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Lifestyle‑dependent microglial plasticity: 
training the brain guardians
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Abstract 

Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interac‑
tions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors 
taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical 
exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which 
change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of 
brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.

Keywords: Microglia, Neuroplasticity, Enriched environment, Physical exercise, Lifestyle modifications, Diet

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction: lifestyle, neural plasticity 
and cognitive performance
Adaptive behaviours are paramount for survival: in com-
plex multicellular organisms, environmental challenges 
instigate life-long morpho-functional restructuring of the 
nervous system, known as neural plasticity. Lifestyle is 
one of the most powerful instruments shaping mankind; 
the lifestyle includes many aspects of interactions with 
the environment, from nourishment and education to 
physical activity and quality of sleep. There is compelling 
evidence demonstrating that exposure of animals to envi-
ronmental stimulation including enriched environment, 
social engagement and physical activity affects neural 
plasticity and impacts synaptic connectivity and neuronal 
morphology; similarly, dieting not only affects the organ-
ism as a whole but also reshapes structure and modifies 
functions of the nervous system.

In rodents engaged in physical activity (usually in a 
form of free access to the running wheel), an increase 
in the neuronal arborisation, length and complexity of 
dendrites, spine morphology and synaptic densities has 
been documented; these morphological changes develop 
in paralleled with an increased expression of glutamate 
receptors and amplification of long-term potentiation 
(LTP) in several brain regions [1–4]. This plastic remod-
elling seems to be associated with an increase in produc-
tion of brain-derived neurotrophic factor (BDNF) [5]. 
The morpho-functional changes translate into improved 
cognitive performance including learning and memory 
[6, 7], prolong cognitive longevity [8–10] and reduce the 
risk of dementia [8, 11–13].

Intellectual engagement represents another lifestyle 
factor that, by instigating neural plasticity, positively 
impacts on cognitive longevity by increasing cognitive 
reserve. There is convincing evidence demonstrating the 
role of education, occupational activities, creativity chal-
lenges and social engagement in prolonging physiological 
cognitive ageing and delaying dementia [14–18]. Simi-
larly, dieting has been shown to affect brain metabolism, 
neuronal plasticity, and synaptic connectivity [19–22] 
thus impacting of cognitive performance and cognitive 
longevity [23, 24].

Open Access

*Correspondence:  marcusadeoliveira@outlook.com; Alexej.
Verkhratsky@manchester.ac.uk
1 Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, 
Universidade Federal Do Pará, Belém 66075‑110, Brazil
2 Faculty of Biology, Medicine and Health, The University of Manchester, 
Manchester M13 9PT, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2592-9898
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-021-00297-4&domain=pdf


Page 2 of 14Augusto‑Oliveira and Verkhratsky  Biol Direct           (2021) 16:12 

Cellular mechanisms of lifestyle action on the brain 
remain to be fully elucidated; there is mounting evidence 
highlighting the role of neuroglia. Neuroglia are the prin-
cipal homeostatic and defensive arm of the nervous sys-
tem, which is critical for neural plasticity and cognitive 
performance. In particular, neuroglia are responsible for 
the ability of brain to compensate life-long pathological 
challenges thus preserving cognitive reserve [25]. Physi-
cal activity and enriched environment has been shown 
to significantly increase the complexity, volume and 
surface area of astrocytes, enhance astrocytic coverage 
of synapses and blood vessels and positively modulate 
astrocyte-dependent neurogenesis in adult neurogenic 
niches [25–29]. Dieting also affects astrocytes: for exam-
ple, caloric restriction induces substantial increase in 
astrocytic complexity and increase in astrocytic synaptic 
coverage, which enhances control over extracellular glu-
tamate and  K+ thus augmenting long-term potentiation 
in the hippocampus of mice [30]. Astrocytes have been 
proposed to be a critical element in translating lifestyle 
factors into brain plasticity and cognitive capabilities 
[31]. Finally, diet, physical exercise, and environmen-
tal enrichment act on oligodendrocytes thus promoting 
myelination in physiology and pathology [32–35].

In this paper we shall overview the effects of lifestyle 
factors on the plasticity of the third major type of neu-
roglia— microglial cells, which contribute to brain physi-
ology and represent the principal arm of the defence 
system of the central nervous system (CNS).

