid-related lncR-
NAs, two molecular subtypes (C1 and C2) were defined. C2 subtype with worse prognosis had higher immune infiltra-
tion and higher expression of immune checkpoints. Five transcription factors (TFs) including FOS, JUN, HIF1A, STAT3 
and STAT2 were highly expressed in C2 subtype. Five fatty acid-related lncRNAs were identified to be biomarkers for 
predicting COAD prognosis. Finally, further experients showed that knockdown of lncRNA PAXIP1-AS1 decreased 
the triglyceride content and the fatty acid synthase and acetyl-CoA carboxylase 1 expressions, which suggested that 
lncRNA PAXIP1-AS1 plays an important role in fatty acid metabolism of COAD.

Conclusions: This study demonstrated that fatty acid synthesis was greatly altered in COAD. Fatty acid-related lncR-
NAs were speculated to be involved in cancer progression through associating with TFs. The five screened TFs may 
serve as new drug targets for treating COAD.

Keywords: Colon adenocarcinoma, Fatty acid metabolism, Long non-coding RNAs, Molecular subtypes, Prognosis, 
Immune infiltration
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Introduction
Colon adenocarcinoma (COAD) is one of the most 
common cancers within digestive system, whose 
death rate ranking in the fifth of all cancer types [1]. 
American Joint Committee on Cancer (AJCC) classi-
fies COAD patients into different stages with differ-
ent clinical features including histological features, 
metastasis and lymph node. With the development of 
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new therapies for cancer treatment, especially immu-
notherapy and other molecular-targeted therapies, 
improved overall survival of cancer patients is shown 
[2, 3]. However, not all cancer patients can benefit 
from these new therapeutics. To address this issue, a 
number of studies also explored a series of molecular 
features such as genomic features [4] and biomarkers 
[5–7] for predicting the response to immunotherapy or 
chemotherapy, thus guiding personalized treatments.

Cancer metabolism is one of important aspects 
in cancer development, such as activated glycolysis 
contributing a lot in cancer metastasis [8]. The com-
plexity of cancer metabolism has been underscoring 
in the previous studies, but comprehensive under-
standing on cancer metabolism can largely facilitate 
the development of new targeted drugs. ACLY is the 
first-step rate-controlling enzyme in lipid synthesis, 
which is found to be upregulated in colon cancer and 
to contribute metastasis [9]. Evidences have demon-
strated that the remodeling of tumor microenviron-
ment (TME) can be modulated by metabolism-related 
pathways [10]. Conversely, TME can also alter meta-
bolic features through cellular metabolites of cells in 
TME [11]. It has been suggested that targeting cancer 
metabolism is a promising strategy for cancer treat-
ment [12–15]. Lipid metabolism-related signature is 
also developed for predict colon cancer survival [16].

In the regulation of metabolism-related pathways, 
long non-coding RNAs (lncRNAs) play a critical role 
in metabolic reprogramming [17–19]. For example, 
lncRNA-GLCC1 was found to reprogram glycolytic 
metabolism and was associated with prognosis in colo-
rectal cancer [20]. CCAT1/FABP5 promotes tumour 
progression through mediating fatty acid metabolism 
in lung adenocarcinoma [21]. LINC01606 protects 
colon cancer cells from ferroptotic cell death and func-
tions as an oncogene to facilitate tumor cell stemness 
[22]. CDKN2B-AS1 is considered as a promising bio-
marker or therapeutic target in various cancer types 
[23].

Therefore, in this study, we introduced a series of 
bioinformatics analysis to further explore the role 
of metabolism and metabolism-related lncRNAs in 
COAD development. We identified fatty acid biosyn-
thesis as a critical pathway that was greatly dysregu-
lated in COAD. Based on lncRNAs related to fatty 
acid, we constructed two novel molecular subtypes 
with different molecular features. Furthermore, we 
explored the relation between lncRNAs and transcrip-
tion factors (TFs), and identified key fatty acid-related 
lncRNAs for predicting COAD prognosis. Fatty acid 
was considered as a critical metabolism pathway in 
COAD progression.

Methods
Additional file  1: Fig. S1A shows the workflow of this 
study.

