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Abstract 

During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting 
in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting 
the apoptotic program in response to DNA damage. In most human cancers these processes are associated with 
malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, 
transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same 
DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-depend-
ent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely 
lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we 
discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. 
Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect 
and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, 
requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its 
tumor suppressive properties intact.
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Background
During oncogenesis, cells typically lose their ability to 
repress cell cycle, repair DNA or undergo apoptosis in 
response to DNA damage. In the majority of human can-
cers this is associated with aberrant function of mutated 
tumor suppressor p53. Intriguingly, another member of 
the p53 family—transcription factor p73—binds the same 
DNA sequences and is able to activate transcription, 
which theoretically could compensate for the p53 loss. 
However, the p73 is rarely lost or mutated in cancers, 

while multiple signaling pathways can repress it’s activity 
or stimulate the expression of transcriptionally inactive 
p73 isoforms. Moreover, the p73 is often overexpressed 
in cancers. Thus, it is not clear if p73 is a tumor sup-
pressor or an oncogene. In this review, we address this 
dilemma by analyzing roles of p73 in the regulation of 
DNA damage response, cell cycle and apoptosis, genome 
stability, metabolism and senescence.

Introduction
The p53 family of transcription factors comprises three 
proteins: p53, p63 and p73. The p53 protein is involved 
in all aspects of cancer development and progression. 
While p63 and p73 generally overlap p53 in their func-
tions, they also play their specific roles [1, 2]. While p53 
is lost or mutated in about half of cancers, it is not so for 
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p73 [3–8]. On the other hand, specific p73 isoforms are 
overexpressed in a variety of malignancies and determine 
prognosis in various types of tumor including non-small 
lung cancer [9–11], breast cancer [5, 12, 13], stomach and 
esophagus adenocarcinomas [14], gliomas [15–17] and 
other solid tumor types [18, 19] (induction of expression 

levels are in Tables 1 and 2). This contrasts with studies in 
mice, demonstrating that the loss of a particular p73 iso-
form promotes spontaneous lung adenocarcinomas and 
lymphomas [20].

In humans, p73 loss does not provide cancer cells with 
a selective advantage (as in the p53 case) [109, 110], in 

Table 1  Expression levels of p73 or p73 isoforms in various cancers

Cancer Changes of p73 isoform expression Conclusions References

NSLC p73↑ Total p73 does not predict prognosis [10]

NSLC DNp73↑ DNp73 is associated with poor prognosis [11]

Breast p73↓ Upregulation is associated with lower pathological grade [13]

Breast p73↑ in 27% Upregulation is association with higher pathological grade [12]

Breast p73↑ in 38% alpha, gamma, delta epsilon and phi 
isoforms detected

p73 does not have a tumor suppressor role [5]

Esophagus DNp73↑ in 60% Leads to b-catenin/TCF activation [14]

Gliomas p73↑ ependymomas and pilocytic astrocytomas P73 does not influence p21 and MDM2 expression [15]

Low grade gliomas DNp73↑, TAp73↑, DeltaEx2-3↑ DeltaEx2-3 upregulation predicts progression [16]

High grade gliomas TAp73↑, DNp73↓ TAp73 is upregulated in high grade gliomas [17]

Glioblastomas DNp73↑, TAp73↓ by PCR 13 GBM samples examined by IB [21]

Cervical p73↑ Higher p73 protein is associated with better survival [22]

Table 2  Intracellular cancer hallmarks and p73 functions in specific cancers

The rightmost column represents the Tp73 expression in tumor tissue (Tp73Tum) in comparison to normal tissue (Tp73Norm) as a ration log2(Tp73Tum + 1)/
log2(Tp73Norm + 1) [23]

Cancer Apoptosis, cell cycle Replicative 
Immortality

Genomic 
instability, DSB 
response

Altered 
metabolism

Role of p73 
isoforms in 
cancer

TP73 in tumor 
compared to normal 
tissue

Non-small cell lung carcinoma 
(NSCLC)

[24–29] [30, 31] [32, 33] [34–36]

Lung adenocarcinomas [27] [20] [37, 38] 2.95

Hepatocellular carcinoma (HCC) [39]

Cervix carcinoma [40–42] [41] [22, 43, 44] 15.2

Melanoma [45] [46]

Osteosarcoma [47–51] [52, 53] [54, 55] 5.4

Glioblastoma [56, 57] [58, 59] 5.2

Medulloblastoma [60, 61] [62] –

B-cell lymphoma [63] [64] [65] [66] 33.6

T-cell lymphoma [67, 68]

Acute myeloid leukemia [69–72]

Chronic myelogenous leukemia 
(CML)

[73–75] [73]

Breast cancer [76–79] [80] [81] [82] 1.2

Colorectal cancer [25, 78, 83, 84] [85–87] [88] [84, 89] 9.6

Esophageal adenocarcinoma [90] [91–93] [94] 1.1

Thyroid cancer [95]

Ovarian cancer [96, 97] [98] 4.1

Pancreatic cancer [99, 100] 3.15

Neuroblastoma [26, 101–103] [104]

Squamous carcinoma [105, 106] [107, 108] 1.26
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contrast, the hypothesis is that for certain tumors p73 
can be essential for growth [81]. In order for cancerous 
cells to form a malignant tumor they must develop mul-
tiple properties including unrestricted growth, evasion 
of the programmed cell death, sustained angiogenesis 
and tissue invasion, immune system evasion and altered 
metabolism along with the ability to later form metas-
tases, which are collectively known as hallmarks of can-
cer [111]. p73 functions in many of these hallmarks are 
extensively reviewed [19, 112–116]. While uncontrolled 
cell cycle progression, accumulation of DNA damage and 
evasion of apoptosis require inhibition of the p73 activity, 
other hallmarks—alteration of metabolism, oncogene-
induced senescence—depend on the p73 transcriptional 
activation. Finally, we attempt to categorize cancers 
based on the p73 roles with respect to the cancer hall-
marks, providing the clues to how p73 affects progression 
of neoplasms.

Domain structure of p73 isoforms and their 
functions
All p53 protein family members, including p73, have 
multiple isoforms resulting from alternative transcrip-
tional start sites and alternative splicing [18, 117, 118].

All p73 isoforms can be divided into two classes based 
on the resulting structure. Alternative transcription start 
sites generate either long transcripts containing tran-
scriptional activator (TA) at the N- terminus, resulting 
in TA- isoforms (TAp73), which activate transcription 
[119–121] or shorter transcripts driven by the intragenic 
promoter to generate so called DN- isoforms (DNp73), 
lacking transcriptional activator domain, but retaining 
their DNA binding domains, so their protein products 
act mostly as dominant-negative repressors [122–126]. 
However, DN- isoforms can also activate transcription 
[127–130].