Plasticity of microglia
Microglia are the neural cells of the non-neural origin 
[36]: microglial precursors in the form of foetal mac-
rophages invade the neural tube early in development 
[37, 38]. These precursors disseminate throughout the 
brain and the spinal cord and undergo the most remark-
able metamorphosis. Mature microglial cells are as dif-
ferent from macrophages as they could be: the latter are 
spherical or amoeboid, while the former possess highly 
elaborated processes resembling, in their fundamental 
design, neural cells. The profound morphological trans-
figuration is accompanied by similarly profound physi-
ological change: microglial cells acquire a multitude of 
receptors to neurotransmitters and neurohormones, 
while retaining "immune" receptors as a legacy from their 
myeloid ancestry,  making   microglia are,  arguably, the 
most "sensitive" cells of the CNS. In the normal brain, 
microglia appear in the form of ’never resting’ cells which 
constantly survey the nervous tissue by their highly rami-
fied and moving processes; hence these cells are defined 
as ’surveilling microglia’. In addition, microglia perform 
numerous physiological functions related to regulation 
of synaptic behaviour, shaping synaptic contacts and 

regulating adult neurogenesis thus ultimately modulating 
cognitive processes (Fig. 1) [39–44]. Microglia are highly 
heterogeneous and plastic cells, which present numer-
ous distinct morphological shapes and functional states 
depending on the brain region, age and context [45, 46].

Lifestyle effects on microglia
Physical exercise
Physical exercise modifies density, morphological 
appearance, and molecular profile of microglia (Table 1). 
Ten days of physical exercise in the running wheel stimu-
lates microglia proliferation in the superficial cortical 
layers [47], and favours ramified surveilling microglial 
state in the mouse hippocampus [48]. Microglia seem to 
translate numerous lifestyle modifications into changes 
in adult neurogenesis within neurogenic niches [49]. 
Physical exercises are known to stimulate neurogenesis, 
potentate survival of newborn neurones and improve 
memory [50–53]. Physical exercise induced rather pro-
found changes in microglial phenotype, as these changes 
persisted even after cell isolation and maintenance in cul-
ture. Addition of purified (by FACS sorting of microglia 
isolated from transgenic Csf1r-GFP mice expressing GFP 
under control of Csf1r gene) microglia isolated from the 
brains of animals subjected to 3 weeks of voluntary run-
ning to the culture of hippocampal neurones obtained 
from sedentary mice activated neural cells and increased 
neurogenesis. These effects of microglia were medi-
ated through colony-stimulating factor 1 (CSF-1) and its 
receptor signalling axis. Conversely, microglia from aged 
animals or young sedentary animals were not effective in 
recruiting and stimulating neuronal precursors [54]. The 
same CSF-1 signalling cascade underlies emergence of 
stress resilience following physical exercise [55]. Positive 
regulation of neurogenesis may also be mediated by an 
increase in microglial production of BDNF, which is well 
known enhancer of neurogenesis [56]. Voluntary physi-
cal activity increases the proportion of BDNF-expressing 
microglia in aged (but not in adult) mice microglia [57], 
while microglial levels of BDNF were found to correlate 
with the density of newly generated neurones. Physi-
cal activity also increases microglial production of pro-
neurogenic insulin-like growth factor (IGF1), which may 
mediate local microglia-neural precursor cells communi-
cations [58]

Although precise description of effects of physi-
cal exercise on microglia and mechanisms involved in 
physiological conditions needs more investigations, 
there is a large body of evidence indicating that physical 
exercise promotes microglia-dependent neuroprotec-
tion in numerous pathological contexts. For instance, 
physical exercise protects against lipopolysaccharide 
(LPS)-induced neuroinflammation and associated 
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cognitive impairment. This protection is associated 
with suppressed expression of IL-1β, TNFα and IL-10 
mRNA in the hippocampus, indicating reduced micro-
glial pro-inflammatory response as an underlying 
mechanism by which physical exercise might protect 
CNS [59]. Similar mechanisms may be operational in 
ageing. Physical exercise, for example, reduces the ratio 
between pro- (IL-1β, IL-6 and TNFα) and anti-inflam-
matory (IL-10) cytokines in the hippocampus of aged 
rats [60]. Microglia are the main source of cytokines in 
the ageing brain [61], hence are likely to be responsible. 
Voluntary exposure to the running wheel for 8  weeks 
attenuated microglial proliferation in the hippocam-
pus of aged mice [62], whereas running for 10  weeks 
reduced microglial reactivity in the hippocampus and 
other brain regions of aged rats [63]. Aged mice show 

