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Abstract

Background: Cancer is a major health problem which presents a high heterogeneity. In this work we explore
omics data from Breast, Kidney and Lung cancers at different levels as signalling pathways, functions and miRNAs,
as part of the CAMDA 2019 Hi-Res Cancer Data Integration Challenge. Our goal is to find common functional
patterns which give rise to the generic microenvironment in these cancers and contribute to a better
understanding of cancer pathogenesis and a possible clinical translation down further studies.

Results: After a tumor versus normal tissue comparison of the signaling pathways and cell functions, we found 828
subpathways, 912 Gene Ontology terms and 91 Uniprot keywords commonly significant to the three studied
tumors. Such features interestingly show the power to classify tumor samples into subgroups with different survival
times, and predict tumor state and tissue of origin through machine learning techniques. We also found cancer-
specific alternative activation subpathways, such as the ones activating STAT5A in ErbB signaling pathway. miRNAs
evaluation show the role of miRNAs, such as mir-184 and mir-206, as regulators of many cancer pathways and their
value in prognoses.

Conclusions: The study of the common functional and pathway activities of different cancers is an interesting
approach to understand molecular mechanisms of the tumoral process regardless of their tissue of origin. The
existence of platforms as the CAMDA challenges provide the opportunity to share knowledge and improve future
scientific research and clinical practice.
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Background
Cancer is a major health problem that represents the
second cause of death due to disease worldwide after
cardiovascular diseases. Aging, population growth, can-
cer heterogeneity, as well as the bad prognosis of some
cancers when detected late or the lack of effective treat-
ments, among other factors, contribute to these numbers
[1]. Therefore, research to improve diagnostic and

predictive tools for early detection and new treatment
strategies is crucial to reduce cancer mortality rates.
Until recently, cancer diagnosis and treatment were

mostly faced through an histologic point of view: scien-
tists inferred different aspects of cancer, such as tumor
grading and malignancy, by the comparison of cells
found in tumoral and healthy tissue through microscopy
techniques [2]. This trend continues today, using the
vast array of histologic images available as training input
for artificial intelligence models for accurate cancer diag-
nosis and early tumor detection [3]. Still, this approach
is limited due to the complexity and invasiveness of tis-
sue extraction by biopsies from patients and the
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difficulties of certain tissues to undergo medical imaging
analysis.
In the last decades, biotechnological advances have

allowed the scientific community to study cells from an-
other perspective: that of their genes, proteins and me-
tabolites. This new approach, designed as omics sciences,
allows us to delve deeper into cells inner mechanisms,
their regulation and the alterations that differentiate a
tumoral cell from a healthy one [4]. As a result, the
omics data complement histological findings, helping to
further characterize tumors and improving diagnosis
and treatment.
The further advances in high-throughput, next gener-

ation sequencing technologies, Big Data and bioinfor-
matic tools even allow the combination of different
aspects of these omics (such as genomics, proteomics or
metabolomics). From this combination, we are able to
model the gene and protein interaction networks which
allow the cell to perform its multiple functions: the sig-
naling pathways [5, 6]. These pathways and their alter-
ations are closely related to cancer, for what they are
growing in importance as an asset for better understand-
ing of cancer mechanisms, causes and survival [7, 8].
Another important finding regarding cancer mecha-

nisms comes from the microRNAs and their role in gene
expression regulation [9]. MiRNAs work in a post-
transductional level: in animals, they bind into a target
gene’s mRNA, inhibiting the translation to protein. The
action of these miRNAs over critical genes, such as on-
cogenes or tumor suppressor genes, is heavily related
with cancer cells conversion and development. As a re-
sult, miRNA study and its specific relation with different
types of tumors is becoming a pivotal field of research.
Nonetheless, despite what has been described in previ-

ous paragraphs, a great amount of omic information
doesn’t translate directly to improvements to the patient
[4]. It constitutes a challenge to process and research on
these data to fully understand cancer complexity. Re-
garding this, the initiatives to put this kind of biological
data into the hands of the scientific community in order
to provide new medical and biological insights are a key
part for future advances. One of these initiatives are the
challenges posed by the Conference on Critical Assess-
ment of Massive Data Analysis (CAMDA).
The goal of the CAMDA open challenges is to

reach novel solutions or methodologies to better
understand omics complex data. In particular, the
CAMDA 2019 Hi-Res Cancer Data Integration Chal-
lenge goal was to gain new biological insights based
on cancer data provided by Genomic Data Commons
(GDC) [10]. This data was comprised of human gen-
omic samples of two well-documented cancer types,
Breast Cancer (BRCA) and Lung Adenocarcinoma
(LUAD), and another which is less well studied,

Kidney Renal Clear Cell Carcinoma (KIRC), with their
corresponding levels of miRNAs.
In this work we present our approach to the CAMDA

2019 Hi-Res Cancer Data Integration Challenge, consist-
ing of a characterization of the common deregulated
pathways and functions across breast, lung and kidney
cancers. The objective of the work is to assess the com-
mon functional patterns in the three cancers to allow a
better comprehension of the cancer mechanisms, and
help in the development of future common treatments.
We also assess whether the inherent cancer differences
found at the common pathways and functions are solid
enough to classify these three types of cancer correctly
and look for underlying mechanisms that could be used
to target diagnosis or treatment based on cancer.
For this task, we use the pathway analysis tool

Hipathia [11], which allows the interpretation of tran-
scriptomics data at a pathway and functional level, trans-
forming the transcriptional values of genes into pathway
and molecular functions activation, using Uniprot pro-
tein functions [12] and Gene Ontology molecular terms
[13, 14]. We also relate miRNA activity with the com-
mon pathways found, showing interesting activity corre-
lations. Finally, we check out the quality of the resulting
pathway activity dataset as an input for simple machine
learning model classificators.
Our results point to a group of common pathways and

functional terms suitable to define and cluster BRCA,
KIRC and LUAD cancers into groups with different sur-
vival times. The miRNA analysis revealed their regula-
tion role on the pathways studied and their relevant
potential as prognostic factors. We also found specific
pathways and functional terms that may be key in
underlying molecular mechanisms for each cancer type.
Finally, our trial in machine learning model classification
is promising for the development of artificial intelligence
models, further in depth studies, that could guide clin-
ical practice.

Results
Tumor vs. normal tissue comparisons
The datasets from BRCA, KIRC and LUAD were down-
loaded and processed as described in methods, and the
comparison of tumor vs. normal samples for the levels
of activity of the pathways and functions analyzed were
applied accordingly. In Hipathia, each signaling pathway
is subdivided in a series of subpathways. These subpath-
ways represent a specific path which links an input node
(such as cells receptors) to a final effector protein, and
from now on will be referred to as paths for the sake of
brevity.
The comparison of the different activities, at the path

and functional level, between tumor and healthy tissue
samples returned the number of up- and down-activated
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significant features in each cancer, shown in Table 1.
The number of coincident significant up- or down-
activated paths among the 3 cancers is shown in Fig. 1a.
Supplementary Figures SF1 and SF2 reproduce the
scheme in Fig. 1 for Uniprot and GO terms values.