The typical domain organization of the p53 family 
members includes the TA- domain followed by the DNA 
binding domain and the tetramerization domain [131–
133]. All members of the p53 family can bind the same 
consensus DNA to form heterotetrameric complexes 
between them to regulate largely overlapping gene sets 
[24, 120, 134, 135].

In addition, p73 also contains the sterile alpha motif 
(SAM) domain that is absent in p53 and responsible for 
the transcriptional repression by preventing interaction 
with p300/CBP [136]. Several isoforms (Δex2, Δex2/3) 
are produced as a result of alternative splicing that lack 
exon 2 or exons 2 and 3, which encode the transacti-
vation domain. Therefore, they may act as dominant 
negatives in respect to the full-length p73. At the C- ter-
minus, alternative splicing generates α, β, γ, δ, ε, ζ, and 
η isoforms [18, 137]. Thus, exon 13 deletion produces-b 

(TAp73b) isoform lacking the SAM domain. Moreover, 
the p73 C-terminus is responsible for interactions with 
other transcription factors such as c-Jun, Nfkb, ATF3 and 
many others, thereby distinguishing p73 functions from 
the p53 ones [42, 47, 106, 138–140].

Since the p53 and p73 DNA binding sites overlap, 
the  p73 can bind and activate or repress the subset of 
the p53 target genes that regulate cell cycle and apopto-
sis (p21, Bax, Fas, PUMA). Moreover, p73 is regulated by 
the same signaling pathways as p53, such as DNA dam-
age response pathway (ATM/ATR/CHK1 [25]) and is 
repressed by an E3 ligase, MDM2 [102, 141–143]. There-
fore, loss of p53 functions in cancer can be, to a certain 
extent, compensated by TAp73 [69, 144]. At the same 
time, p53 target genes can be repressed by the dominant 
negative DNp73 isoforms [73, 145, 146]. Both TAp73 and 
p53 activate the DNp73 promoter, creating a negative 
feedback loop [53, 147, 148].

Thereby, in human carcinogenesis transcriptionally 
active p73 isoforms (TAp73b) are pro-apoptotic and 
anti-oncogenic, while transcriptional repressors (DNp73, 
ΔEx2-3p73) are anti-apoptotic and pro-oncogenic [16, 
21, 84, 123–126, 149, 150].

In contrast to this paradigm, both TA- and DN-p73 
isoforms are frequently overexpressed in cancers [16, 21, 
36, 84, 98, 123–126, 149–154] (Table 2).

Thus, pro-apoptotic p73 functions must be de-acti-
vated or bypassed in the proliferating cancer cells [25–27, 
49, 57, 76, 101, 155]. Therefore, a better understanding of 
diverse p73 repression mechanisms in different cancers 
should facilitate the identification of targets for future 
drug development [39, 41, 45, 63, 67, 74, 77, 83, 90, 102, 
156–158].

Tumor‑suppressor and oncogenic functions of TA‑ 
and DN‑p73 isoforms in mice models
Animal models with complete ablation [122, 124, 159] 
and isoform-specific p73 deletions [20, 52, 159, 160] 
reveal interdependent, overlapping, and unique functions 
for p73 and other p53 family proteins. Mice lacking p73 
have profound defects in pheromone sensory pathways, 
hippocampal dysgenesis, hydrocephalus, reproductive 
organs development as well as chronic infections and 
inflammation [122]. In contrast to p53-deficient mice, 
p73 knockout mice show no spontaneous tumorigen-
esis and most of the animals die within a month, while 
others could survive for up to 8 months [122]. However, 
mice with a knockout of pro-apoptotic TAp73 isoform 
live for 19 months whereas the lifespan of TAp73 ± mice 
is comparable with control (about 24  month). Both 
TAp73 ± and TAp73−/− spontaneously develop tumors 
(lung adenocarcinomas and lymphomas) [20]. In con-
trast, spontaneous carcinogenesis was not reported 
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for DNp73−/− mice however, DNp73 was required for 
tumor formation by transformed MEFs in nude mice, 
highlighting the differential role of TA- and DN- p73 iso-
forms in carcinogenesis [52].

p73 and hallmarks of cancer
p73 in the regulation of DNA damage response
The response of the cell to DNA damage is tightly con-
nected with the regulation of cell cycle progression. 
Depending on the severity of DNA damage the cell may 
either undergo cell cycle arrest until DNA is repaired, or 
senescence which permanently blocks cell cycle if DNA is 
unrepairable. Alternatively, cells may commit suicide by 
apoptosis. Importantly, cancer cells are prone to cell cycle 
arrest slippage and often display attenuated apoptosis. 
Subsequent sections will include specific p73-depend-
ent mechanisms of the DNA damage response which 
regulate the decision of a cell to live to die or to senesce 
(Fig. 1).

Inactivating mutations or low expression of the BRCA1 
gene contribute to breast and ovarian cancer develop-
ment. However, BRCA1 deficient ovarian and breast 
tumors are sensitive to cisplatin due to induction of 
TAp73 [165, 166]. Mechanistically, re-expression of 
BRCA1 induces DNA methylation of the TAp73 pro-
moter thereby inhibiting Zeb1 binding and Zeb1 medi-
ated repression of the TAp73. This is in line with other 
investigations suggesting that DNA methylation induces 
tissue specific gene expression [167–169].

In contrast, the promoter of DNp73 is not methylated 
in the non-transformed human mammary epithelial cells 
(HMECs) thus permitting the inducibility of DNp73 after 
DNA damage and better survival after cisplatin treat-
ment [80]. In the breast cancer cells, the level of DNp73 
induction decreases with BRCA1 depletion after cisplatin 
treatment. Importantly, in contrast to ovarian cells, the 
level of TAp73 was lower in breast cancer cells [80, 165]. 
Interestingly, exogenous expression of DNp73 resulted in 
a modest, yet significant increase of cell viability after cis-
platin treatment. Altogether, these findings suggest that 
DNp73 promotes BRCA1 deficient breast cancers [80].

Analysis of the DNA damage response (DDR) in 
DNp73−/− cells revealed a new role for the DNp73, 
as an inhibitor of the molecular signaling emanating 
from a DNA break to the DDR pathway [52]. Increased 
p53-dependent apoptosis and sensitivity to DNA damage 
was shown in cells from the DNp73 − / − mice [52].

Cell cycle arrest and/or apoptosis are induced by the 
phosphorylation of p53 by ATM [170, 171]. This process 
is inhibited by the DNp73, which attenuates the ATM 
activation. In addition, the p73 isoform DNp73b interacts 
with the DNA damage sensor protein 53BP1 and local-
izes on the sites of the DNA damage.