Information of COAD samples and data preprocessing
TCGA-COAD dataset containing RNA-seq data (FPKM) 
and clinical information was downloaded from The Can-
cer Genome Atlas (TCGA) database in October 01, 2021. 
GSE17538 dataset was obtained from Gene Expression 
Omnibus (GEO) database in October 01, 2021. Samples 
without clinical information, survival time and survival 
status were removed. Only samples with stage II, III and 
IV were remained. Ensembl ID and probes were con-
verted to gene symbol. The fpkm of gene expression was 
converted into TPM expression profile according to the 
method of Li et al. [24]. Expression data in two datasets 
were identified into mRNAs and lncRNAs according to 
GTF file downloaded from GENCODE (https:// www. 
genco degen es. org/).

Identification of fatty acid‑related lncRNAs
Pearson correlation analysis was conducted between 
fatty acid activity score and lncRNAs. Fatty acid-related 
lncRNAs were identified under conditions of |correlation 
coefficient|> 0.25 and P < 0.05. The lncRNAs that were 
identified both in TCGA-COAD and GSE17538 datasets 
were considered as important fatty acid-related lncRNAs 
for further analysis.

Unsupervised consensus clustering based on fatty 
acid‑related lncRNAs
Unsupervised consensus clustering is a widely used 
method for identifying molecular subtypes with differ-
ent molecular features based on expression profiles. We 
used ConsensusClusterPlus R package to conduct unsu-
pervised consensus clustering based on the expression of 
fatty acid-related lncRNAs [25]. KM algorithm was used 
and Euclidean was selected as distance. 500 bootstraps 
were repeated with each bootstrap containing 80% sam-
ples in TCGA-COAD dataset. Cluster number k was set 
from 2 to 10, and cumulative distribution function (CDF) 
and consensus matrix were used to confirm the optimal 
cluster number.

Gene set enrichment analysis (GSEA)
GSEA is a powerful method for delineating biological 
processes based on gene expression data [26]. We applied 
GSEA to calculate the enrichment score of hallmark 
pathways for molecular subtypes. Hallmark pathways 
with a series of gene sets were obtained from Molecu-
lar Signature database (MSigDB) [27]. ClusterProfiler R 

https://www.gencodegenes.org/
https://www.gencodegenes.org/


Page 3 of 14Wu et al. Biology Direct           (2022) 17:19  

package was used to annotate gene ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways on fatty acid-related lncRNAs and TFs [28].

Characterization of tumor microenvironment
The proportion of different immune cells was calculated 
by GSEA based on a series of gene signatures. Estimation 
of STromal and Immune cells in MAlignant Tumours 
using Expression data (ESTIMATE) algorithm was con-
ducted to evaluate immune infiltration from two aspects 
including stromal score and immune score [29]. ESTI-
MATE score is the combined score of stromal score and 
immune score. Tumor Immune Dysfunction and Exclu-
sion (TIDE) analysis was implemented for assess T cell 
function [30].

Assessing the function of fatty acid‑related lncRNAs
To analyze the localization of fatty acid-related lncRNAs, 
relative concentration index (RCI) was calculated for 
each lncRNA based on LncATLAS database [31]. RCI < 0 
indicates nucleus-localized lncRNAs and RCI < 0 indi-
cates cytoplasm-localized lncRNAs. The TF activity was 
assessed in accordance with the algorithm from Garcia-
Alonso et al. [32]. Pearson correlation analysis was con-
ducted to analyze the association between lncRNAs and 
TFs.

The first‑order partial correlation analysis
The first order partial correlation analysis was an effi-
cient method for analyzing one variable in the relation 
between another two variables. It was used to investigate 
the association among fatty acid-related lncRNAs, fatty 
acid score and fatty acid-related genes [33]. The associa-
tion between two variables was largely weakened when 
removing the effect of another variable. Of the case, the 
variable was considered as key fatty acid-related lncRNA.

Construction of a prognostic model based on key fatty 
acid‑related lncRNAs
Key fatty acid-related lncRNAs were identified by the 
first order partial correlation analysis. Univariate Cox 
regression analysis was employed on the key lncRNAs to 
obtain coefficients. The prognostic model was defined as 
risk score = beta i * expression i, where beta represents 
coefficients and i represents lncRNAs. Risk score was cal-
culated for each sample in two datasets. Median value of 
risk score was selected as a cut-off to divide samples into 
high-risk and low-risk groups.

