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Abstract

Background: Drug-induced liver injury (DILI) is a serious concern during drug development and the treatment of
human disease. The ability to accurately predict DILI risk could yield significant improvements in drug attrition rates
during drug development, in drug withdrawal rates, and in treatment outcomes. In this paper, we outline our
approach to predicting DILI risk using gene-expression data from Build 02 of the Connectivity Map (CMap) as part
of the 2018 Critical Assessment of Massive Data Analysis CMap Drug Safety Challenge.

Results: First, we used seven classification algorithms independently to predict DILI based on gene-expression
values for two cell lines. Similar to what other challenge participants observed, none of these algorithms predicted
liver injury on a consistent basis with high accuracy. In an attempt to improve accuracy, we aggregated predictions
for six of the algorithms (excluding one that had performed exceptionally poorly) using a soft-voting method. This
approach also failed to generalize well to the test set. We investigated alternative approaches—including a multi-
sample normalization method, dimensionality-reduction techniques, a class-weighting scheme, and expanding the
number of hyperparameter combinations used as inputs to the soft-voting method. We met limited success with
each of these solutions.

Conclusions: We conclude that alternative methods and/or datasets will be necessary to effectively predict DILI in

patients based on RNA expression levels in cell lines.

Reviewers: This article was reviewed by Pawet P Labaj and Aleksandra Gruca (both nominated by David P Kreil).
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Background

Drug-induced liver injury (DILI) is a serious concern
during both drug development and the treatment of
human disease. DILI is characterized by elevated levels
of alanine aminotransferase; in serious cases, it can ul-
timately result in acute liver failure and patient death
[1]. Reactive drug metabolites may play a role in initiat-
ing DILI [1]. Drug hepatotoxicity plays an important role
in risk-benefit assessment during drug development, but
the ability to accurately predict the risk of DILI for a
new drug has evaded investigators [2]. Historically,
nearly one third of drug withdrawals may have been
related to hepatotoxicity [3]. The ability to accurately
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predict DILI risk could yield considerable reductions in
drug-attrition and drug-withdrawal rates as well as
improved treatment outcomes [4].

The 2018 Critical Assessment of Massive Data Analysis
(CAMDA) Connectivity Map (CMap) Drug Safety Chal-
lenge was held in conjunction with the Intelligent Systems
for Molecular Biology conference in Chicago, Illinois. The
challenge organizers instructed participants to train pre-
dictive models on gene-expression data from Build 02 of
CMap [5]. CMap was created to facilitate the discovery of
connections among drugs, genes, and human diseases [6].
CMap contains gene-expression profiles from cell lines
that were systematically exposed to a range of bioactive
small molecules [5]. For the CAMDA challenge, the class
labels were binary values indicating whether treatment
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with a given drug was associated with liver injury in cell-
based screens for the following cell lines: MCF7 (breast
cancer) and PC3 (prostate cancer). Per the terms of the
CAMDA challenge, we used data for 190 small molecules
(of the 1309 total small molecules available in CMap)
during model training and 86 additional small molecules
for model testing. During Phase I of the challenge, the
organizers asked each team to submit DILI predictions for
the test set. Later the class labels were revealed to the
challenge participants to enable follow-up analyses in
Phase IL

In Phase I, we evaluated seven classification algorithms
on the training data (Fig. 1). In addition, we used a soft-
voting classifier, which combined the outputs of the indi-
vidual classifiers. This technique often outperforms individ-
ual classifiers that are used as input to a voting ensemble
[7]. Generally, voting-based approaches are most effective
when they incorporate individual classifiers that perform
reasonably well in isolation and when the component clas-
sifiers use diverse methodological approaches and thus are
more likely to have deficiencies in different areas of the
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input space, often allowing for improved performance in
aggregate [8, 9]. We hoped that this would hold true for
predicting DILI in this study because the individual algo-
rithms that we used represent diverse methodological
approaches.

After submitting our predictions to the challenge orga-
nizers, we learned that our predictions performed worse
than random-chance expectations. Thus, during the sec-
ond phase of the challenge, we explored various options
for improving classification accuracy, including different
preprocessing methods, feature-selection and feature-
transformation approaches, class weighting, and multiple
hyperparameter combinations (Fig. 1).