greater expression of reactivity markers CD68 and 
MHCII; exposure of aged females to physical activity 
decreased densities of CD68 + and MHCII + microglia 
in the hippocampus, whereas in males CD68 + micro-
glia decreased and MHCII + microglia increased in 
hippocampus [63]. These data suggest that the effects of 
physical exercise on microglial immunological profiles 
vary with age, sex and brain region, probably reflecting  
microglial heterogeneity. Treadmill exercise for 10 days 
attenuated cognitive decline and reduced glycolysis, 
glycolytic capacity, and PFKB3 enzyme in aged mice; 
similarly, senescent markers such as β-galactosidase 
and P16INK4A, were also reduced suggesting the exer-
cise-related improved cognition is orchestrated by a 
normalisation of the metabolic profile and functionality 
of microglia [64].

Fig. 1 Microglial functions in physiology and pathophysiology
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Physical exercise-induced microglial plasticity contrib-
utes to neuroprotection in neurodegenerative diseases. 
In the APP/PS1 mice Alzheimer`s disease (AD) model, 
twelve weeks of treadmill exercise decreased β-amyloid 
deposits and improved cognitive processes possibly 
through hippocampal microglia modulation [65]. Tread-
mill exercise improved cognitive performance including 
spatial learning and exploratory activity, and reduced 
β-amyloid deposits and microglial reactivity [66]. In 
the Tg2576 mice AD model, three weeks of voluntary 
wheel running significantly reduced hippocampal levels 
of IL-1β and TNF-α and decreased soluble β-amyloid40 
as well as soluble fibrillar β-amyloid [67]. These results 
indicate that physical exercise can shift the immune 

response in the brain of an AD mouse model by trans-
forming microglia to an antigen presenting phenotype, 
thus reducing β-amyloid burden, alleviating AD pathol-
ogy and improving cognition [67].

In a Parkinson`s disease (PD) MPTP mouse model, 
treadmill exercise for 4  weeks ameliorated dopaminer-
gic neuronal loss by suppressing  microglial reactivity, 
preventing loss of nigrostriatal neurones and improv-
ing motor balance and coordination dysfunction [68]. 
In 6-hydroxydopamine PD rat model running wheel 
exercise for four weeks suppressed microglia reactivity 
and partially prevented neuronal damage and cognitive 
decline [69]. This potent modulation of microglia, which 
have a significant neuroprotective role in the PD brain 

Table 1 Effects of physical exercise on microglia

EAE Experimental autoimmune encephalomyelitis, LPS lipopolysaccharide, APP/PS1 amyloid precursor protein/presenilin1 mouse Alzheimer’s disease model mice, PD 
Parkinson disease, ROS reactive oxygen species

Species CNS region Experimental paradigm Microglial changes References

Mice Whole brain Treadmill for 6 weeks In EAE model (transfer of encephalitogenic T cells), exercise 
protected the CNS against autoimmune inflammation by 
reducing microglial‑derived ROS production, neurotoxicity 
and pro‑inflammatory responses

[71]

Mice Hippocampus or remaining brain Running wheel for 10 weeks Aged mice showed a greater proportion of CD86 and MHC 
II positive microglia. In aged females, access to a running 
wheel decreased proportion of CD86 and MHC II positive 
microglia in the hippocampus whereas aged males in the 
running group showed a decrease in the proportion of 
CD86 positive microglia in the brain and an increase in the 
proportion of MHC II positive microglia in hippocampus 
and brain

[63]

Mice Hippocampus Treadmill for 8 weeks Treadmill running inhibited the excessive reactivity of micro‑
glia in hippocampus of the fluoride‑toxic mice, accom‑
panied with the alteration of neuroactive ligand‑receptor 
interaction pathway

[140]