Common features in BRCA, KIRC and LUAD cancers
After the tumor versus normal tissue analysis, we focus
on the commonly significant features across the three
cancers, from now on common features. Features pre-
senting also a common sign of the logFC in all three
cancers were categorized as unidirectional (changes are
always in the same direction: up or down activated), and
those with a different sign of the logFC as bidirectional.
There exist two types of unidirectional features (all UP

or all DOWN changes), and 6 types of bidirectional fea-
tures, depending on the UP and DOWN pattern across
the three cancers. The number of common, unidirec-
tional and bidirectional features is summarized in
Table 2, and the number of specific unidirectional and
bidirectional subtypes is shown in the orange box of Fig.
1a.
For further reference, Supplementary Tables S1, S2

and S3 in supplementary material show the list of path-
ways, GO terms and Uniprot keywords, respectively,
their common, unidirectional or bidirectional status and
the p-values of the comparisons between tumor and
normal samples in each of the cancer types, ordered by
the sum of the negative logarithm of the three p-values.

Common significant paths in BRCA, KIRC and LUAD
cancers
We have found 828 statistically significant paths com-
mon to BRCA, LUAD and KIRC cancers. The values of
the common paths are depicted as heatmaps in Fig. 1b.
Samples and features were grouped by hierarchical clus-
tering, and clear patterns emerged from the grouping in
the three cancer studies, allowing for an easy separation
between tumor and normal samples.
As expected, pathways related to tumor growth, meta-

static potential, immune evasion and treatment resist-
ance, among others, appear as dysregulated in all three
cancer types.
Table 3 shows the top ten most significant paths in all

three cancers, after ordering them by the sum of the
negative logarithm of the three p-values. Paths are

represented by the pathway to which they belong and
their effector protein. They are displayed with their asso-
ciated logFC sign in each cancer (UP or DOWN) and
the cancer prognosis factor related to their effector pro-
tein based on previous literature.
Many of the rest of the common paths are related to

the following pathways: Cell cycle (up-activated paths
ending in RB1 and protein complexes including MCM
and ORC families), Toll-like receptor signaling pathway
(up-activated path ending in proteins CXCL9, CXCL10,
CXCL11, IFNB1, related to immune response), Hippo
signaling pathway (down-activated paths ending in ID1,
NKD1 or CTGF related to clinicopathological malig-
nance), MAPK signaling pathway (down-activation of
paths ending in NR4A1 and MAP 3 K4, which are re-
portedly tumor suppressors, and up-activation of path-
sending in ELK1, TP53 and CDC25B, with oncogenic
properties), PPAR signaling pathway (down-activation of
paths ending in proteins AQP7, GK, PCK1, ACAA1,
CPT1C, ACSL1, LPL, SLC27A4, strongly related to lipid
and fatty acid metabolisms), ERBB signaling pathway
(paths ending in proteins CDKN1A, CDKN1B, BAD,
GSK3B and EIF4EBP1, involved in checkpoint cellular
cycle and oncogenes, are up, and those ending in
RPS6KB1, STAT5A and PRKCA involved in prolifera-
tion, drug resistance and survival are down) and AMPK
signaling pathway.
Interestingly, when exploring differential expression of

the genes involved in those paths, cancer-specific pat-
terns arise. As an example, Supplementary Figure SF3A
shows the boxplots representing the distribution of the
path AMPK signaling pathway: CCNA2 (the path from
the KEGG AMPK signaling pathway with effector pro-
tein CCNA2) in tumor and normal samples for each of
the cancers. A clear common up-activation pattern is
observed in tumor samples of three cancer types, but
only LEPR and CCNA2 nodes are differentially
expressed in the same direction in all three cancers. Yet,
the joint path activity presents the same behaviour in all
of them. Supplementary Figure SF3B shows the Hipathia
visualization for the same path for the tumor vs. normal
comparisons in BRCA (top), LUAD (center) and KIRC
(bottom), including gene differential expression.
The case of the STAT5A effector gene in the ErbB

Signaling pathway is also paradigmatic. This gene ap-
pears in the ErbB signaling pathway as the effector of

Table 1 Number of significant results per cancer and feature

Paths Gene Ontology Uniprot

UP DOWN TOTAL UP DOWN TOTAL UP DOWN TOTAL

BRCA 483 819 1302 388 848 1236 32 93 125

KIRC 805 635 1440 804 541 1345 51 65 116

LUAD 386 925 1311 242 1165 1407 27 96 123

Romera-Giner et al. Biology Direct            (2021) 16:9 Page 3 of 16



Fig. 1 Graphical analysis of the common path values across the three cancers. a: Upset plot representing the number of coincident significant
paths between cancers. For each cancer type, two groups have been created: the group of the up-activated paths (denoted by UP), and the
group of the down-activated paths (denoted by DOWN). Therefore, the same path can not be at the same time in the same cancer’s UP and
DOWN groups. Red and blue horizontal bars represent the number of significant paths in each group. Each vertical bar in the plot represents the
intersection of the groups in the inferior rows with a solid point, and the exclusion of the groups in the inferior rows with a shaded point. An
orange box surrounds the part of the UpSet plot representing the paths which are significant in all three cancers. The blue and red vertical bars
represent the paths which are simultaneously down- and up-regulated in the three cancers, respectively. b: Heatmaps of the significantly
common path values, represented inside the orange box of the UpSet plot above. Samples and paths were ordered following the results of a
hierarchical clusterization. Tumor samples are colored in blue while normal tissue samples are colored in light blue. In the heatmap, higher
activation path values are colored in red and lower activation path values in blue. Left: BRCA cancer data. Center: KIRC cancer data. Right: LUAD
cancer data

Table 2 Total number of features, summarized by their directionality

Feature Common Not
common

Total
analyzedUnidirectional Bidirectional Total

Paths 431 397 828 1040 1868

GO Terms 400 512 912 742 1654

Uniprot Keywords 52 39 91 51 142
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two different paths, both selected as commonly signifi-
cant, although with different directional behaviour: while
ErbB signaling pathway: STAT5A is unidirectional, being
down-activated in all three cancers, ErbB signaling path-
way: STAT5A* is bidirectional, being up-activated in
KIRC and down-activated in BRCA and LUAD, see
Fig. 2a. Notice that the effector STAT5A is being acti-
vated in each path by different predecessor proteins, see
Fig. 2b, orange boxes. Also, different patterns of gene
dysregulation are visible depending on the cancer type,
see Fig. 2b. STAT5A itself appears as down-regulated in
BRCA and LUAD, but is not dysregulated in KIRC.
From the cancer mechanisms point of view, on the one
hand, the fact that STAT5A is not down-regulated in
KIRC may allow this tumor to regulate its behaviour not
through up- or down-regulation of the gene itself, but
through the dysregulation of the specific genes in each
of the paths, tuning gene activity through the path and
not the gene.
On the other hand, this mechanism may allow the

cancer to select specific functions of a gene to be up-
activated while keeping other ones down-regulated. In
fact, the Uniprot keywords associated to STAT5A in
Hipathia are Lactation, Transcription, and Transcrip-
tion regulation, being all of them commonly signifi-
cant to the three cancers, but presenting also a
different behaviour: while the former is unidirection-
ally down-activated, the two latter ones are up-
activated in KIRC, see Fig. 2c.