Overexpression of DNp73b, but not DNp73a in the 
γ-irradiated U2OS cells, results in interaction between 
53BP1 and DNp73b, suggesting that SAM domain inhib-
its the interaction [52]. Furthermore, after ɣ-irradiation 
and in the presence of excessive amount of DNp73b, 
authors observed decreased ATM phosphorylation, 
reduced p53 protein accumulation and decreased PUMA 
protein expression. On the contrary, DNp73 deficiency in 
γ-irradiated U2OS cells stimulates attraction of 53BP1, 
p53, and γ-H2AX to DSB sites [52].

Isoforms of p73 control DNA damage response not 
only through protein–protein interactions but also 
via transcription of the DNA DSB repair genes [88, 93, 
172–174]. For example, ɣ-irradiation of the HCT116 
cells showed strong induction of the TAp73α isoform 
[88]. Similar to p53, the TAp73a isoform binds simulta-
neously with Δ133p53 to the dedicated responsive ele-
ments in the promoters of RAD51, LIG4, and RAD52 
repair genes, thereby stimulating their expression [88, 
175]. Furthermore, the TAp73a and Δ133p53 co-expres-
sion stimulates DNA DSB repair mechanisms, includ-
ing homologous recombination (HR), non-homologous 

Fig. 1  DNA damage response and cell signaling pathways that 
regulate p73 activity. Arrows represent activation of the pathway, and 
brakes highlight repression of the activity. In pink are signaling that 
promote and in light blue are signaling that repress p73 mediated 
response to the DNA damage. In orange are signaling that promote 
and in blue are signaling that repress cell cycle progression. A DNA 
damage response induces ATM/ATR/c-Abl complex formation on 
DNA that leads to Tyr-99 phosphorylation of p73 [161–163] or ATM/
ATR mediated activation of Chk1/2-E2F1 signaling cascade [25] and 
Yap mediated p73 activation [164]. In turn, TAp73/p53 mediated 
DNp73 induction repress ATM/ATR activation [52], and repress 
pro-apoptotic p53/p73 responsive genes [146], providing a negative 
feedback loop mechanism facilitating de-activation of the pathway 
upon DNA repair. Activation of the p73 by DNA damage halts cell 
cycle progression at checkpoints
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end joining (NHEJ) and single-strand annealing (SSA). 
Importantly, p73 knockdown results in G2 phase cell 
cycle arrest upon ɣ-irradiation, therefore inhibiting cell 
proliferation [88].

The p73 is also involved in the DNA mismatch repair 
pathway, via hMLH1/c-Abl/p73a/GADD45a signal-
ing [176]. Furthermore, MMR-dependent apoptosis is 
blocked by specific knockdown of the p73a isoform, 
while G2 arrest is p73 independent.

A remarkable example of the dual role of p73 isoforms 
in cancer is represented by oesophageal adenocarcinoma. 
The latter is often caused by the gastroesophageal reflux 
disease (GERD). GERD is caused by the bile acid salts 
flux from the stomach, generating acidification, ROS 
and DNA damage [92]. DNA repair in the oesophageal 
cells is promoted by the p73. Notably, in the oesopha-
gus, and other epithelial tissue p73 is expressed strictly 
in the basal cells [2]. Bile acid induces the TAp73a iso-
form that transcriptionally upregulates SMUG1 and 
MUTYH, two glycosylases which are involved in base 
excision repair [93]. In these conditions, TAp73α acts as a 
pro-survival factor that induces DNA repair enzymes and 
inhibits apoptosis [93], contradictory to the established 
pro- apoptotic functions of the wild-type TAp73 isoform 
discussed above [53, 147]. In turn, exposure of p53 null 
esophageal adenocarcinoma SK-GT-4 cells to the bile 
acid and pro-inflammatory cytokines IL-1β and TNFα 
induced DNp73α. The DNp73α induction was dependent 
on c-Abl, IKK, and p38 MAPK kinases [91]. In addition, 
the SK-GT-4 cells that exogenously expressed DNp73α 
showed increased survival upon bile acid exposure.

Altogether, these data highlight the pro-survival role of 
DN- and TA- p73 isoforms facilitating DNA repair.

p73 in the regulation of cell cycle
Regulation of the G1 checkpoint
Upon DNA damage, p53 is phosphorylated by ATM/
ATR/Chk1,2 and MDM2 mediated proteasomal deg-
radation of 53 is inhibited. Alternatively, upon oxida-
tive or oncogenic stress, p14ARF interacts with MDM2, 
thereby also stabilizing p53. As a result, p53 now binds 
DNA [177] and activates a set of genes that inhibits cell 
cycle progression (p21, 14–3-3σ, Gadd45). p21 inhib-
its CyclinD/CDK4,6 complex formation leading to Rb 
hypo-phosphorylation and interaction with transcription 
factor E2F, inhibiting cell cycle related E2F target genes 
leading to the growth arrest. In addition, expression of 
the distinct set of cell cycle related genes regulated by the 
p53-p21-DREAM-E2F/CHR is inhibited [178, 179].

However, even in the absence of p53, cancer cells are 
still able to halt cell cycle in response to genotoxic stim-
uli [180, 181]. It was shown that in response to chemo-
therapeutic agents, cell cycle arrest and apoptosis are 

p73 dependent [71, 156, 157, 182]. Accordingly, p63 
and p73 are required for the p53 dependent apoptosis 
in mouse embryonic fibroblasts [183].

Mechanisms of the G1 checkpoint sensing by p73 
and p53 are similar [184] (Fig.  2). Specifically, expres-
sion and stability of the transcriptionally active p73 
is induced by the DNA damage via ATM/ATR/Chk1 
pathway [25, 105, 145, 185]. Importantly, p73 is phos-
phorylated at Thr-86 during cell cycle progression 
by Cyclin E/CDK2, Cyclin A/CDK1/2, and Cyclin B/
CDK1/2 complexes leading to repression of the p73b 
transcriptional activity [28, 186]. On the contrary, PKC 
dependent phosphorylation of Ser-388 [130] induces 
transcriptional activity of p73 towards the cell cycle 
regulatory genes p21, Gadd45a, Wee, 14–3–3σ causing 
cell cycle arrest [70, 76, 90, 187] (Fig. 2).

What are the mechanisms that inhibit p73 mediated 
cell cycle arrest in normal and cancer cells? Numerous 
signaling pathways regulate p73 transcription, transla-
tion, stability and cell cycle progression [56, 130, 184, 
203–205] and apoptosis [25, 29, 42, 50, 51, 75, 206–211] 
(Fig. 3a).