Mice Spinal cord Running wheel for 8 weeks Exercise reduced microglial reactivity thus preventing age‑
related loss of motor neurones

[141]

Mice Hippocampus Treadmill for 9 days Exercise protected against LPS‑induced memory impairment 
with concomitant attenuation of IL‑1β, TNF‑α  and IL‑10 
mRNA expression. Exercise abolished LPS‑induced response 
of astrocytes and microglia

[59]

Rat Hippocampus and striatum Running wheel for 4 weeks Exercise reduced microglial reactivity and partially prevented 
damage to dopaminergic neurones in a rat model of PD

[69]

Mice Hippocampus Running wheel for 2 weeks Microglia mediate exercise‑induced increase in neural precur‑
sor cell activity through fractalkine signalling

[54]

Mice Hippocampus Running wheel for 10 days Exercise increases microglial proliferation without morpho‑
logical, antigenic or transcriptional changes

[48]

Mice Cortices Running wheel for 10 days Exercise led to regional increase in microglia proliferation [47]

Mice Striatum and Substantia nigra Treadmill for 4 weeks Exercise prevented dopaminergic neuronal loss by suppress‑
ing microglial reactivity in a PD model

[68]

Mice Hippocampus Treadmill for 12 weeks Exercise preserved hippocampal cognitive function, sup‑
pressed  β‑amyloid accumulation in the hippocampus in 
APP/PS1 mice, and attenuates oxidative stress possibly 
through modulating microglia

[65]

Rat Hippocampus Treadmill for 4 weeks Exercise inhibited reactive gliosis following STZ insult, 
reduced expression of pro‑inflammatory mediators and 
enhanced expression of anti‑inflammatory cytokine in the 
hippocampus

[142]
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[70], highlights microglia as a key cellular element trans-
lating beneficial effects of physical exercise in PD.

Physical exercise and related microglial changes seem 
to protect the CNS in the experimental autoimmune 
encephalomyelitis model induced by transfer of encepha-
litogenic T-cells. High-intensity six-week continuous 
treadmill training reduced microglia reactive oxygen 
species formation, neurotoxicity and pro-inflammatory 
response, which are all involved in the propagation of 
autoimmune neuroinflammation [71].

Environmental enrichment
Environmental enrichment is defined as a brain stimu-
lating environment composed by physical (such as puz-
zle boxes, toys, numerous feeders, ropes and running 
wheels) and social (relationships with peers) elements 
[72]. In humans, environmental enrichment corre-
sponds to intellectual, social and physical engagement, 
which contributes to cognitive longevity [73]. Exposure 
to enriched environment results in well characterised 
beneficial effects on the CNS including boosting adult 
neurogenesis, synaptic plasticity, cellular physiology, and 
remodelling of neuroglia resulting in cognitive improve-
ments and acceleration of neurological recovery follow-
ing insults of various aetiology (Table 2) [31, 72, 74–77].

Environmental enrichment affects microglial densi-
ties. When 3-, 8- and 13-month-old C57BL/6 wild-type 
mice have been subjected to seven weeks of enriched 
environment, running wheel or combination of both, 
the density of Iba1 positive microglia in hippocampus  
increased. Enriched environment alone appeared to be 
more effective in increasing Iba1-labelled microglia; 
physical exercise on its own or in combination with envi-
ronmental enrichment affected microglial density only 
in older animals. [78]. A longer environmental enrich-
ment for 32–48 weeks promotes healthy ageing by reduc-
ing microglial expression of pro-inflammatory cytokines 
and MHCII. At the  morphological level, environmen-
tal enrichment leads to microglial hypertrophy and 
increased ramification in hippocampus, hypothalamus 
and amygdala without changing microglial density [79]. 
In LPS-injection model of neuroinflammation, subject-
ing rats to enriched environment for 12 h/day for 7 weeks 
caused significant reduction of microglial reactivity with 
decreased expression of chemokines including Ccl2, 
Ccl3, Cxcl2, and cytokines including TNF-α and IL-1β 
[80].