Common functional profile in BRCA, KIRC and LUAD
cancers
The clear pattern shown in Fig. 3 is also distinguishable
in the heatmaps of the common functional activities,
both GO terms and Uniprot keywords, proving a re-
markable ability of the functional data to discern be-
tween cancer and healthy groups, see Supplementary
Figure SF4. After prioritizing the GO functions by the
sum of the negative logarithm of the p-values in the
comparisons of tumor vs. tissue samples for the three
cancers, a list of unidirectionally down-activated com-
mon functions related with ion and water homeostasis
and transport, and response to hormones emerged in
the top 30 functions. Ions develop important roles in
cancer progression, and deregulation levels may promote
changes in the expression levels of ion channeling pro-
teins, which can be related to identify different kinds of
cancer and their severity [28].
We also found among the top 30 functions unidirec-

tionally up-activated GO terms as mRNA stabilization,
Protein localization to kinetochore and Positive regula-
tion of interferon-beta production and bidirectional com-
mon functions up-activated in KIRC which include
Plasma membrane long-chain fatty acid transport,
cGMP-mediated signaling, Nitric oxide mediated signal
transduction and Positive regulation of receptor biosyn-
thetic process.
Other common results of our analysis included GO

terms usually related to cancer, such as the histones H3

Table 3 Top ten most significant paths, their cancer-type sign and prognosis factor according to the literature

Path BRCA KIRC LUAD Prognosis Factor

PPAR:CD36 DOWN UP DOWN Metastatic potential and immunotherapy resistance [15–17],
UP: poor prognosis

Axon Guidance: CFL1 DOWN DOWN DOWN Invasion, metastasis progression, therapy resistance,
DOWN: better prognosis

Melanogenesis: TYRP1 UP DOWN DOWN Metastatic potential,
DOWN: poor prognosis

Thyroid hormone: RCAN1 DOWN DOWN DOWN Metastatic potential, treatment resistance (sunitinib) [18, 19],
DOWN: poor prognosis

Aldosterone synthesis and secretion: PDE2A DOWN DOWN DOWN Invasive and metastatic potential [20],
DOWN: poor prognosis

Aldosterone-regulated sodium reabsorption: FXYD4 UP DOWN DOWN Recurrence-free survival following surgery [21],
DOWN: poor prognosis

Aldosterone-regulated sodium reabsorption: SCNN1A DOWN DOWN DOWN Proliferation, migration, poor prognosis [22, 23],
DOWN: better prognosis

Aldosterone-regulated sodium reabsorption: KCNJ1 DOWN DOWN DOWN Prognostic factor of patient’s survival, Metastatic potential [24],
DOWN: worse prognosis

Salivary secretion: RYR3 DOWN DOWN DOWN Unfavorable prognosis and upcoming malignant conversion [25],
DOWN: poor prognosis

Proteoglycans in cancer: CTNNB1 DOWN DOWN DOWN Unfavorable outcomes, metastasis potential, immunotherapies
resistance [26, 27],
DOWN: better prognosis
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and H4 methylation and acetylation, DNA replication
and recombination. Common up-activated GO func-
tions, such as the regulation of adaptive immune re-
sponse, the leukocyte migration, and the ones related to
T cell activation and B cells apoptosis, hint at the com-
plex relation between the immune system and the tumor
microenvironment [29], highlighting tumor immune
suppression. Also, we can observe an up-activated JAK-

STAT cascade, strongly related to cell survival, migra-
tion and proliferation, making this signaling pathway an
important indicator of tumorigenesis and, by definition,
an important indicator of invasion, metastasis, prolifera-
tive state and tumor growth.
Regarding the common Uniprot keywords, after priori-

tizing the functions as above, we found a high number
of ion transport related functions among the top 30

Fig. 2 Alternative path activation related to ErbB signaling pathway: STAT5A. a: Boxplots of the path values of paths ErbB signaling pathway:
STAT5A and ErbB signaling pathway: STAT5A* for the tumor and normal tissue samples across the three cancers. b: Graphical representation of
paths ErbB signaling pathway: STAT5A (in the dark orange box) and ErbB signaling pathway: STAT5A* (in the light orange box) including gene
differential expression across the three cancers. Red, blue and white nodes correspond to significant up- or down-regulated genes, or non-
significant nodes, respectively. Red and blue arrows represent paths significantly up- or down-activated. c: Boxplots of the activity values of
functions Lactation and Transcription, which are promoted by paths ErbB signaling pathway: STAT5A and ErbB signaling pathway: STAT5A*, for the
tumor and normal tissue samples across the three cancers
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functions in the table, all of them unidirectionally down-
activated. We also found Chromosome partition and
DNA replication functions unidirectionally up-activated.
With respect to the bidirectional top functions, we
found MHC I and MHC II, which are down-activated in
LUAD, and Phagocytosis, Fatty acid metabolism and
Fatty acid biosynthesis, which are up-activated in KIRC.
Interestingly, the latter two functions are regulated by
path PPAR signaling pathway: CD36, which appeared in
the top 10 significant paths in Table 3 also as up-
activated in KIRC and down-regulated in LUAD and
BRCA.