Specifically, negative regulators include E3 ubiquitin 
ligases Itch, Pirh2, FBXO45, WWP2 and SUMO ligase 
PIAS1 which promote p73 degradation in 26 proteas-
omes [212–217] (Fig. 3a).

Binding p73 to ATF3 prevents the ubiquitination and 
degradation of p73 [42]. Unlike the other E3 ubiquitin 
ligases, ubiquitinylation by NEDL2 enhances p73ɑ stabil-
ity, while the interaction with NQO1 protects p73ɑ from 
the ubiquitin-independent degradation in 20S protea-
some. Notably, NEDL2 regulates metaphase to anaphase 
transition [218, 219] (Fig. 3a).

The p73 transcriptional activity is induced by PKC 
[130, 220] and c-Abl [221] phosphorylation and YAP1 
mediated corecruitment of p300 [222, 223]. Upon c-Abl-
mediated phosphorylation, the prolyl isomerase Pin1 
induces conformational changes of p73 required for its 
acetylation by p300 [224] (Fig. 3a).

SIRT2, a NAD-dependent histone deacetylase, is 
required for glioblastoma stem cells proliferation and 
tumorigenicity [56]. Furthermore, SIRT2 regulates p73 
transcriptional activity by deacetylating its C‐terminal 
lysines 620, 623, and 627. Importantly p73 inactivation 
(in the absence of p53) by SIRT2 is critical for glioblas-
toma cells proliferation and tumorigenicity [56]. In 
HEK293 cells, SIRT1 binds p73 in vivo and in vitro, dea-
cetylates it, and suppresses p73‐dependent transcrip-
tional activity thereby partially inhibiting p73-dependent 
apoptosis [225].

The IKKβ protein kinase, which regulates NFkB, also 
binds DNp73a and phosphorylates the latter on Ser-
422, causing p73 stabilization, nuclear accumulation and 
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repression of the p53-regulated genes in several cancer 
cell lines [226, 227].

In contrast, in p53-null squamous cell carcinoma cells, 
TNF-α promoted c-REL nuclear translocation, c-REL/
DNp63α interaction, and TAp73 dissociation from 
DNp63α. This chain of events culminates in TAp73 trans-
location from the nucleus to cytoplasm [106]. TNF-α 
modulates genome-wide redistribution of DNp63α/
TAp73 and NF-κB c-REL cumulative binding at the TP53 
and AP-1 DNA binding sites to induce an oncogenic gene 
expression program in squamous cancer [140] (Fig. 3c).

On the related note, the TAp73 can inhibit wild type 
p53 activity and induction of apoptosis [97, 228]. Simi-
larly, the complex of p53 with chaperones and MDM2 
deactivates TAp73 [229] (Fig. 3b). In contrast, p53/TAp73 
can activate each other’s functions in different cells by 
MDM2 quenching [95] or co-recruitment upon p53 Thr-
81 phosphorylation [88, 230] while other demonstraetd 
that Mdm2 and MdmX binding represses p73 masking 
its transcription [217].

Viral infection causes development of cancers such as 
cervical and Kaposi sarcoma [231]. The activity of p53 

family members in viral oncogenesis has been established 
[232, 233]. Viral onco-proteins were shown to fine-tune 
the p73 activity. For example, interaction of p53 and p73 
with CBP can be inhibited by the human T-cell leukemia 
virus type1 Tax protein [68] as well as by adenovirus E1A 
protein [234].

Thus, the effects of p73 isoforms on the cell cycle and 
apoptosis are highly diverse and different mechanisms in 
turn are utilized in cancers to repress the p73 activity.

p73 mediated regulation of replicative G2‑M checkpoint
Upon completion of the DNA synthesis, cells execute 
G2/M replicative checkpoint. During this stage, DNA 
integrity is verified and repaired as well as the levels of 
proteins required for the mitosis are evaluated.

The p73 is involved in the regulation of the DNA dam-
age response during G2-M and M checkpoints [28, 41, 
81, 88, 90, 188, 216, 239] (Fig.  2). The ability of cells to 
activate p73 correlates with the specific stage of the cell 
cycle. Specifically, the activity of p73 is high at the check-
points and low upon checkpoints exit, regulating the 
key cell cycle related genes [81, 186, 188] (Fig.  2). For 

Fig. 2  Cell cycle regulation by p73. In blue are molecules and signalling that promote cell cycle and in orange are signaling that repress cell cycle 
progression. Colors on the cell cycle diagram represent p73 activity that decreases at checkpoint exit [81, 186, 188]. G1/S checkpoint. Active TAp73 
induces p21 leading to repression of the cell cycle related genes [70]. In turn, TAp73 transcriptional activity is inhibited by phosphorylation at 
Thr-86 by CyclinE/CDK2 complexes [28], or by inhibition of E2F1 transcriptional activity by the E2F1/Rb complex [189–191]. G2-S checkpoint: TAp73 
inhibits Cyclin B transcription [192] or via induction of GADD45a [193], Wee, p21 and 14–3–3σ [76, 90], that represses CyclinB/CDK1 [194, 195]. To 
facilitate G2-M transition, p73 activity is inhibited by CyclinB/CDK1 [188], by MDM2 negative feedback loop [196] or by PLK2 [76]. Mitotic checkpoint: 
overexpressed TAp73 interacts with SAC components Bub1, Bub3, BubR1 leading to checkpoint activation [197, 198]. DNp73 was shown to bind to 
SAC proteins but have no activity in M- checkpoint [198] or to inhibit checkpoint functions [199, 200]. Phosphorylation of the p73 S235 by Aurora-A 
kinase results in inactivation of its DNA damage and spindle assembly checkpoint activation functions and mitotic exit due to release of the 
Mad2-Cdc20 from the SAC spindle assembly checkpoint complex [201, 202]
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example, a p73/SP1 heterodimer represses CyclinB1 tran-
scription [192]. In turn, there is a negative regulation of 
p73 by CyclinB1/CDK1 complex that associates with and 
phosphorylates p73 at Thr-86 resulting in the inhibition 
of DNA binding and transcriptional activity of p73 upon 
progression from the G2 phase to mitosis [188]. c-Abl 
kinase interacts with ATM/ATR participating in DNA 
damage Chk1 phosphorylation, p53 and p73 activation 
[161–163]. c-Abl phosphorylates p73 at Tyr99 leading to 

inhibition of p73 degradation by TRIM28 E3 ligase, sub-
sequent p73 stabilization and activation of the anti-onco-
genic program [221] A similar stabilization mechanism 
has also been described in the context of pharmacologi-
cal stabilization of p53 [240]. It has been suggested that 
c-Abl/p73 pathway is active during G2/S checkpoint 
because at G1 checkpoint hypophosphorylated Rb inhib-
its E2F1 and c-Abl [190, 241]. Another mechanism of 
G1/S and G2/M exit is mediated via inactivation of p73 