Similarly, in the context of AD model, animals` expo-
sure to the enriched environment boosts neuroprotec-
tion, which is, at least in part, associated with changes in 
microglia. In particular, exposure to enriched environ-
ment protected against direct β-amyloid toxicity through 
alleviating microglial reactivity, increasing microglial 

morphological complexity and decreasing expression of 
inflammatory cytokines such as IL-1β and TNF-α [81]. 
The underlying mechanism connecting environmental 
stimulation to the status of microglia is represented by 
an increased noradrenergic stimulation of the brain. This 
effect is mediated through activation of β-adrenoceptors: 
feeding mice with β-adrenergic agonist isoproterenol 
mimicked effects of environmental enrichment, whereas 
treating mice undergoing enriched environment with the 
β-adrenergic antagonist propranolol inhibited positive 
effect of environmental stimulation. This effect was also 
absent in transgenic animals lacking β1,2 adrenoceptors 
[82].

In the APP/PS1 mice AD model, environment enrich-
ment for six weeks starting from 12  months of age, 
improved short-term memory, reduced microglial reac-
tivity while increasing microglia phagocytic activity; the 
β-amyloid burden however remained unaffected [83]. 
Similarly, increased microglial phagocytic activity has 
been observed in 5xFAD AD mouse model subjected to 
six weeks of enriched environment as compared with 
animals in standard environment. In addition, exposure 
to environmental stimulation rescued adult neurogen-
esis and memory deficits simultaneously preventing 
β-amyloid dissemination [84]. An increase in microglial 
phagocytosis activity following exposure to enriched 
environment may also improve physiological ageing, 
known to suppress microglial phagocytic machinery [85].

Exposure to enriched environment does not always 
enhance microglial profiles. Systemic non-neuro-
tropic dengue virus infection, for example, results in an 
increased size and complexity of microglia; exposure to 
the enriched environment reduced microglial diversity 
in lateral septum, with significant correlation between 
morphological complexity and the levels of TNF-α in 
the circulation [86]. At the same time, sedentary life-
style  negatively impacted on microglial reactivity, thus 
diminishing microglial neuroprotection [87]. Similar loss 
of morphological diversity occurs in the molecular layer 
of dentate gyrus in mice housed in long-term enriched 
environment, suggesting different microglial morpho-
types may have different physiological roles in various 
environments, and that long-term enriched environment 
may be associated with adaptive microglial response 
to cognitive stimuli [88]. In Piry rhabdovirus model of 
encephalitis, mice exposed to enriched environment 
presented less CNS infection and substantially faster 
virus clearance, less microgliosis and less damage to the 
extracellular matrix than animals housed in standard 
environment [89]. In cocal virus infection, mice dwell-
ing in standard environment demonstrated significant 
weight loss and higher mortality as compared with ani-
mals exposed to environmental stimulation. Additionally, 
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enriched environment led to better locomotor and 
exploratory activity associated with less neuroinvasion 
and reduced microglial reactivity, revealing that enriched 
environment drives a more effective immune response in 
a mouse model of virus encephalitis [90].

In type 1 diabetic rats, enriched environment reduced 
microglial reactivity, improved memory and amelio-
rated cognitive comorbidities associated with diabetes 
[91]. Environmental stimulation also shapes microglial 
plasticity in glioma: glioma-bearing mice exposed to 

Table 2 Effects of enriched environment on microglia

EE enriched environment, PE physical exercise, APP/PS1 amyloid precursor protein/presenilin1 mouse Alzheimer’s disease model mice

Species Brain region Experimental paradigm Microglial changes References

Mice Hippocampus, amygdala and hypothalamus EE for 32 and 48 weeks EE reduced expression of pro‑inflammatory 
cytokines, increased Iba1 expression, 
and induced microglial hypertrophy and 
increased ramification

[79]

Mice Hippocampus EE for 7–8 weeks EE prevents microgliosis induced by human  
β‑amyloid oligomers, as evidenced by 
morphology, mRNA changes, and brain 
interstitial fluid cytokine levels

[81]

Mice Hippocampus and hypothalamus EE for 6 weeks EE housing blocks pro‑inflammatory cytokine 
gene induction and promotes arginase 1 
mRNA expression in brain‑sorted microglia, 
indicating that EE favours an anti‑inflamma‑
tory activation state

[143]