Cell culture
NCM460 cell line (normal human colonic epithelial cell 
line) and all the four human colorectal cancer (COAD) 
cell lines (LoVo, HCT116, SW480, and HT-29) were 

purchased from the Cell Bank of Type Culture Collec-
tion of the Chinese Academy of Sciences (CBTCCCAS, 
Shanghai, China). The cells were cultured in RPMI 1640 
medium (Gibco, United States) or McCoy’s 5A medium 
(Gibco, United States) supplemented  with 10% fetal 
bovine serum (Gibco, United States), 100 U/ml penicil-
lin, and 100  mg/ml streptomycin at 37 ℃ in a humidi-
fied incubator with a 5% CO2 concentration.

Quantitative real‑time PCR
Total RNA was extracted from NCM460 cells and COAD 
cells by TRIzol Reagent (Beijing Solarbio Technology Co., 
Ltd., Beijing, China) according on the manufacturer’s 
instruction. PrimeScript™ RT-PCR kit (TaKaRa, Moun-
tain View, CA) was used to perform reverse transcrip-
tion after quality validation. qRT-PCR was conducted by 
using the SYBR Premix Ex Taq™ (TaKaRa). The expres-
sion of β-actin was used as an internal control. The fatty 
acid-related lncRNA expression was measured via the  2−
ΔΔCT method. All primer sequences used in this research 
are listed in Additional file 2: Table S1.

Short interference RNAs (siRNAs), and transfection
Small interfering RNA (siRNA) of PAXIP1-AS1 were 
synthesized by RiboBio (Guangzhou, China). HCT116 
and HT-29 cells were transfected with si-PAXIP1-AS1for 
48 h by using Lipofectamine 2000 (Invitrogen, CA, USA). 
qRT-PCR was used to evaluate the knockdown efficiency 
of si-PAXIP1-AS1.

Intracellular triglyceride assay
Intracellular triglyceride was determined using an 
E1687Ge General TGC/Triglyceride ELISA Kit (EIAab 
Science Inc., Wuhan, China) at 450 nm according to the 
manufacturer’s protocol.

Western blot
HCT116 and HT-29 cells transfected with si-PAXIP1-
AS1 were lysed with RIPA lysis buffer (R0010, Solarbio, 
China) supplemented with protease inhibitors (Roche). 
BCA Kit (Pierce, Rockford, IL) was used to determine the 
protein concentration. The total protein was added into 
loading buffer and then was separated by 10% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE), then the separated protein was transferred to 
polyvinylidene fluoride (PVDF) membrane (Merck Mil-
lipore, Billerica, MA). The membrane was blocked with 
5% skimmed milk for 1  h, the primary anti-fatty acid 
synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) 
antibodies (Cell Signaling Technology, Danvers, MA) 
was used to block protein overnight at 4  °C. The PVDF 
membrane was then washed with TBST and incubated 
with the corresponding secondary antibody for 2 h. The 
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proteins were identified by using Pierce SuperSignal 
West Pico Chemiluminescent Substrate (Termo Fisher, 
Waltham, MA) according to the manufacturer’s protocol. 
β-actin antibody was used as the internal reference.

Statistical analysis
Parameters of packages and tools were default if without 
indication. Statistical analysis was performed in R (4.1.1) 
platform. Statistical methods were indicated in the cor-
responding sections. P < 0.05 was considered as signifi-
cant. ns, no sifnificance. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001.

Results
Identification of important metabolism‑related pathways
Firstly, single sample gene set enrichment analysis 
(ssGSEA) was used to calculate enrichment score for 
each sample in two datasets. Then Wilcoxon test was 
conducted to identify differential metabolism-related 
pathways between normal and tumor samples in TCGA-
COAD dataset. Within the identified differential path-
ways, univariate Cox regression analysis was performed 
to identify metabolism-related pathways that were asso-
ciated with prognosis in two datasets. Finally, fatty acid 
biosynthesis pathway was identified in both two datasets.