Common features define survival related subgroups
After the selection of the common paths, a hierarchical
clusterization was performed on the matrix of common
path values for the tumor samples. As expected, due to

the different tissue of origin, the clustering separated
well among the different cancer types, specially BRCA
from KIRC and LUAD, see Fig. 3a. Then, the tumor
samples were divided into 13 groups (subclusters), ac-
cording to the clusterization. These subclusters could be
related to molecular subtypes for each cancer, grade or
cancer progression stage in patients.
Guided by these results, we performed a survival ana-

lysis comparing the survival time of the individuals in
the different groups of each cancer. Groups with less
than 10 individuals of a cancer were filtered. Notice that
each cancer includes samples from a different number of
groups, for instance, BRCA samples are present in just
two of the subgroups, while KIRC samples are present in
four of the groups.
Interestingly, the survival time of the individuals in the

groups resulted significantly different in all three cancers

Fig. 3 Survival analysis of cancer subtypes resulting from clustering by path activation values. a: Clustering of the tumor samples from BRCA, KIRC
and LUAD based on the values of the paths which resulted significant in the comparison between healthy and tumor tissues in all three cancer
types, colored by their tissue of origin (Tissue) and the subcluster in which they have been stratified. b: Kaplan-Meier curves of the subgroups
created in each cancer, with the p-value of the survival analysis performed at the bottom. Curve colors are not matched with the subcluster
colors but defined to be easily differentiated

Romera-Giner et al. Biology Direct            (2021) 16:9 Page 7 of 16



(p-values are 0.045 for BRCA, 1.199e-10 for KIRC and
1.060e-5 for LUAD, see Fig. 3b, note that the color code
of the survival curves not correspond to color code of
the subgroups). Similar results can be found for func-
tional features (GO terms defined subgroups with p-
values 0.065 for BRCA (filtering groups with less than 25
samples), 0 for KIRC and 0.001 for LUAD, Uniprot key-
words defined subgroups with p-values 0.889 for BRCA,
0 for KIRC and 0.052 for LUAD), see Supplementary
Figures SF5 and SF6.

Tissue and cancer type prediction based on the common
pathways
To further assess the sorting power of the common sig-
nificant paths, these results were used as input for ma-
chine learning classification models. Two approaches of
classification were analysed: the classification between
Tumor and Normal Tissue in each one of the three can-
cers and the correct classification of Tumor tissue by
cancer type.
The goal of these analyses is not to tune a machine

learning algorithm to get the most predictive classifica-
tion model from our data, but to check if our features
are good enough to get significant results from easy-
implemented, classical machine learning classification
algorithms.
Through each one of these approaches we followed a

conventional machine learning analysis pipeline: first, we
explore the data to find the most suitable classification
algorithm for our model based on preliminary classifica-
tion metrics (such as accuracy and precision). After
choosing the model, we deploy a full-fledged version
based on the selected algorithm to assess said metrics
and check out its usefulness as a classificator.

Tumor tissue prediction
As input for tissue prediction, we provided the values of
the common significant paths across the three types of
cancer, making a specific dataset with Tumor and Nor-
mal Tissue labels for each one of them. To balance the
number of Tumor and Normal Tissue samples, only the
paired samples of each type of cancer were selected. To
assess the predictive potential of the dataset, we also
conducted two separate experiments based on the num-
ber of features: one input with 828 common paths and
other with the top ten common paths found in Table 3.
As shown in Supplementary Table 4, the model com-

parison in each three cancers cast promising results
across most of the algorithms, with accuracy values over
0.95, both with the full number of features and with the
top ten paths. Based on these results, the model selected
for this classification was K-Nearest-Neighbors (KNN)
[30], which, again, provided excellent classification re-
sults in both data scenarios.

Cancer type prediction
As in the previous case, the full number of common
paths was compared with the top ten most significant
ones. In this case, the dataset was composed by Tumor
samples of each type of cancer. As we can see in Supple-
mentary Table 5, the metrics seem better when we use
all the significant paths, but it is interesting to note that,
through KNN, we achieve an accuracy value over 90%
with the top ten paths, which serves as an example of
their relevancy as classificators and their potential to fur-
ther develop artificial intelligence techniques.

Survival related features
For each analyzed feature, samples were divided into
three groups: the 20% of most activated samples, the
20% of lowest activated samples and the 60% of
remaining samples, and the survival time of the different
groups was compared. We found a number of pathways
and functions related to survival depicted in Table 4.
Surprisingly, the number of significant features is clearly
unbalanced between KIRC and the other two cancers.
Complete results of these analyses can be found in Sup-
plementary Tables S6, S7 and S8.
Unfortunately, we found no common survival-related

features significant in all three cancers at the same time.
However, a number of survival-related features common
to two of the three cancers were found: 31 paths, 6 Gene
Ontology functions and 3 Uniprot keywords. Supple-
mentary Figure SF6B shows the number of survival-
related paths shared by each pair of cancer types.
Among the pairwise common survival-related paths

we find the path AMPK signaling pathway: CCNA2,
which was commonly up-activated along the three can-
cers (see Section Common features and Supplementary
Figure SF3). This path has been significantly related to
survival in KIRC and LUAD. In both cancers, a higher
activity of this pathway is related to a poorer outcome,
and a lower activity of the pathway is linked to a better
outcome. Supplementary Figure SF6C shows the
Kaplan-Meier curves for the three groups in KIRC (top)
and LUAD (bottom).

miRNA analysis
Finally and given that the pattern of miRNA expres-
sion can be correlated with cancer type, stage, and
other clinical variables due their role as regulators of

Table 4 Number of significant survival-related features per
cancer

Paths Gene Ontology Uniprot

BRCA 14 0 2

KIRC 953 894 96

LUAD 29 10 1
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gene expression, we performed a miRNA analysis. We
explored if the results at miRNA-level correspond
with the ones found at pathway-level and made an
analysis of the miRNA data provided by CAMDA.
The main objective of this analysis was to obtain a
list of the commonly significant miRNA, check their
functions in a cancer context and relate them to the
common significant paths.
The analysis consisted, as above, in the comparison of

tumor vs. normal tissues across the three cancers separ-
ately and the selection of the commonly significant miR-
NAs, obtaining 229 common miRNAs as a result, 97
classified as unidirectionally upregulated, 30 as unidirec-
tionally downregulated, and 102 as bidirectional. Table 5
shows the top ten most significant miRNA in all three
cancers, after ordering them by the sum of the negative
logarithm of the three p-values, together with their
change in each cancer (UP or DOWN) and the function
and cancer risk factor associated with their target gene
based on previous literature. Most of them are closely
related with cancer as oncogenes or tumor suppressors.
The literature references their role in different types of
cancer hallmarks [48, 49] such as cell proliferation and
invasion. Some of them are also identified as prognostic
markers in the three types of cancer, displaying, like in
the case of mir-210 and mir-584, a bidirectional behav-
iour. Complete results of this analysis can be found in
Supplementary Table S9.

To relate the miRNA activity with the common signifi-
cant paths, we targeted the genes which each miRNA
regulates and their presence in each one of the pathways
studied. After this, we checked how many of these sig-
nificant miRNAs were related with the common paths.
We found 40 miRNAs (including mir-184 and mir-206,
which were among the top 10 common miRNAs) target-
ing 787 of the 828 common paths. In particular, mir-206
shows relation with two of the top 10 common signifi-
cant paths in Table 1: Melanogenesis: TYRP1 and Aldos-
terone-regulated sodium reabsorption: KCNJ1. The
complete relation of miRNAs and their targeting nodes
and paths can be found in Supplementary Table S10.