Mice Hippocampus and neocortex EE for 6 weeks EE in APP/PS1 mice amyloidosis model led 
to improved short‑term memory, reduced 
microgliosis and increased microglial 
phagocytic activity

[83]

Mice EE for 4–6 weeks EE acting through enhanced β‑adrenergic 
signalling reduces microgliosis in response 
to direct exposure to  β‑amyloid

[82]

Mice Hippocampus EE, PE, and EE + PE for 7 weeks EE led to an increased microglial number 
at 5 and 10 months while PE and EE + PE 
increased microglial numbers only at 
10 months

[78]

Mice Amygdala EE or PE for 40 days EE Increased microglial proliferation [144]

Rat Hippocampus EE for 12 weeks EE ameliorates cognitive comorbidities associ‑
ated with type I diabetes mellitus, possibly 
by reducing hyperactivity in the hypotha‑
lamic–pituitary–adrenal axis and microglial 
reactivity in diabetic animals

[91]

Mice Hippocampus EE for 87 weeks Long‑term EE reduces microglia morpho‑
logical diversity of the molecular layer of 
dentate gyrus

[88]

Mice Lateral septum EE for 32 weeks Following dengue infection, EE led to a reduc‑
tion of microglial morphological diversity

[145]

Mice Hippocampus, septum, olfactory bulb and 
brainstem

EE for 16 weeks EE alleviated microgliosis, promoted faster 
viral clearance, decreased viral dissemina‑
tion, reduced disease progression, and 
decreased CNS damage in a model of limbic 
encephalitis

[90]

Mice Hippocampus EE for 12 weeks EE attenuated microgliosis, damage to the 
extracellular matrix and promoted virus 
clearance in a model of viral encephalitis

[89]

Mice Striatum EE for 7 weeks Glioma‑bearing mice housed in EE have 
increased branching and patrolling activity 
microglia, besides increased phagocytic 
activity

[92]

Pig Frontal cortex EE for 3 weeks EE piglets displayed a signature consistent 
with a relative decrease in microglial activity 
compared to those in the standard condi‑
tion

[146]
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environmental stimulation have increased branching and 
patrolling activity of microglia, besides increased phago-
cytic activity [92].

Diet
Healthy diet, especially being applied in combination 
with other modifiable lifestyle factors discussed above, 
emerges as a promising strategy for preventing cognitive 
decline and promoting brain health [93, 94]. The adop-
tion of a friendly diet or caloric restriction is positively 
associated with cognitive performance throughout lifes-
pan, leading to cognitive improvements during infancy, 
adolescence and adulthood [95–97] and preserving 
cognitive functions in elderly [98]. The mechanisms by 
which diet affects the brain include modulation of synap-
tic plasticity, neuroglial support and adult neurogenesis 
[99]. On the other hand, high-fat diet is associated with 
obesity and cognitive impairments [100], which induces 
poor lifestyle choices leading to weight gain in a self-
accelerating cycle [101].

Obesity is a world-wide concern which affects millions 
of people and represents an important risk factor for 
neurological disorders [102]. It is often caused by high-fat 
intake [103] and it is associated with impaired cognitive 
functions, neurodegenerative pathologies and atrophy 
in many brain areas including frontal lobe, anterior cin-
gulate gyrus, hippocampus and hypothalamus [104]. 
Detrimental effects of high-fat diet on the brain include 
synaptic loss and microglial reactivity [105], the latter 
playing multiple roles in damaging the brain and affect-
ing cognition [106–108]. On the other hand, the adop-
tion of friendly low-fat diet rich in plant foods, moderate 
intake of fish, poultry and wine, and low intake of fat and 
red and processed meat promotes microglia-dependent 
neuroprotection through mitigating microglia-mediated 
brain disturbance [109].