Constructing molecular subtypes based on lncRNAs 
related to fatty acid
To identify lncRNAs related to fatty acid, Pearson corre-
lation analysis was performed between activity score of 
fatty acid and lncRNA expression. In TCGA-COAD and 
GSE17538 datasets, we identified 592 and 394 lncRNAs 
related to fatty acid respectively. Among these lncRNAs, 
6 lncRNAs were negatively correlated with fatty acid in 
both two datasets, and 94 lncRNAs were positivity cor-
related with fatty acid (Fig.  1A). Then univariate Cox 
regression analysis was conducted within 100 lncRNAs, 
and 15 lncRNAs related to prognosis were identified. 
By using unsupervised consensus clustering, samples 
in TCGA-COAD dataset were classified into different 
groups. According to CDF and area under CDF curve 
in different cluster numbers, cluster number k = 2 was 
determined to clearly classify samples into two groups 
(Fig. 1B, C). As a consequence, cluster 1 (C1) and cluster 
2 (C2) were defined as two molecular subtypes. Survival 
analysis on two subtypes showed that C1 and C2 had 
differential overall survival with C1 had more favorable 
prognosis in both TCGA-COAD and GSE17538 datasets 
(P = 0.011 and P = 0.0014 respectively, Fig. 1D, E). More-
over, C1 subtype had extremely higher fatty acid activity 
than C2 subtype in both TCGA-COAD and GSE17538 
datasets (P = 1.9e-25 and P = 1.1e-19 respectively, Fig. 1F, 
G), indicating that high fatty acid activity may have a 

protective role to against tumor progression. To under-
stand if there was a difference on pathways between C1 
and C2 subtypes, we used GSEA to calculate enrich-
ment score of hallmark gene sets from MSigDB [27]. As 
a result, we observed that metabolism-related pathways 
including pyruvate metabolism, fatty acid metabolism, 
and citrate cycle TCA cycle were significantly enriched in 
C1 subtype (P < 0.05, FDR < 0.25, Fig. 1H).

Different genomic and mutation features between C1 
and C2 subtypes
To compare genomic features of two subtypes, we 
obtained genomic data of TCGA-COAD dataset from 
previous research [34], including aneuploidy score, 
homologous recombination defects, number of seg-
ments, fraction altered and tumor mutation burden. 
Except for number of segments, C1 and C2 subtypes 
had a significant difference on other four genomic fea-
tures (P < 0.0001, Fig. 2A). C1 subtype showed obviously 
higher enrichment score of aneuploidy, homologous 
recombination defects and fraction altered, while C2 
subtype had higher score of tumor mutation burden. 
Among five genomic features, aneuploidy score and frac-
tion altered were significantly correlated with fatty acid 
score (R = 0.223, P = 8.61e-05 and R = 0.216, P = 0.00012 
respectively, Fig.  2B). Furthermore, analysis on single 
nucleotide variations revealed the top 16 significantly 
mutated genes (P < 0.05, Fig. 2C). In C1 subtype, APC and 
TP53 were highly mutated with mutation frequencies of 
84% and 65% respectively, while they were 49% and 39% 
in C2 subtype. Compared with C1 subtypes, mutations in 
C2 subtype were more scattered. The different genomic 
features and gene mutations can alter gene expression 
and thus contribute to dysregulated pathways.

Differentially enriched pathways between C1 and C2 
subtypes
Given that C2 subtype had worse prognosis than C1 sub-
type, we tried to find out whether there were differentially 
enriched pathways that may affect prognosis between 
them. For this purpose, hallmark pathways from MSigDB 
were included for conducting GSEA in TCGA-COAD 
and GSE17538 datasets. By comparing C2 to C1, we 
observed that two subtypes exhibited differential enrich-
ment in a number of pathways, with C2 subtype showing 
lower enrichment of many metabolism-related pathways. 
Within these differential pathways between two sub-
types, 15 pathways such as VEGF signaling, ECM recep-
tor interaction and Toll-like receptor signaling pathways 
were upregulated in C2 subtype in both two datasets, 
and 9 pathways such as retinol metabolism, P450, starch 
and sucrose metabolism were downregulated (Fig.  3A). 
Within 15 upregulated pathways in C2 subtype, Rader 
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plots presented similar normalized enrichment score 
(NES) in two datasets (Fig.  3B, C), suggesting that the 
subtyping based on fatty acid-related lncRNA expression 
was reliable, and the these lncRNAs may be involved in 
regulating these activated pathways in C2 subtype.