Fig. 3  Signaling pathways that regulate p73 activity. a The diagram shows the TAp73ɑ isoform domain structure and known phosphorylation 
sites and kinases (yellow), ubiquitinylation sites and ubiquitin ligases (purple), acetylation sites (red), and the sumoylation site (violet). The 
positions of PTM sites correspond to the TAp73ɑ isoform unless indicated otherwise. TAD, transactivation domain; DBD, DNA binding domain; OD, 
oligomerization domain; SAM, sterile alpha motif; TID, transcription inhibition domain. See text for the literature. b Regulation of transcriptional 
activation. In red are denoted proteins and signalling that inhibit transcriptional activation of TAp73 [56, 79, 102, 123, 126, 235, 236] and in blue 
are signalling pathways and proteins that promote TAp73 regulated pro-apoptotic gene expression [42, 237, 238]. c In squamous carcinoma, TNFa 
induces nuclear translocation of cREL and induces re-localization of TAp73 binding sites from pro-apoptotic to pro-oncogenic [140]
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by PIAS-1 binding that stabilises and symoylates p73-
alpha isoforms inhibiting transcriptional activity. Impor-
tantly, PIAS-1 is expressed exclusively in the S-phase and 
PIAS-1 knockdown leads to accumulation of cells in the 
G2 phase of cell cycle [216].

Genome stability and p73 in regulation of mitosis. M 
checkpoint
Errors in the molecular mechanisms responsible for reg-
ulation of the chromosome segregation during meiosis 
and mitosis decrease the genomic stability, which leads 
to aneuploidy. The M checkpoint occurs between meta-
phase and anaphase, right before the onset of chromo-
somal separation to ensure their proper alignment. To 
execute the “M” checkpoint, cells assemble a so-called 
spindle assembly checkpoint complex (SAC) that is local-
ized at the kinetochores and measures correct attach-
ment of microtubules to the spindle poles [242, 243]. 
This complex activates the mitotic checkpoint complex 
(MCC) that in turn binds to and inhibits activity of the 
Anaphase promoting complex (APC/Cdc20) which acti-
vation leads to the cohesin cleavage, segregation of chro-
mosomes (mitotic exit) and degradation of the CyclinB1 
[244–247].

A role of the p73 in regulation of genomic stability dur-
ing mitosis has been extensively characterized [20, 28, 
104, 186, 188, 198, 199, 201, 202, 248] (Fig. 2).

During the drug induced M-phase arrest of Hct116(3) 
cells, the TAp73 is phosphorylated by the Cdc2-CyclinB, 
losing the DNA binding capacity and transcriptional 
activity [188]. During mitosis, the p73 was not associ-
ated with the centromeres and was excluded from the 
condensed chromosomes in H1299 cells [188]. How-
ever, the TAp73-deficient mouse embryonic fibroblasts 
(MEFs) were severely compromised in undergoing a 
nocodazole-induced mitotic arrest [20]. Furthermore, 
TAp73 − / − MEFs underwent a premature mitotic exit 
and passage into the G1 phase, suggesting that mitotic 
regulation is predominantly performed by the TAp73 iso-
forms rather than DNp73 isoforms [20].

Treatment of TAp73 − / − lung fibroblasts with noco-
dazole for 12  h resulted in the increased polyploidy as 
well, whereas TAp73 − / − thymic cells showed no alter-
nations in genomic stability [20]. This suggests that the 
effect of TAp73 on the aneuploidy is tissue-specific, 
which could be an explanation to why TAp73 − / − mice 
preferentially develop lung adenocarcinomas [20].

There is multiple evidence to suggest that when over-
expressed, TAp73 interacts with SAC components Bub1, 
Bub3, BubR1 leading to M checkpoint activation [197, 
198]. In triple-negative breast cancer MDA-MD231 cell 
lines, endogenous TAp73 isoform interacts with BubR1, 
whereas DNp73 is not [198]. Upon overexpression, 

DNp73b does interact with BubR1, however, in contrast 
to TAp73a, its binding does not affect the interaction of 
BubR1 with phosphorylated histone H1 suggesting that 
DNp73 does not have a role in SAC function [198]. In 
contrast, overexpression of DNp73b leads to tetraploidy 
in human lung carcinoma H1299 cells [199] suggesting 
that DNp73 affects genomic stability as well. Accordingly, 
in glioblastoma cells DNp73 isoform overexpression 
leaded to an abnormal number of centrosomes, while 
TAp73 overexpressing cells showed normal centromeres 
count with no association with BubR1, suggesting that 
DNp73 can inhibit checkpoint activation [200].

In contrast, in Saos2 osteosarcoma cell line, TAp73α 
overexpression led to a significant increase in the number 
of polyploid cells, while p53, DNp73α, and TAp73β or γ 
had no effect on polyploidy [197]. The effect was linked 
to the interaction of TAp73α with Bub1 and Bub3 that 
were also overexpressed in these cells whereas neither 
p53 nor any of the other p73 isoforms interacted with 
Bub1 or Bub3.

Phosphorylation of the p73 S235 by Aurora-A kinase 
results in inactivation of its DNA damage and spindle 
assembly checkpoint activation functions and mitotic exit 
is accelerated due to release of the Mad2-Cdc20 from the 
SAC spindle assembly checkpoint complex [201, 202]. In 
addition, inhibitor of Aurora kinase B AZD1152-HQPA 
induces apoptosis in p53/p73 wild type U87MG glioblas-
toma cell line, whereas in p53/p73 double null SK-N-MC 
cells inhibition of Aurora kinase B leads to induction of 
cell cycle related genes, endoreplication and polyploidy, 
highlighting the role of p53/p73 [104, 201].

All together, these publications reveal the roles of 
TAp73 as an activator and DNp73 as an inhibitor of SAC 
activity and, correspondingly, TAp73 as an inhibitor and 
DNp73 as an activator of early mitotic exit and chromo-
somal abnormalities.

DNA damage can occur at any stage of the cell cycle 
and p73-activated checkpoints are utilised by cells for 
DNA repair and maintaining genome stability. If DNA 
damage or SAC signals persist, the p53/p73 activates 
transcription of pro-apoptotic genes, whose products 
ultimately trigger apoptosis [249].

Regulation of apoptosis by p73
Apoptosis is mediated by dynamic equilibrium of acti-
vating and repressing signals. A key event of triggering 
apoptosis is accumulation of the cytoplasmic protein Bax 
on the outer mitochondrial membrane [250]. Bax oli-
gomerization and formation of pores on the outer mito-
chondrial membrane leads to the release of cytochrome 
C in the cytoplasm, apoptosome assembly and subse-
quent caspase-mediated cleavage of cellular proteins 
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[251]. At the late stages, apoptosis culminates in DNA 
fragmentation [252] and induction of phagocytosis [253].