Discussion
In this work we presented our approach to the CAMDA
2019 Hi-Res Cancer Data Integration Challenge. Our
goal was to find common functional patterns in the
three cancers at a pathway and functional level, for
which we used the pathway analysis tool Hipathia. One
of the advantages of using Hipathia with respect to other
classical pathway and functional enrichment tools is the
fact that path activity values, as well as functional activ-
ity values, are computed for each of the samples in the
study, allowing a set of a posteriori analysis based on
these features, such as the clustering or survival stratifi-
cation applied in this work. With traditional functional
enrichment methods it is not possible to classify the

Table 5 Top ten most significant miRNA, their cancer-type sign and prognosis factor according to the literature

Significant
miRNA

BRCA KIRC LUAD Function Prognosis Factor

mir-21 UP UP UP Oncogene,
Targets tumor inhibitor proteins (LZTFL1)

Promotes proliferation and metastases [31, 32],
UP: related to poor prognosis

mir-96 UP DOWN UP Oncogene, MEK/ERK signaling by targeting AKR (BRCA) Invasion, metastasis progression [33, 34], UP:
poor prognosis

mir-139 DOWN DOWN DOWN Tumor suppressor Suppress proliferation, tumor growth and
metastasis [35, 36], UP:better prognosis

mir-141 UP DOWN UP Oncogene Promotes proliferation and inhibits tumor cell
apoptosis [37, 38], UP: poor prognosis

mir-183 UP DOWN UP Oncogene Cell viability, proliferation, invasion and
metastasis [33, 39], UP: poor prognosis

mir-184 UP DOWN DOWN Suppressor gene Proliferation, invasion, apoptosis, [40]
UP: better prognosis (BRCA),
DOWN: better prognosis (KIRC)

mir-200 DOWN DOWN DOWN Suppressor gene, TRAIL pathway, VEGF and VEGFR
signaling network and epithelial-mesenchymal transition

Cancer invasion and metastasis, Level variation
may correlate with disease progression [41],
DOWN: better prognosis

mir-206 DOWN DOWN DOWN Oncogene (BRCA), Tumor suppressor (LUAD, KIRC) Cell invasion, migration, proliferation,
Prognosis depend on cancer type [42–44]

mir-210 UP UP UP Oncogene (BRCA, LUAD), Suppressor gene (KIRC) Treatment resistance (tamoxifen) [45]
UP: poor prognosis (BRCA, LUAD) and good
prognosis (KIRC)

mir-584 UP DOWN DOWN Tumor suppressor UP: better prognosis (BRCA)
DOWN: worse prognosis (KIRC) and better
prognosis (LUAD) [46, 47]
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samples by their functional activity, since we don’t have
information for individual samples, but just the enrich-
ment of the tested comparison.
On the other hand, some of the main drawbacks of

the method are the fact that it takes the gene expression
level as a proxy of the protein level, and that it does not
take into account post-transcriptional modifications
which may appear downstream and are specially relevant
in cancer [50]. However, Hipathia has shown that it is
both highly sensitive and specific, outperforming many
other pathway analysis tools [51].
Based on the results obtained at pathway level, we find

that most of the significant findings are closely related to
hormone-based signaling pathways and ion channels and
homeostasis. Ion channel dysfunctions have an import-
ant contribution to cancer hallmarks that is increasingly
becoming elucidated. Several ions can work as signaling
molecules (second messengers) for different cellular pro-
cesses such as cell cycle control, apoptosis and migration
[52, 53]. Regarding hormones, about two-thirds of all
BRCAs diagnosed are hormone dependent indicating the
crucial role they play in BRCA progression as observed
in hormone dependent BRCA molecular subtypes as lu-
minal A or luminal B [54, 55]. The influence of hor-
mones such as melatonin or growth hormone has been
reported in KIRC cancer [56, 57] and thyroid hormone
in LUAD [58].
Remarkably, we were also able to identify alternative

activation of cancer-specific paths as shown in STAT5
as exemple. Alternative activation paths are gaining rele-
vance as a potential source of cancer-specific biomarkers
as described in [59–61]. From the clinical point of view,
this knowledge could be the key to design novel strat-
egies and treatments for specific cancer types for which
our findings could be used as the basis for further
research.
Along with easily interpretable results, some signifi-

cant paths and functions that seem to be unrelated to
cancer also appeared, such as the Spermatogenesis path-
way or the function Lactation. However, a closer look to
these results shows that most of these paths share a rele-
vant number of genes with tumor related pathways, and
most of the functions are annotated to genes with tu-
moral effect. Such is the case of Spermatogenesis, which
is closely related to MAPK, AMPK and TGF-β signaling
pathways, of special relevance in tumorigenesis [62], and
function Lactation, which is annotated to STAT5A, an
important element in the development of a wide array of
cancers [63] but also a critical part in inducing lactation
in women through the ErbB pathway.
Common significant paths have proven to be also use-

ful to further classify cancer types into subgroups with a
significant difference in their survival time. These find-
ings deserve further study to discern whether the

grouping identifies different molecular subtypes or is
driven by cancer stages, but they point out the potential
of the selected paths as prognosis markers. Going one
step further to prove their prognostic potential, we also
proved that the common significant paths could be used
as inputs for machine learning models, since they return
high accuracy results in the classification of tumor ver-
sus normal samples, as well as in the classification of the
three types of cancer. To check the validity of the re-
sults, a significant effort has been realized to eliminate
possible bias related to the used model, as overfitting
[64]. The use of alternative metrics, such as the area
under the ROC curve could be useful to further assess
the possibilities of this dataset as machine learning
input.
After the selection of the significant features in the

survival analysis, it stands out an unbalanced higher
number of features related to survival in KIRC. The rea-
sons for such results would require a full new specific
analysis centered in the KIRC cancer which is out of the
scope of the current work, but which would constitute
an interesting starting point for further research.
Regarding the results found in the miRNA analysis,

the large number of genes and, therefore, paths related
to the significant miRNAs are not surprising: a single
miRNA has multiple binding sites and can target a vast
array of genes at post-transcriptional level [65]. None-
theless, specific and meaningful relations can be traced
between significant miRNAs and the genes that com-
prise the studied pathways. For instance, mir-184 binds
to the BLC2 gene, which is part of multiple pathways,
such as Apoptosis and Ras, that are closely related to
cancer, specially in LUAD and KIRC [66].