High immune infiltration and T cell dysfunction were 
shown in C2 subtype
The component of TME is a critical hallmark in cancer 
development. Therefore, we evaluate the distribution 
of different types of immune cells in two subtypes by 
using a series of gene signatures. As a result, among 24 
immune cells, we found that 19 of them were differen-
tially enriched in two subtypes in TCGA-COAD dataset 
(Fig. 4A). Notably, CD8 T cells, cytotoxic cells and den-
dritic cells (DCs) were more enriched in C2 subtype, 
while immunosuppressive cells such as macrophages 

and regulatory T (Treg) cells were also highly distrib-
uted (P < 0.05). ESTIMATE analysis further supported 
the above result that C2 subtype had significantly higher 
stromal score and immune score than C1 subtype, indi-
cating higher immune infiltration of C2 subtype (P < 0.01, 
Fig.  4B). In GSE17538 dataset, we observed similar 
results (Additional file 1: Fig. S1A, B).

Furthermore, we investigated the expression of 
immune checkpoints that can affect the function of 
anti-tumor immune cells. It was observed that most 
of immune checkpoints were more highly expressed 
in C2 subtype than C1 (Fig.  4C). Especially, some 
important checkpoints whose high expression were 
reported to inhibit T cell function were significantly 
higher expressed in C2 subtype, such as LAG3, CTLA4, 
PDCD1, IDO1, and CD274 (P < 0.0001). High expres-
sion of these immunosuppressive checkpoints in 

Fig. 1 Identification of two molecular subtypes based on fatty acid-related genes. A Venn plot of fatty acid-related lncRNAs between TCGA-COAD 
and GSE17538 datasets. Positive indicates upregulated and negative indicates downregulated lncRNAs. B CDF curve and delta area of CDF curve 
when cluster number k = 2–10. C Consensus matrix when k = 2. D, E Kaplan–Meier survival curve of C1 and C2 subtypes in TCGA-COAD (D) and 
GSE17538 (E) datasets. Log-rank test was conducted. F, G Fatty acid activity score of C1 and C2 subtypes in TCGA-COAD (F) and GSE17538 (G) 
datasets. Wilcoxon test was performed. H GSEA on KEGG pathways from MSigDB for two subtypes in TCGA-COAD dataset
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C2 subtype may explain its worse outcome. In addi-
tion, TIDE analysis further demonstrated that C2 
subtype had more severe T cell dysfunction than C1 
(P = 0.00011, Fig.  4D), which was consistent with the 
above results. Simultaneously, T cell exclusion was 
shown to be a bit more severe in C1 (P = 0.031, Fig. 4E). 
In GSE17538 dataset, the expression of immune check-
points were not obviously differential between two 
subtypes, but CD274 and CTLA4 were still overex-
pressed in C2 subtype (P < 0.01, Additional file  1: Fig. 
S1C). TIDE analysis in GSE17538 dataset displayed 
similar result with the result in TCGA-COAD dataset 
(Additional file 1: Fig. S1D and E), supporting that the 
unfavorable prognosis of C2 subtype may result from 
the dysfunction of cytotoxic T cells. We also compared 

the relationship between the two molecular subtypes 
and the four molecular subtypes previously reported by 
Liu et al. [35]. It can be observed that there are signifi-
cant differences in the distribution of the correspond-
ing four old molecular subtypes in the two subtypes, 
and the C1 subtype is mainly GI CIN subtype and C2 
subtype are rich in GI Patients with HM-indel subtype 
(Fig.  4F). Thorsson et  al. [34] reported the 6 immune 
subtypes in pan cancers. We compared these 6 subtypes 
with our C1 and C2 subtypes. Similarly, we can observe 
that there are significant differences in the distribution 
of 6 different immune subtypes in C1 and C2 subtypes 
in this study (Fig. 4G). Moreover, in the modulation of 
TME, fatty acid-related lncRNAs played a nonnegligi-
ble role.
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Fatty acid‑related lncRNAs were involved in regulating 
oncogenic pathways
Given that two molecular subtypes based on fatty acid-
related lncRNAs displayed distinct molecular features 