On the other hand, Bax mediated release of the 
cytochrome C is repressed by Bcl-2 protein family (Bcl-
2, Bcl-XL, Mcl-1, Bcl-w, A1, Bcl-L10, Bcl-G and Bcl-
Rambo) whereas, so called BH3-only family of proteins 
(such as Puma, Noxa, Bad, Bid, Bim, Hrk, Bik and Bmf) 
bind to and inhibit the Bcl-2 anti-apoptotic functions 
[254].

Specifically, p73 is required for induction of apoptosis 
by regulating transcription of key pro-apoptotic genes 
(Fig.  4). Transcriptional induction of Bax by p73 leads 
to apoptosis in different settings [41, 255–259]. In addi-
tion, mechanisms of p73 induction of apoptosis involve 
transcriptional activation of PUMA which, in turn, 
induces Bax mitochondrial accumulation and release of 
cytochrome C [228, 260–262]. The p73 phosphorylated 
by Aurora-A at S235 loses the chromatin binding affin-
ity, and is exported from the nucleus to cytoplasm [201], 
thereby halting the expression of its transcriptional tar-
gets such as p21 [201] and pro-apoptotic BH3-only 

protein Bim. This affects cytochrome C release and cas-
pase activation [248].

Similarly, p73 binds to the promoter and transcription-
ally activates GRAMD4. As a result, apoptosis is induced 
via GRAMD4 translocation from nucleus to mitochon-
dria and interaction with Bcl-2 [264].

It was shown that p73 could mediate cell death inde-
pendently of other p53 family members. In the p53 defi-
cient cells, p73 is induced upon DNA damage by E2F1 
transcriptional activation downstream of Chk1/2 [25, 
269–271] (Fig. 1). However, as it is discussed in the pre-
vious section, effects of p73 are dependent on other p53 
family members’ activity. For example, the loss of p63 
in normal keratinocytes causes p21 induction, inhibi-
tion of cell cycle and senescence independent of p53 and 
p73, whereas in squamous cell carcinoma the loss of p63 
induces p73-dependent cell death [272]. Accordingly, in 
head and neck squamous cell carcinoma cells, the p63 
knockdown induces pro-apoptotic Puma and Noxa and 
cell death in p53 independent and p73-dependent man-
ner [273]. Similarly, in triple negative breast cancer cells, 

Fig. 4  Schematic representation of p73 involvement in the regulation of apoptosis. In blue, molecules that promote and in orange—molecules 
that repress apoptosis. Arrows and bars in green—signalling that promote and in red—repress apoptosis and senescence. A. p73 mediated 
regulation of apoptosis. Transcriptional activation of p73 promotes expression of Bax [41, 255–259] and BH3-only family members PUMA [228, 
260–263], Noxa [238], Bim [248] and GRAMD4 [264] that repress Bcl-2 and induces Bax activity. The p73 regulated induction of IL4R sensitize 
cells to IL-4-induced apoptosis [265]. In turn, p73 repressing pathways inhibit apoptosis [266]. Alternatively, p73 or p73 fragments can localize to 
mitochondria during TRIAL induced apoptosis [267] and 16 aa peptide from the transactivation domain of p73 can interact with and inhibit Bcl-x 
[268]
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p63 inhibits p73 activity and apoptosis mediated by 
PUMA and NOXA [274]. In several human cancer cell 
lines, interleukin 4 receptor alpha is up-regulated by p73 
but not significantly by p53, sensitizing cells to IL-4-in-
duced apoptosis [265]. FBXO45 binds specifically to, and 
ubiquitylates p73 triggering its proteasome-dependent 
degradation. When FBXO45 is downregulated, p73 is sta-
bilized and it consequently induces cell death in the p53 
independent manner [214].

In addition, p73 apparently regulates apoptosis in a 
transcription-independent manner (Fig.  4). Intrigu-
ingly, caspase cleaved p73 fragments augment TRAIL 
induced apoptosis of HCT116 cells independently of 
p73-mediated transcription [267]. Accordingly, in lung 
adenocarcinoma cells, a peptide from the p73 trans-
activation domain interacts with Bcl-XL and mediates 
transcription-independent apoptosis [268]. In turn, scaf-
folding protein RanBP9 interacts with, and stabilises 
p73a, inducing mitochondrial dysfunction and apoptosis 
in the primary hippocampal neurons by transcriptional 
effects and likely directly at mitochondria [275].

An important aspect of cancer cells is their ability 
to switch between cell cycle arrest and apoptosis in the 
cases of irreparable damage. Interestingly, p73 differen-
tially activates cell cycle related and pro-apoptotic genes 
[130, 190, 228, 257, 276, 277].

Differential p73 effects on cell proliferation and apop-
tosis upon doxorubicin treatment were dependent on 
specific post-translational modifications. For exam-
ple, in osteosarcoma cancer cells and mouse embryonic 
fibroblasts p300 in cooperation with c-Abl enhanced 
p73 acetylation at lysines 321, 327, and 331 [276, 278]. 
Accordingly, in the chronic myeloid leukemia cells, 
forced nuclear localization of the Bcr-Abl fusion protein 
promotes p73 activation and subsequent apoptosis [279].

In p53-/- lung adenocarcinoma cells, overexpression 
of TAp73a increases apoptosis induced by the cisplatin 
treatment, which was inhibited by E3 ubiquitin ligase 
CHIP overexpression. This effect was determined by the 
binding of CHIP to the C-terminus of p73a isoforms and 
targeting of the p73 to proteasomal degradation [280]. 
Notably, overexpression of CHIP has no effect on p73b 
isoforms [280].

In contrast, in colon cancer cells with functional p53, 
TAp73 restrained p53 mediated activation of apopto-
sis after low levels of DNA damage by forming a protein 
complex with p53 that is incapable of DNA binding at 
Puma, p21 and Bax promoters [228]. Interestingly, the 
p73 was induced and complexed with the p53 in cells 
treated with small doses of cisplatin, awhile after higher 
cisplatin doses, p73 induction and high molecular weight 
p53 complex were not observed, facilitating activation of 
the pro- apoptotic genes [228].

Although there are no publications describing the 
direct effect of p73 on necroptosis and ferroptosis, as 
opposed to p53 and p63, it is tempting to speculate that 
p73 acts as a repressor of ferroptosis since p73 regulates 
genes such as glucose-6-phosphate dehydrogenase, a 
rate-limiting enzyme of the pentose phosphate pathway 
[32, 55, 281–283]. The product of this gene is pivotal 
for glutathione biosynthesis and anti-oxidative cellular 
response [284].