Conclusions
Despite clinical advances, cancer research through omics
data still remains a challenging field of work. Thanks to
initiatives such as the CAMDA challenges, the gap be-
tween omics sciences and clinical research closes, mak-
ing relevant datasets available for the scientific
community to freely explore and test with novel
methodologies.
In the context of the CAMDA 2019 Hi-Res Cancer

Data Integration Challenge, we analyzed pathway and
functional activity of breast, kidney and lung cancers to
identify underlying common patterns across them. We
found 828 subpathways, 912 Gene Ontology terms and
91 Uniprot keywords commonly significant to the three
studied tumors. Such features show the power to classify
tumor samples into subgroups with different survival
times, and predict tumor state and tissue of origin
through machine learning techniques. We also identified
alternative activation of pathways based on cancer type,
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which represents a fine tuning of traditional pathway ap-
proaches and could lead to therapeutic applications.

Material and methods
Data download and normalization
Data provided for the CAMDA 2019 Hi-Res Cancer
Data Integration Challenge consisting of RNA-Seq and
miRNA raw counts matrices were downloaded from the
SFTP server hosted at BOKU Vienna. Data came from 3
different cancer types: breast cancer (TCGA-BRCA pro-
ject, with 656 samples, corresponding to 589 Primary
Tumor samples and 67 Solid Tissue Normal samples),
kidney cancer (TCGA-KIRC project, with 602 samples,
corresponding to 530 Primary Tumor samples and 72
Solid Tissue Normal samples) and lung adenocarcinoma
(TCGA-LUAD project, with 574 samples, corresponding
to 515 Primary Tumor samples and 59 Solid Tissue Nor-
mal samples). RNA-Seq and miRNA data was subse-
quently normalized with TMM normalization [67] and
log transformed separately, creating six different data
matrices (one per each omics and cancer type). Survival
data was downloaded from the GDC data portal [10].

Pathway & functional level computation
The matrix of normalized gene expression was scaled
between 0 and 1, and transformed to a matrix of sub-
pathway activation values by means of the Hipathia Bio-
conductor package [11]. In Hipathia, pathways are
divided into subpathways, which represent the path link-
ing any input node with a final effector protein in the
graph, and are therefore also referred to as paths. Paths
are identified by a name including the pathway from
which they come from, and the name of the final ef-
fector protein to which signal arrives. Asterisks are used
to differentiate paths when final effector proteins are not
unique in a pathway. As an example, ErbB signaling
pathway: STAT5A and ErbB signaling pathway:
STAT5A* represent two different paths in the ErbB sig-
naling pathway ending in two different instances of node
STAT5A, see Fig. 2b. The methodology computes a
value representing the activity of each of the analyzed
paths from the gene expression data by means of a two-
step algorithm: firstly, an expression score is computed
for each node based on their containing genes, and sec-
ondly, the value of the signal passing through the path
until the last node is inferred depending on the topology
of the path. Hipathia uses the pathway information from
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[68] as layout for the topology of the pathways. The pro-
cedure is applied to each analyzed path for each sample
separately, transforming the matrix of gene expression
values into a matrix of path activity values. From this
new matrix, the matrices of functional activities corre-
sponding to Gene Ontology functions and Uniprot

keywords were computed with Hipathia, taking into ac-
count the different pathways related to each one of the
functions. A total of 1868 paths (from 146 KEGG signal-
ing pathways), 1654 Gene Ontology functions and 142
Uniprot Keywords were analyzed.

Tumor vs. normal tissue comparisons
For each cancer type, a comparison between the gene,
miRNA, path and functional activation levels of the Solid
Tissue Normal and Primary Tumor classes was per-
formed with the lmFit and eBayes functions from the
limma package [69]. The FDR [70] correction method
was used to adjust the multiple testing effects on the p-
values, and a cutoff of alpha = 0.05 was established to de-
termine statistical significance. Heatmaps with the fea-
tures with a significant p-value and an absolute value of
the logarithm of the Fold Change (logFC) greater than
0.3 were plotted, allowing a non-supervised clustering
method (hclust function, “complete” method) to estab-
lish the order for the rows and columns by similarity.
An UpSet plot [71] representing the intersections of the
significant paths or functions in each cancer was created
with package UpSetR [72].

Common features
Common results at a path, function and miRNA level
were established by selecting the features with statistical
significance in the tumor vs. normal tissue comparisons
in all three cancers. Features presenting also a common
sign of the logFC in all three cancers were categorized as
unidirectional (changes are always in the same direction:
up or down activated), and those with a different sign of
the logFC as bidirectional. Since we analyzed three can-
cers, common bidirectional features always include two
cancers with the same logFC and one cancer which dif-
fers from them. Therefore, we can identify these groups
by the sign and cancer from the one which differs. As an
example, KIRC UP will denote the group of features
which are up-activated in KIRC but down-activated in
both BRCA and LUAD.

Subtype classification
The matrices of the path, GO terms and Uniprot key-
words values were filtered by the features selected as
common as described above, and subsequently normal-
ized by rows between 0 and 1. Each matrix was clustered
using the hclust function and 1 - the correlation between
samples divided by 2 as distance. The resulting cluster-
ing was cut with cutree to create subclusters. The sur-
vival of the donors in the groups resulting from this
partition were analyzed with the function survdiff from
the survival R package [73], which returns a Chi-squared
statistic which is used to calculate a p-value. A signifi-
cance cutoff of 0.05 is established. Kaplan - Meier curves

Romera-Giner et al. Biology Direct            (2021) 16:9 Page 11 of 16



[74] were plotted to visualize survival differences among
the defined groups.

Tissue and subtype prediction
A standard machine learning pipeline was followed in
order to analyze the predictive capability of the data
under a classification model. This pipeline comprises the
following three steps: Exploratory Data Analysis (EDA),
classification algorithm selection and model building
and testing. The EDA was done through R to explore
value distribution and correlation among variables, pro-
portion of samples belonging to each analysed group
and group-based sample distribution related to Principal
Component Analysis (PCA) results [75] using R pack-
ages ellipse, ggplot2 [76], mixOmics [77], reshape2 [78]
and RcolorBrewer. For the selection of a suiting classifi-
cation algorithm, Python packages pandas [79], numpy,
[80], matplotlib [81] and sci-kit learn [82] were
imported. The process of selection was based on using
the previously scaled variable matrix (X) and the vector
with each sample corresponding group label (y) as a
basis for a K-fold cross validation [83] involving an as-
sortment of pre-selected classification algorithms. The
final verdict comes from averaging the resulting accur-
acy of each model and assessing its standard deviation:
the models with higher accuracy and lower standard de-
viation will be favoured. The models used were provided
by sci-kit learn package, comprising classification algo-
rithms of varying complexity and able to work in scenar-
ios were there are more than two classification groups:
Decision Tree Classifiers [84], Gaussian Naive Bayes
[85], K-Nearest-Neighbors Classifier [30], K-Means
Clustering [86] and Random Forest Classifier [87]. Fi-
nally, once an algorithm is selected, a standalone model
is made, using again sci-kit learn Python package. To as-
sess this model utility, we approach a classical data split
into train, test and validation, with a distribution of 60%
data train, 20% to test and 20% to validation.