Microglial appearance and functional activities are 
strongly affected by diet (Table  3); microglial changes 
contribute to brain response to both high-fat detrimen-
tal and low-fat friendly dieting. In Yucatan minipigs, for 
example, maternal high-fat diet during gestation and 
lactation modifies offspring’s microglial density and 
morphology. These alterations occurred differently in 
hippocampus and prefrontal cortex; in the prefrontal 
cortex microglial density increased whereas in the hip-
pocampus it remained unchanged compared to standard 
diet group; at a morphological level, anterior prefrontal 
cortex, dorsolateral prefrontal cortex and hippocam-
pus presented higher number of unipolar microglia 
whereas orbitofrontal cortex presented higher number 
of multipolar microglia, both compared to standard diet 
group in hippocampus [110]. This brain region-depend-
ent microglial response induced by high-fat diet is also 

observed in humans. Post-mortem analysis of the brain 
tissue obtained from obese individuals (body mass index, 
BMI, > 30) revealed increased microglial proliferation 
and morphological changes indicative of microglial reac-
tivity (enlarged cell bodies and shortened processes) in 
the hypothalamus as compared with normal individuals 
(BMI < 25). At the same time in the cortex microglia kept 
physiological morphology (small cell bodies and rami-
fied processes) in both obese and non-obese individuals 
[111].

Distinct microglial response depends on the length 
of dieting. Hypothalamic microglia from mice fed with 
high-fat diet for 3  days upregulated expression of pro-
inflammatory mediators including IL-1β, Cd74, Irf8 and 
IL-6. However, keeping the same mice on high-fat diet 
for eight weeks reduced expression of pro-inflammatory 
mediators and increased expression of anti-inflammatory 
molecules such as IL-10 and Pparg [111]. Early exposure 
(at postnatal days 21–60) of mice to a high-fat diet, trig-
gered reactive microgliosis with increased expression of 
IL-1β and TNF-α, reduced neurogenesis and promoted 
immature morphology of dendritic spines along with 
reduced levels of scaffold protein Shank2 suggesting 
defective connectivity. In addition, these animals demon-
strated cognitive impairment with spatial memory altera-
tions [112]. Incubation of primary cultured microglia 
with palmitate, a saturated fatty acid present in high fat 
diet led to a secretion of exosomes which induced imma-
ture dendritic spine phenotype [112].

Similar changes were observed in mice fed with high-
fat diet for eight weeks: animals showed reduced pres-
ence of synaptic markers, altered microglial morphology 
and cognitive disruption [105]. Recently, the mechanisms 
underlying obesity-associated cognitive decline were 
found to be influenced by reactive microglia. High-fat 
diet for 18 weeks made mice obese, which was associated 
with decreased dendritic spine density, increased micro-
glial reactivity, increased microglial phagocytosis of syn-
apses, which ultimately provoked cognitive impairment 
[106]. Reducing microglial reactivity with: (i) partial 
knockdown of fractalkine receptor CX3CR1; (ii) mino-
cycline treatment, or (iii) annexin-V treatment prevented 
obesity-associated cognitive impairment. These data 
highlight microglial contribution to the synaptic loss and 
cognitive impairment associated with obesity [106].

In ageing, exposure to high-fat diet triggers reactive 
microgliosis in mice and in an APP/PS1 mouse model 
of amyloidosis [113]. Certain evidence indicates that 
even short-term consumption of high-fat diet may trig-
ger cognitive deficits [114], although it remains doubtful 
whether this may be translated to humans. It has been 
suggested that the detrimental diet disrupts the ageing 
process by worsening the impact of ageing on microglial 
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function and morphology, priming microglia in brain 
areas important for cognitive functions including hip-
pocampus and amygdala [115, 116].

Appropriate diet therefore is critical for the brain 
performance and cognitive capabilities. In this con-
text, diet-dependent modulation of microglia emerges 
as a non-pharmacological and non-invasive strategy 
to improve cognition and prolong cognitive longev-
ity (Table 3) [117, 118]. Caloric restriction, in particular, 
protects the brain from age-dependent diseases and pro-
longs cognitive longevity [119–122]. Caloric restriction 
in combination with low-fat diet abolished age-depend-
ent increase in Iba1 immunoreactivity, microglial density 
and expression of phagocytic marker Mac-2 in the white 
matter tract of hippocampus, the fimbria [123]. Caloric 
restriction for 6–12  months at 70% of ad libitum food 
intake has been shown to alleviate age-dependent dys-
trophic changes in microglia, manifested by decreased 
 Ca2+ signalling and disorganised motility of microglial 
processes [124]. Combining the low-fat diet with caloric 
restriction reduced white matter microglial reactivity 
during ageing, modulating their morphology and reduc-
ing phagocytic markers [123]. Since microglial dystro-
phy is critical for ageing-induced brain dysfunction and 
cognitive decline, caloric restriction emerges as a non-
pharmacological, cost-effective, and clinically relevant 
microglial modulator for rejuvenation of microglia.