and prognosis, we suspected that these lncRNAs may be 
highly involved in delivering tumor-promotive signals in 
COAD. LncRNAs are considered as important regula-
tors in controlling gene expression. No surprisingly, we 
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observed that the expression of protein-coding genes 
(PCGs) was highly consistent with the expression of fatty 
acid-related lncRNAs, with a higher proportion of posi-
tive correlations (Fig. 5A). To understand the localization 
of fatty acid-related lncRNAs which largely decided their 
function, LncATLAS database was utilized for calculating 
their RCI [31]. The result showed that fatty acid-related 
lncRNAs were localized more in the nucleus (RCI < 0) in 
both TCGA-COAD and GSE17538 datasets, with a pro-
portion of 58.98% and 63.50% respectively (Fig. 5B).

LncRNAs regulating gene expression through sup-
pressing or activating transcription factors (TFs) is one of 
the main mechanism. Next we analyzed TF activity of C1 
and C2 subtypes according to the algorithm developed by 
Garcia-Alonso et al. [32], and identified 108 and 76 dys-
regulated TFs in TCGA-COAD and GSE17538 datasets 
respectively. We found that these dysregulated TFs were 
mostly activated (Fig. 5C), and five TFs were found to be 
upregulated in C2 subtype in both two datasets includ-
ing FOS, HIF1A, JUN, STAT3 and STAT2 (P < 0.0001, 
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Fig. 5D). Based on Pearson correlation analysis between 
these dysregulated TFs and nucleus-localized fatty acid-
related lncRNAs, a group of TFs negatively associated 
with the lncRNAs were identified (P < 0.05, Fig.  5E). 
Within 100 fatty acid-related lncRNAs, 6 lncRNAs in the 
nucleus were identified to be significantly associated with 
TF activity, including DIO3OS, LINC01315, MNX1-AS1, 
PAXIP1-AS1, SNHG11, and TMEM147-AS1 (Fig.  5F). 
We inferred that these 6 lncRNAs may be greatly 
involved in regulating activated TFs observed in C2 sub-
type. Moreover, to better understand the function of the 
5 upregulated TFs in C2 subtype, KEGG pathways were 

annotated. Consequently, three tumor-related pathways 
were identified within the top 10 significantly enriched 
pathways, including PI3K-Akt signaling, HIF-1 signaling 
and JAK-STAT signaling pathways (Fig. 5G).

Identification of key fatty acid‑related lncRNAs
To identify key lncRNAs that were involved in regulat-
ing fatty acid metabolism, we applied the first order par-
tial correlation analysis among fatty acid-related genes, 
fatty acid activity and the identified 6 fatty acid-related 
lncRNAs that were associated with TF activity. As a con-
sequence, 5 fatty acid-related lncRNAs were screened 
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in two datasets (Fig.  6A). The correlation between fatty 
acid activity and fatty acid-related genes was signifi-
cantly weakened when removing these fatty acid-related 
lncRNAs, indicating that these lncRNAs played impor-
tant roles in the signals related to fatty acid. Functional 
analysis on these 5 lncRNAs revealed that metabolism-
related pathways such as purine metabolism, pyrimidine 

metabolism and other glycan degradation were enriched 
(Additional file 3: Fig. S2). Based on the expression of 5 
lncRNAs, high-risk and low-risk groups were defined 
according to the Optimal cut-off of risk score. Two 
groups manifested distinct overall survival in both two 
datasets (Fig.  6B, C), indicating that these 5 lncRNAs 
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could serve as biomarkers to predict prognosis for COAD 
patients.