Thus, p73 functions as a part of the p53 signaling path-
way and its overall effects are modulated by the p53 sta-
tus and cell type [285]. Also, p73 plays a unique role in 
the regulation of cell cycle and apoptosis [286, 287].

p73 dependent regulation of metabolism
Consistent with the hallmarks of cancer defined by Wein-
berg [111] the metabolic alterations in cancer include:

1.	 Utilization of glycolysis for energy production in 
hypoxia or in the presence of oxygen (so called War-
burg effect) with lactate production and acidification 
of extracellular environment and enhanced biosyn-
thesis [288, 289].

2.	 Increase of the reduced glutathione production leads 
to chemoresistance and lower sensitivity to superox-
ide radicals produced by immune cells [116, 290].

In general, metabolic alterations can be traced back 
to crucial molecular events such as mutations in criti-
cal genes, building gene associated gene signatures [291, 
292].

In this context, the role of p73 in metabolism was 
recently reviewed in an excellent publication [116] and 
here we will discuss only the cancer-related findings.

The p73 is known to regulate several key enzymes of 
glycolysis and energy production [33, 293], anabolism 
of amino acids and detoxification [54, 294–296] (Fig. 5). 
Importantly, p73 influences expression of glucose-
6-phosphate dehydrogenase (G6PD), a rate-limiting 
enzyme of the pentose phosphate pathway (PPP) [32, 55, 
281, 282]. The fraction of PPP in glucose consumption is 
about 10% and is rapidly increasing upon oxidative stress 
to produce NADPH—a metabolite necessary for gen-
eration of the reduced glutathione—the main ROS and 
xenobiotics scavenger of the cell [32, 33, 55, 297–302]. 
Altogether, this increasing amount of evidence is also 
showing the potential role of oxidative stress as a candi-
date therapy target [303].

TAp73 overexpression in Saos-2 cells was shown to 
enhance the Warburg effect by inducing the level of lac-
tate produced during glycolysis. Concomitantly, these 
cells exhibited a decreased level of pyruvate but increased 
levels of acetyl-CoA, S-adenosylmethionine, and cysteine 
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[294]. Cellular anabolism is also influenced by the ability 
of TAp73 to stimulate transcription of serine biosynthesis 
enzymes and glutaminase-2, which converts glutamine 
to glutamate [54]. Importantly, lung cancer patients with 
coordinately increased p73 and GLS-2 were character-
ized by significantly worse prognosis [54]. In addition, 
enhanced serine production activates PMK2 and pro-
motes conversion of pyruvate to lactate [304].

Thus, TAp73 overexpression promotes production of 
metabolic intermediates cysteine and glutamate that are 
converted by glutamate-cysteine ligase to glutathione, 
thereby enhancing the antioxidant defense.

In E1A/H-RasV12-transformed mouse embryonic 
fibroblasts, TAp73 is crucial for the G6PD transcription, 
and consequently for PPP functioning, NADPH homeo-
stasis, cellular growth and tumor formation [55]. Notably, 
depletion of TAp73 was rescued by G6PD expression or 
supplementation with nucleosides and ROS scavenger in 

MEFs [55]. Similarly, experiments on H1299 non-small 
lung carcinoma cells showed that p73-depleted H1299 
cells overexpressing G6PD grew the same as control, 
proving that G6PD expression is vital for TAp73-medi-
ated H1299 cells proliferation [32].

Similarly, in E1A/H-RasV12-transformed mouse 
embryonic fibroblasts, osteosarcoma U2OS, and lung 
cancer H1299 cell lines TAp73 transcriptionally regu-
lates phosphofructokinase-1, liver type (PFKL) and pro-
motes glycolysis [33]. Notably, decreased proliferation 
of TAp73−\− MEFs or tumorigenicity of HCT116 cells 
was rescued by PFKL and PFKL/G6PD overexpression 
respectively [33].

The p73 is often overexpressed in medulloblastomas. 
Furthermore, TAp73 appears to be critical for the medul-
loblastoma cells proliferation as its expression correlates 
with glutamine level. Accordingly, it was shown that glu-
tamine starvation along with injections of cisplatin led to 

Fig. 5  Metabolic signaling regulated by p73. The p73 regulates expression of glucose-6-phosphate dehydrogenase, inducing pentose phosphate 
pathway and anaerobic glycolysis [32, 55, 281, 282] glutathione production and response to oxidative stress and xenobiotics [297–300]. Further 
down the glycolysis pathway, TAp73 transcriptionally regulates liver type phosphofructokinase-1 (PFKL) that enhances glycolysis rate [33] and 
enzymes of the serine/glycine biosynthesis [54] necessary for cell growth in serine deprivation and regulation of pyruvate kinase (PMK2) which 
activity is associated with lactate production and cancerogenesis [304, 305]. Further, p73 regulates expression of the glutaminase-2, which converts 
glutamine to glutamate influencing glutathione synthesis [54]
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increased apoptosis in both in  vitro and in  vivo experi-
ments on medulloblastoma xenograft mice [60, 61].

To summarize, TAp73 promotes cancerous metabo-
lism, oxidative and xenobiotic stress response, and the 
Warburg effect both in in  vitro experiments and mice 
models, all together supporting tumor growth.

Senescence and replicative immortality
Telomerase is a ribonucleoprotein that synthesizes tel-
omere repeats at the DNA ends in embryonic tissue, in 
germline tissue and in the immortalized cancer cell lines. 
In the normal somatic tissue, telomerase is not active 
[306] and hence, with increasing number of cellular divi-
sions the telomeres repeats are gradually lost. This mech-
anism limits the replicative potential of the cell, thereby 
preventing replicative immortality.

Senescence is defined as a permanent growth arrest of 
the metabolically active cell without cell death associated 
with the telomere shortening after about 40 cellular divi-
sions [307–310].

In addition, normal cells preferentially undergo senes-
cence rather than cell death in response to various forms 
of stresses including the oncogene activation [311, 312], 
DNA damage [313] and oxidative stress [314–317].

Senescence is deemed as an anti-cancer cellular 
response that compliments apoptosis [318] in response 
to sub-lethal doses of stress [319, 320].

The senescence signaling pathways are frequently 
altered in cancers [321, 322]. This is exemplified by 
the mutations in key senescence genes such as p53, 
CDKN2A, CDKN2B, TERT promoter [321].