Healthy diet with high content of flavonoids and phe-
nolic compounds, present in plants, vegetables, and 
wine, protects cognition in subjects aged 65 or older. 
After 10  year`s follow up, individuals with highest fla-
vonoids intake presented better cognitive performance 
compared with individuals with lowest intake: on aver-
age Mini-Mental State Examination score loss was 2.1 

points in the latter, whereas in the former the score loss 
was only 1.2 points [125]. Polyphenol-rich diet is simi-
larly associated with cognitive improvements in elderly 
[126]. Flavonoids and phenolic compounds are well 
known for their ability to affect microglial status, in par-
ticular by reducing microglial reactivity and restoring 
microglial homeostatic functions with beneficial influ-
ence on cognitive functions with consequent reduction 
in microglia-derived neuroinflammation and cognitive 
improvements [127–130]. Luteolin, a plant derived flavo-
noid, suppressed expression of pro-inflammatory genes 
in BV-2 microglia; whereas luteolin consumption signifi-
cantly improved spatial working memory and reduced 
expression of inflammatory markers in hippocampi of 
aged (22–24  months old) mice [131]. Luteolin interacts 
with several signalling cascades modulating microglial 
transcriptomic profile and promoting anti-inflammatory 
and anti-oxidative phenotype, thus strengthening neu-
roprotection [132]. Similar outcomes were observed in 
ageing (19–21) months old rats fed with polyphenol rich 
açaí palm tree pulps; dietary supplementation with pulps 
of Euterpe oleracea (EO) and Euterpe precatoria (EP) 
for eight weeks improved working memory as tested by 
Morris water maze; the EO-supplemented diet, but not 
an EP one also improved reference memory. Treatment 
of BV-2 microglial cell line with serum obtained from 
rats receiving EO or EP rich diet reduced production of 
nitric oxide (NO) and expression of TNF-α [133].

Blueberries represent another source of polyphe-
nols and anthocyanins well known to improve cogni-
tion especially in ageing [134–136], reduce microglial 
reactivity [137, 138], and counterbalance brain dysfunc-
tions induced by high-fat diet [139]. In particular, mice 
exposed to the diet supplemented with blueberry showed 
significantly less Iba1 immunoreactivity and lower micro-
glial density, together with higher levels of BDNF and 
larger number of newborn neurones. The BV-2 micro-
glial cell lines treated with serum collected from mice fed 
with blueberry produced less NO [139].

Conclusion: mens sana in corpore sana—microglia 
translate friendly lifestyle into brain health 
and cognitive longevity
The brain is endowed with remarkable plastic capacity 
both in structure and cellular functioning, which allows 
life-long adaptation to the exposome. The adoption 
of healthy lifestyle including regular exercise, intellec-
tual engagement and friendly diet significantly impacts 
the brain, affecting different areas at different levels 
of nervous tissue organisation modulating brain-wide 
homoeostatic systems such as blood–brain barrier and 
glymphatic clearance, remodelling cellular networks and 

Fig. 2 Microglia translate lifestyle into the neuroprotection and 
cognitive longevity. The adoption of friendly lifestyle induces 
morphological and functional plasticity of microglia, these plastic 
changes translate, at least in part, intellectual engagement, physical 
exercise and healthy diets into the brain health through enhanced 
neuroprotection, neurogenesis, and synaptic plasticity. Images of 
microglia has been re‑drawn from ref [86] with permission
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modifying molecular cascades in neural and non-neural 
cells. As a holistic therapy, these lifestyle factors have 
been associated with improvements in cognitive perfor-
mance, speedy recovery in the contexts of neurotrauma, 
stroke and neuroinfections, promoting healthy ageing 
and arresting or retarding neurodegenerative alterations, 
which as yet, cannot be managed pharmacologically. Life-
style challenges, at least in part, are translated through 
changes in microglial phenotypes, that underlie multiple 
beneficial adjustments of the nervous tissue (Fig. 2).
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