Effects of lncRNA PAXIP1‑AS1 on fatty acid metabolism 
of colorectal cancer
To furthermore explore the role of lncRNAs on fatty 
acid metabolism of colorectal cancer, we determined 
the expression of five lncRNAs (linc01315, MNX1-
AS1, PAXIP1-AS1, SNHG11, TMEM147-AS1) in 4 
human COAD cell lines (LoVo, HCT116, SW480, and 
HT-29) and the normal human colonic epithelial cell 
line NCM460, the results showed that compared with 
NCM460 cell line, the mRNA expression levels of five 
lncRNAs in the 4 COAD cell lines were all up-reg-
ulated, of which, HT-29 cell line exhibited the high-
est expression of five lncRNAs, while HCT116 cell 
line exhibited the lowest expression of five lncRNAs 
(Fig. 7A). Therefore, HT-29 and HCT116 cell lines were 
chosen as candidate cell lines for the following experi-
ment. Among the five lncRNAs, lncRNA PAXIP1-AS1 

showed the highest expression, then we explored the 
role of PAXIP1-AS1 on fatty acid metabolism in COAD 
cells. qRT-PCR showed the expression of PAXIP1-AS1 
were significantly decreased in the si-PAXIP1-AS1 
HT-29 and HCT116 cell lines (Fig.  7B). Afterward, 
intracellular triglyceride content was determined by 
the triglyceride assay kit, the result showed that knock-
down of PAXIP1-AS1 reduced the triglyceride content 
in COAD cells (Fig. 7C). Consistently, FASN and ACC1, 
the key enzymes of fatty acid synthesis metabolism, 
were significantly downregulated in si-PAXIP1-AS1 
COAD cells (Fig.  7D). Together, these results suggest 
that lncRNA PAXIP1-AS1 accelerates the fatty acid 
metabolism of COAD.

Discussion
In the comparison of metabolism-related pathways 
between normal and tumor samples, we identified that 
fatty acid synthesis pathway was significantly dysregu-
lated in COAD samples. Then based on the expression 
of lncRNAs related to fatty acid, we constructed two 

Fig. 7 Effects of lncRNA PAXIP1-AS1 on fatty acid metabolism in COAD cells. A qRT-PCR was used to determine the mRNA expression of five 
lncRNAs in the normal human colonic epithelial cell line NCM460 and 4 COAD cell lines. B Knockdown efficiency of the HT-29 and HCT116 cell lines 
transfected with si-PAXIP1-AS1was confirmed by qRT-PCR. C The effect of si-PAXIP1-AS1 on the triglyceride content in COAD cells. D FASN and ACC1 
protein expression in COAD cells were examined by western blots. Data are shown as mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001
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molecular subtypes that had differential prognosis. 
C2 subtype had unfavorable prognosis and lower the 
enrichment of fatty acid synthesis, compared with C1 
subtype. High activity score of fatty acid seemed to play 
a protective role in COAD.

Fatty acid synthesis is an essential part of lipid metab-
olism, which can convert nutrients into metabolic com-
ponents for synthesizing biological membranes, storing 
energy and generating signaling molecules [36]. Fatty 
acid synthesis has been demonstrated to be involved in 
tumorigenesis and tumor progression in various can-
cer types. We found that some tumor-related pathways 
such as VEGF signaling, Toll-like receptor signaling 
and ECM receptor signaling were associated with high 
activity of fatty acid synthesis. VEGF is a key mediator 
of angiogenesis in cancer, which can promote metas-
tasis by activating VEGF signaling. In colorectal can-
cer, fatty acid was observed to be higher expressed in 
VEGF-positive tumor tissues, compared to VEGF-
negative tumor tissues [37], which was accordant with 
our study. Inhibiting fatty acid synthase can suppress 
angiogenesis through modulating VEGF-A expres-
sion in glioma cells [38]. Zaytseva et  al. also support 
that knock-down of fatty acid synthase decreases the 
expression of VEGF and thus suppress angiogenesis in 
colorectal cancer [39].

Toll-like receptors (TLRs) contributes to activate 
immune response in inflammation-induced diseases 
and cancers, which is stimulated by saturated fatty acids 
[40, 41]. Overexpression of TLR4 indicates progression 
and poor prognosis in colon cancer [42]. The previous 
findings suggest that high expression of fatty acid can 
promote cancer progression through activating VEGF 
signaling and Toll-like receptor signaling, however, which 
seems inconsistent to our observation that C1 subtype 
had higher activity of fatty acid synthesis and higher 
enrichment of these pathways.