Survival-related pathways and functions
For each analyzed feature, samples were divided into
three groups: 20% of most activated samples, 20% of
lowest activated samples and the 60% of remaining sam-
ples. An analysis including function survdiff from the
survival R package [73] was performed on each feature,
which returns a Chi-squared statistic which is used to
calculate a p-value. The FDR method [70] is used as
above to correct for multiple testing effects. Kaplan -
Meier curves [74] were plotted to visualize survival dif-
ferences among the defined groups. Pairwise common
survival-related features were established by selecting
those with a significant p-value in two different cancers
at the same time. UpSet plots [71] representing the

number of overlapping survival-related pathways or
functions were created with package UpSetR [72].
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Additional file 1: Figure SF1. Graphical analysis of the common GO
terms across the three cancers. Description: A: Upset plot representing
the number of coincident significant GO terms between cancers. For
each cancer type, two groups have been created: the group of the up-
activated GO terms (denoted by UP), and the group of the down-
activated GO terms (denoted by DOWN). Therefore, the same GO can not
be at the same time in the same cancer’s UP and DOWN groups. Red
and blue horizontal bars represent the number of significant GOs in each
group. Each vertical bar in the plot represents the intersection of the
groups in the inferior rows with a solid point, and the exclusion of the
groups in the inferior rows with a shaded point. An orange box sur-
rounds the part of the UpSet plot representing the GO terms which are
significant in all three cancers. The blue and red vertical bars represent
the GOs which are simultaneously down- and up-regulated in the three
cancers, respectively. B: Heatmaps of the significantly common GO terms
values, represented inside the orange box of the UpSet plot above. Sam-
ples and rows were ordered following the results of a hierarchical cluster-
ization. Tumor samples are colored in blue while normal tissue samples
are colored in light blue. In the heatmap, higher activation values are col-
ored in red and lower activation values in blue. Left: BRCA cancer data.
Center: KIRC cancer data. Right: LUAD cancer data.

Additional file 2: Figure SF2. Graphical analysis of the common
Uniprot functions across the three cancers. Description: A: Upset plot
representing the number of coincident significant Uniprot Keywords
between cancers. For each cancer type, two groups have been created:
the group of the up-activated Uniprot Keywords (denoted by UP), and
the group of the down-activated Uniprot Keywords (denoted by DOWN).
Therefore, the same GO can not be at the same time in the same can-
cer’s UP and DOWN groups. Red and blue horizontal bars represent the
number of significant GOs in each group. Each vertical bar in the plot
represents the intersection of the groups in the inferior rows with a solid
point, and the exclusion of the groups in the inferior rows with a shaded
point. An orange box surrounds the part of the UpSet plot representing
the Uniprot Keywords which are significant in all three cancers. The blue
and red vertical bars represent the GOs which are simultaneously down-
and up-regulated in the three cancers, respectively. B: Heatmaps of the
significantly common Uniprot Keywords values, represented inside the or-
ange box of the UpSet plot above. Samples and rows were ordered fol-
lowing the results of a hierarchical clusterization. Tumor samples are
colored in blue while normal tissue samples are colored in light blue. In
the heatmap, higher activation values are colored in red and lower acti-
vation values in blue. Left: BRCA cancer data. Center: KIRC cancer data.
Right: LUAD cancer data.

Additional file 3: Figure SF3. Alternative path activation related to
AMPK signaling pathway: CCNA2. Description: A) Boxplots representing
the distribution of the activity values for the AMPK signaling pathway:
CCNA2 path (top) and the Uniprot keyword Mitosis (bottom). Expression
values are grouped by tissue type (tumor or normal) and cancer. B) Up
and down regulation of genes in the AMPK signaling pathway: CCNA2
path in BRCA (top), LUAD (center) and KIRC (bottom). Blue nodes
correspond to significant down-regulated genes, red nodes correspond
to significant up-regulated genes and white nodes correspond to non-
significant nodes. Red lines are depicted because the whole activity of
the pathway is significantly up-activated after a statistical analysis.

Additional file 4: Figure SF4. Heatmaps of function activation for the
three cancers. Description: Heatmaps of function activations for the three
cancers. Samples and functions were ordered following the results of a
non-supervised hierarchical clusterization. Top row corresponds to Gene
Ontology functions and bottom row to Uniprot keywords. Each column
represents a cancer, from left to right: breast, kidney and lung cancers.
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Additional file 5: Figure SF5. Survival analysis of cancer subtypes
resulting from clustering by GO terms values. Description: A: Clustering of
the tumor samples from BRCA, KIRC and LUAD based on the values of
the GO terms which resulted significant in the comparison between
healthy and tumor tissues in all three cancer types, colored by their
tissue of origin (Tissue) and the subcluster in which they have been
stratified. B: Kaplan-Meier curves of the subgroups created in each cancer,
with the p-value of the survival analysis performed at the bottom. Curve
colors are not matched with the subcluster colors but defined to be eas-
ily differentiated. Figure SF6. Survival analysis of cancer subtypes result-
ing from clustering by Uniprot function values. Description: A: Clustering
of the tumor samples from BRCA, KIRC and LUAD based on the values of
the Uniprot keywords which resulted significant in the comparison be-
tween healthy and tumor tissues in all three cancer types, colored by
their tissue of origin (Tissue) and the subcluster in which they have been
stratified. B: Kaplan-Meier curves of the subgroups created in each cancer,
with the p-value of the survival analysis performed at the bottom. Curve
colors are not matched with the subcluster colors but defined to be eas-
ily differentiated. Figure SF7. Specific functions per cancer and survival
related to AMPK signaling pathway: CCNA2. Description: A) UpSet plot in-
dicating the number of paths in the pairwise intersections among the
three analyzed cancers, and the (null) intersection of the three of them.
C) Kaplan-Meier curves for the three groups of activation intensity de-
fined by path AMPK signaling pathway: CCNA2 in KIRC (top) and LUAD
(bottom). Blue lines correspond to the 20% of samples with lowest activ-
ity values, red lines correspond to the 20% of samples with highest activ-
ity values of this pathway and orange lines correspond to the remaining
60% of samples.