On the molecular level, senescence is mediated by acti-
vation of p14ARF that interacts with MDM2, hence pre-
venting p53 degradation and eliciting the growth arrest. 
Independently, p16INK inhibits the CyclinD1/CDK4/6 
complex leading to the RB hypo-phosphorylation and 
sequestering the transcription factor E2F. The latter 
event results in transcriptional inactivation of cell cycle-
related E2F target genes and subsequent growth arrest, 
which can be rescued by the alteration of other molecular 
events in specific cancer contexts [323].

Notably, senescence regulation differs in mice and 
humans [324, 325]. While mice fibroblasts require 
p14ARF-p53 for oncogene induced senescence [324, 
326, 327], human cells are p53 independent and in turn 
require p16INK-CyclinD/CDK4/6 signal transduction 
[324, 325]. Of note, p53 mutations in cancer cells con-
tribute to bypassing senescence in response to oxidative 
stress [315].

As it is discussed in the corresponding sections of our 
review, p73 is involved in the regulation of the DNA dam-
age response, metabolism and oxidative stress responses 
[30, 31, 290, 328] thereby influencing senescence (Fig. 6).

While the role of the p53 family proteins in regulation 
of cellular senescence is firmly established [85, 322, 333–
338], several publications also demonstrate the role of 
p73 in this process [52, 64, 87, 329, 333, 339–341] (Fig. 6).

Telomeres are protected from the DNA damage by a 
protein complex called shelterin [86, 342]. If the shelterin 
component Pot1b is depleted in p63 knockout mice, tel-
omeres activate ATR-Chk1 DNA damage response and 
p73 dependent apoptosis [64].

It was shown that overexpression of the TAp73a or 
TAp73b isoforms represses TERT transcription and 
TERT activity in the HEK cell line [329]. Using luciferase 
reporter assays, it was shown that p73-mediated TERT 
reporter repression was rescued by the NF-YB deple-
tion. The TERT transcription and TERT activity were 
also repressed by the overexpression of TAp63g and p53 
[329]. Even though senescence was not examined, the 
TAp73 overexpression-mediated repression of the TERT 
might promote senescence of the HEK cell line [329].

However, direct experiments revealed that both TA- 
and DN-p73 isoforms repress senescence. Such as, E1A/
RasV12 transformed MEFs generated from the DNp73 
knockout mice formed smaller xenograft tumors with 
higher b-gal staining and higher expression of senescence 
markers p16 and DcR2 [52].

Fig. 6  Schematic representation of p73 involvement in the 
regulation of senescence. In blue, molecules that promote and in 
orange—molecules that repress senescence. TAp73 inhibits TERT 
activity, however, the effect on senescence is not established [329]. In 
contrast, DNp73 represses p53/p73 activating signalling emanating 
from the DNA double stranded breaks by the ATM/ATR signalling 
also repressing senescence [52]. TAp73 induced transcription of 
the mitochondrial enzymes Cox4i1 regulating ROS, ATP levels and 
oxygen consumption is critical for senescence repression in MEFs 
[87]. Similarly p73 target genes GLS2 is a key enzyme in glutathione 
biosynthesis to reduce ROS level [330, 331] and FDXR has roles in 
electron transfer to p450 and p73 mRNA stability by IRP2 regulation 
[332]. Altogether, these processes lead to higher oxidation rate and 
ATP generation, glutathione biosynthesis, lower ROS levels and 
inhibition of senescence
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When TAp73 knockout mice were examined, MEFs 
grew slowly, and 3.5 times higher senescence levels were 
observed [87]. Accordingly, the p16 and p19 senescence 
markers were induced. Mechanistically, the effect was 
attributable to the inhibition of the mitochondrial com-
plex IV activity, specifically due to the depletion of the 
direct TAp73 target, Cox4i1. Authors observed higher 
ROS level, lower ATP and oxygen consumption and 
higher oxidative stress sensitivity. Depletion and restora-
tion of the Cox4i1 level mimics and inhibits effects of the 
TAp73 depletion, respectively [87].

Reduction of TAp73 is responsible for ROS accumu-
lation upon depletion or knockout of the RNA-binding 
protein PCBP2 in H1299 cells [31], presumably through 
regulation of the p73—induced gene, glutaminase 2 
[330], which is involved in the anti- oxidative response 
[331]. Although senescence was not reported in the 
human cell lines in that study, about the 24-fold induc-
tion of b-gal staining was observed in PCBP2 − / − MEF 
cells [31].

Depletion of both p73 and ferredoxin reductase (FDXR, 
the mitochondrial electron transfer protein) induces 
senescence of MEFs [332]. The p73 is reduced upon the 
loss of the FDXR due to induction of the iron-regulatory 
protein 2 (IRP2) which binds to and destabilises p73 
mRNA [332]. Interestingly, FDXR is a p73 transcriptional 
target [343], suggesting a possible positive feedback loop 
between FDXR and p73. It would be interesting to com-
pare the effect of p73 and p53 on IRP2 since restoration 
of decreased p53 in FDXR KO cells reduces IRP2 [344].

Consistently, induction of senescence was observed in 
the neural precursor cells of the p63 and p73 haplo-insuf-
ficient mice [341]. Increased DNA damage and p53 acti-
vation were responsible for the phenotype since genetic 
ablation of the p53 completely inhibited this effect.

To summarize, in most cases, either TA- or DN-iso-
forms of p73 act as senescence inhibitors. Thus, induc-
tion of p73 activity will presumably lead to either cell 
cycle arrest or apoptosis but not senescence, because 
of p73 being a positive regulator of the antioxidation 
metabolism.

Conclusions
The p53 protein family members, p53 and p73, share 
the same DNA binding site, have similar domain struc-
ture and overlapping signaling pathways that regulate 
their activity. Hence, it is a long-standing question: why 
p73 is rarely mutated or lost in cancer while p53 aber-
rations are found in the vast majority of cancers and 
considered to be fundamental for cancer development? 
Evidence presented in this review suggests a dual role 
of the p73 in cancer. First, it is involved in the cell cycle 

arrest and anti-oxidative response thereby promot-
ing cell survival. On the other hand, being a homolog 
of p53, it promotes DNA damage induced cell death. 
Finally, it can also serve as biomarker, as p53, in many 
cancer contexts [345, 346]. Consequently, cancer cells 
seem to develop mechanisms that favor pro- onco-
genic and repress anti- oncogenic functions of the p73, 
especially in the absence of functional p53. However, 
understanding of signaling pathways that fine tune the 
balance is very limited. Hence, the exact role of TAp73 
in tumorigenesis and aggressiveness remains debated, 
highlighting the need for further and more precise 
investigations. New findings on the molecular mecha-
nisms that define the exact outcome of p73 activity in 
tumour cells will help to develop treatments that will 
specifically induce pro-apoptotic functions of the p73 
in cancer.
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