We put our sight into TME, one of critical hallmarks 
of cancer, which determines the prognosis to some 
extent. C2 subtype had significantly higher immune 
infiltration but also higher expression of immune 
checkpoints than C1 subtype, which may result in its 
worse prognosis. Especially, high expression of LAG3, 
CTLA4, PDCD1 (PD-1), IDO1, and CD274 (PD-L1) 
were widely reported to be associated with suppres-
sive immune response and suppressed T cell function 
in cancer. Immune checkpoint blockade such as anti-
CTLA-4 and anti-PD-1/PD-L1 have been considered as 
promising strategies for treating various cancer types 
also including COAD [43].

An interaction between fatty acid metabolism and TME 
has been reported in a number of studies. In glioblas-
toma, Tregs obtain energy relying on fatty acid oxidation 

(FAO) under hypoxic conditions [44]. Within the pro-
cess, hypoxia-inducible factor 1α (HIF-1α) is an inducer 
to drive Tregs depending on lipid oxidation in mitochon-
drial metabolism. M2 macrophages, which are associated 
with cancer progression and invasion secret increased 
IL-1β under conditions of FAO dependence and HIF-1α 
upregulation [45]. Therefore, fatty acid metabolism plays 
an important role in TME alternation.

To further reveal the mechanism of fatty acid metab-
olism in cancer development, the association between 
fatty acid-related lncRNAs and TFs were analyzed. We 
identified six fatty acid-related lncRNAs that had close 
association with dysregulated TFs, including DIO3OS, 
LINC01315, MNX1-AS1, PAXIP1-AS1, SNHG11, and 
TMEM147-AS1. Furthermore, five TFs were found to be 
significantly upregulated in C2 subtype in both two data-
sets, including FOS, HIF1A, JUN, STAT3 and STAT2. 
HIF1A gene expressing HIF-1α contributes to hypoxia-
induced FAO dependence, which is consistent with the 
previous findings [44, 45]. STAT3 and STAT2 belong to 
STAT family and are involved in STAT signaling, which 
are highly associated with TME and cancer progression 
[46]. Especially, STAT3 signaling induces the upregula-
tion of immunosuppressive factors such as TGF-β and 
PD-1/PD-L1, and promotes angiogenesis through upreg-
ulating HIF-1α and VEGF [47]. Higher expression of 
STAT2 and STAT3 may lead to the worse prognosis of C2 
subtype. However, the relation between fatty acid-related 
lncRNAs and these TFs except for HIF1A remains to be 
unclear, and it needs exploring in the further study.

To validate the function of the lncRNAs in the fatty 
acid metabolism-related signature we constructed, 
lncRNA PAXIP1-AS1 was selected to conduct func-
tional experiments in COAD cells. The results showed 
that knockdown of PAXIP1-AS1 decreased the content 
of triglyceride in COAD cells. As we know, FASN and 
ACC1were the key enzymes involving in the fatty acid 
synthesis metabolism, both of them modulate the lipo-
genesis, growth, and apoptosis of COAD cells [39, 48]. 
Besides, the upregulation of FASN is correlated with 
the metastasis in COAD [49, 50]. We then explored the 
expression of FASN and ACC1 in si-PAXIP1-AS1 COAD 
cells, the result showed the expression of FASN and 
ACC1 were decreased when PAXIP1-AS1 expression was 
downregulated. Taken together, this study demonstrates 
that PAXIP1-AS1 plays a key role in the fatty acid metab-
olism of COAD.

Conclusions
In conclusion, based on comparing the molecular fea-
tures between C1 and C2 subtypes, we considered that 
fatty acid-related lncRNAs were involved in modulat-
ing fatty acid synthesis and TME, and thus contributes 
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to cancer progression. A possible relation was identi-
fied between fatty acid-related lncRNAs and immuno-
suppressive factors such as HIF-1α and STAT. The five 
identified TFs may be new targets for exploiting new 
molecular drugs. Moreover, five fatty acid-related lncR-
NAs were screened to establish a prognostic signature for 
predicting COAD prognosis.
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