Additional file 6: Table S1. Results table for the comparison of normal
versus tumor tissue of path values. Description: Rows represent the
features analyzed. Columns: feature is the Hipathia identifier, name is the
human readable name, common is a boolean indicating whether the
feature is significant in all three cancers, type indicates whether the
feature is unidirectional, bidirectional or not common, subtype classifies
common features into 8 subgroups (unidirectional can be ALL UP or ALL
DOWN, indicating whether the feature has positive or negative statistic in
all three cancers, respectively, and bidirectional are represented by the
cancer that differs from the other two, so that KIRC UP represent the
group of features which a positive statistic in KIRC and negative one in
BRCA and LUAD), combined. PV is the sum of the negative logarithms in
base 10 of the comparison p-values in the three cancers, sign.[cancer] is
the direction of the change in cancer [cancer], stat.[cancer] is the statistic
of the comparison in cancer [cancer] and adj. PV.[cancer] is the FDR
adjusted p-value of the comparison in cancer [cancer].

Additional file 7: Table S2. Results table for the comparison of normal
versus tumor tissue of Gene Ontology (GO) term values. Description:
Rows represent the features analyzed. Columns: feature is the GO
identifier, common is a boolean indicating whether the feature is
significant in all three cancers, type indicates whether the feature is
unidirectional, bidirectional or not common, subtype classifies common
features into 8 subgroups (unidirectional can be ALL UP or ALL DOWN,
indicating whether the feature has positive or negative statistic in all
three cancers, respectively, and bidirectional are represented by the
cancer that differs from the other two, so that KIRC UP represent the
group of features which a positive statistic in KIRC and negative one in
BRCA and LUAD), combined. PV is the sum of the negative logarithms in
base 10 of the comparison p-values in the three cancers, sign.[cancer] is
the direction of the change in cancer [cancer], stat.[cancer] is the statistic
of the comparison in cancer [cancer] and adj. PV.[cancer] is the FDR
adjusted p-value of the comparison in cancer [cancer].

Additional file 8: Table S3. Results table for the comparison of normal
versus tumor tissue of Uniprot keyword values. Description: Rows
represent the features analyzed. Columns: feature is the Uniprot identifier,
common is a boolean indicating whether the feature is significant in all
three cancers, type indicates whether the feature is unidirectional,
bidirectional or not common, subtype classifies common features into 8
subgroups (unidirectional can be ALL UP or ALL DOWN, indicating
whether the feature has positive or negative statistic in all three cancers,
respectively, and bidirectional are represented by the cancer that differs

from the other two, so that KIRC UP represent the group of features
which a positive statistic in KIRC and negative one in BRCA and LUAD),
combined. PV is the sum of the negative logarithms in base 10 of the
comparison p-values in the three cancers, sign.[cancer] is the direction of
the change in cancer [cancer], stat.[cancer] is the statistic of the compari-
son in cancer [cancer] and adj. PV.[cancer] is the FDR adjusted p-value of
the comparison in cancer [cancer].

Additional file 9: Table S4. Metrics results from the algorithm
comparison through K-Fold Cross-Validation to classify tumor and healthy
tissue. Description: The comparison has been made by cancer type
(BRCA, LUAD, KIRC), taking in account either all significant paths or only
the top ten most significant ones. The algorithms used were K-Nearest-
Neighbor (KNN), Decision Tree (CART), Naive-Bayes Classificator (NB), K-
Means clustering (KMN) and Random Forest (RF). The metrics analysed
take account of the mean Accuracy of the model testing across all the
possible training and test combinations data splits resulting from the K-
Fold Cross-Validation, along with its associated Standard Deviation.

Additional file 10: Table S5. Metrics results from the algorithm
comparison through K-Fold Cross-Validation to classify three types of tu-
mors. Description: The comparison has been made by grouping the
tumor samples of the three types of cancer (BRCA, LUAD, KIRC), taking in
account either all significant paths or only the top ten most significant
ones. The algorithms used were K-Nearest-Neighbor (KNN), Decision Tree
(CART), Naive-Bayes Classificator (NB), K-Means clustering (KMN) and Ran-
dom Forest (RF). The metrics analysed take account of the mean Accur-
acy of the model testing across all the possible training and test
combinations data splits resulting from the K-Fold Cross-Validation, along
with its associated Standard Deviation.

Additional file 11: Table S6. Results table for the survival analysis of
path values. Description: Rows represent the features analyzed. Columns:
feature is the Hipathia path identifier, combined. PV is the sum of the
negative logarithms in base 10 of the survival p-values in the three
cancers, PV.[cancer] is the raw p-value of the survival analysis in cancer
[cancer] and adj. PV.[cancer] is the FDR adjusted p-value of the survival
analysis in cancer [cancer].

Additional file 12: Table S7. Results table for the survival analysis of
GO term values. Description: Rows represent the features analyzed.
Columns: feature is the GO identifier, combined. PV is the sum of the
negative logarithms in base 10 of the survival p-values in the three
cancers, PV.[cancer] is the raw p-value of the survival analysis in cancer
[cancer] and adj. PV.[cancer] is the FDR adjusted p-value of the survival
analysis in cancer [cancer].

Additional file 13: Table S8. Results table for the survival analysis of
Uniprot keyword values. Description: Rows represent the features
analyzed. Columns: feature is the Uniprot identifier, combined. PV is the
sum of the negative logarithms in base 10 of the survival p-values in the
three cancers, PV.[cancer] is the raw p-value of the survival analysis in
cancer [cancer] and adj. PV.[cancer] is the FDR adjusted p-value of the
survival analysis in cancer [cancer].

Additional file 14: Table S9. esults table for the comparison of normal
versus tumor tissue of miRNA values. Description: Rows represent the
features analyzed. Columns: feature is the miRNA identifier, common is a
boolean indicating whether the feature is significant in all three cancers,
type indicates whether the feature is unidirectional, bidirectional or not
common, subtype classifies common features into 8 subgroups
(unidirectional can be ALL UP or ALL DOWN, indicating whether the
feature has positive or negative statistic in all three cancers, respectively,
and bidirectional are represented by the cancer that differs from the
other two, so that KIRC UP represent the group of features which a
positive statistic in KIRC and negative one in BRCA and LUAD), combined.
PV is the sum of the negative logarithms in base 10 of the comparison p-
values in the three cancers, sign.[cancer] is the direction of the change in
cancer [cancer], stat.[cancer] is the statistic of the comparison in cancer
[cancer] and adj. PV.[cancer] is the FDR adjusted p-value of the
comparison in cancer [cancer].

Additional file 15: Table S10. Table of miRNA, gene and path relations.
Description: Rows represent relations. Columns include: miRNA, the name
of the miRNA, gene, the gene targeted by the miRNA, node, Hipathia
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code of the node including the gene, node.label, readable name of the
node, path, Hipathia name of the path including the node, path.label,
readable name of the path including the node, pathway, KEGG pathway
code including the path, and pathway.label, name of the KEGG pathway
including the path.
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