Results

Phase |

During Phase I, we used cross validation to evaluate seven
classification algorithms, multiple hyperparameter combi-
nations for each of these algorithms, and a voting-based
classifier that aggregated these individual classifiers. Table 1
summarizes the hyperparameter values used in our final
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Fig. 1 Workflow diagram illustrating analysis approach. In Phase |, we used a single-sample normalization method and gene-level summarization to
preprocess the data. Via cross validation on the training set, we evaluated 7 classification algorithms and a soft-voting based ensemble classifier. After
receiving class labels for the test set, we performed additional analyses in Phase Il. These included using a multi-sample normalization method, batch-
effect correction, feature scaling, feature selection, and dimensionality reduction. We also evaluated “hard” voting (treating individual predictions as
discrete values), “scaled” voting (using predictions for multiple hyperparameter combinations as input to the voting classifiers), and class weighting
(assigning a higher or lower weight to each class label). GBM = Gradient Boosting Machines; LR = Logjistic Regression; KNN = K-nearest Neighbors; RF =
Random Forests; MLP = Multilayer Perceptron; SVM = Support Vector Machines; GNB = Gaussian Naive Bayes
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Classification algorithm

scikit-learn implementation

Parameters selected after optimization

Multilayer Perceptron

Gradient Boosting

K-nearest Neighbor

Logistic Regression

Gaussian Naive Bayes

Random Forest

sklearn.neural_network. MLPClassifier

sklearn.ensemble. GradientBoostingClassifier

sklearn.neighbors.KNeighborsClassifier

sklearn.linear_model.LogisticRegression

sklearn.naive_bayes.GaussianNB

sklearn.ensemble. RandomForestClassifier

activation = relu’

alpha =0.0001
batch_size = ‘auto’
beta_1=09
beta_2 =0.999

early_stopping = False
epsilon = 1e-08
hidden_layer_sizes = (30,30,30,30,30,30,30,30,30,30)
learning_rate = ‘constant’
learning_rate_init =0.0376
max_iter =200

momentum = 0.9
nesterovs_momentum = True
power_t=0.5

random_state = None

shuffle =True

solver =‘adam’

tol=0.0001
validation_fraction =0.1
warm_start = False

criterion = ‘friedman_mse’
init=None

learning_rate =0.31

loss = 'deviance

max_depth =3
max_features = None
max_leaf_nodes = None
min_impurity_decrease = 0.0
min_impurity_split = None
min_samples_leaf =1
min_samples_split=2
min_weight_fraction_leaf = 0.0
n_estimators = 100

presort = ‘auto’

subsample =1.0

warm_start = False

algorithm ="auto’
leaf_size =30

metric = ‘minkowski’
metric_params = None
n_neighbors =8
p=2

weights = ‘distance’
C=10

class_weight = None
dual = False
fit_intercept = True
intercept_scaling =1
max_iter=100
multi_class = ‘ovr’
penalty =12/

solver =‘Ibfgs’

tol =0.0001
warm_start = False

priors = None

bootstrap = False
class_weight = None

criterion =‘gini’
max_depth=9
min_samples_split =2
min_samples_leaf =1
min_weight_fraction_leaf = 0.0
max_features = 'auto’
max_leaf_nodes =25
min_impurity_decrease = 0.0
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Table 1 Summary of classification algorithms evaluated on the training set (Continued)

Classification algorithm scikit-learn implementation

Parameters selected after optimization

Support Vector Machines sklearn.svm. SVC

Voting-based Ensemble sklearn.ensemble. VotingClassifier

min_impurity_split = None
n_estimators = 25
oob_score = False
warm_start = False

C=10

class_weight = None
coef0=0.0
decision_function_shape = ‘ovr’
degree =3

gamma = ‘auto’
kernel = rbf’
max_iter=—1
probability = False
shrinking = True

tol =0.001

flatten_transform = True
voting = ‘soft’
weights = "None’

In Phase |, we employed 7 classification algorithms and a voting-based method that integrated predictions from the individual classifiers. The first two columns
indicate a name for each algorithm and the scikit-learn implementation that we used for each algorithm. Using an ad hoc approach, we evaluated many
hyperparameters via cross validation on the training set and selected a hyperparameter combination for each algorithm that performed best. Non-default
parameters are bolded. Hyperparameters that do not fundamentally affect algorithm behavior—such as the number of parallel jobs—are not shown

solutions. The CAMDA challenge allowed us to submit
three solutions. Based on our cross-validation results, we
selected the following algorithms: 1) Logistic Regression, 2)
Random Forests, and 3) the soft-voting method. We trained
these algorithms on the full training set, made predictions
on the test set (before seeing the true class labels for these
samples), and then submitted our predictions to the
CAMDA challenge organizers. We chose the Logistic Re-
gression and Random Forests classifiers because they re-
sulted in relatively high MCC values (Table 2). We chose
the voting-based classifier because of its consistent per-
formance across all metrics (Table 2). Although the voting
method’s performance was slightly lower than the best indi-
vidual algorithms on the training data, we anticipated that
it would be relatively effective on the test data because it
would be robust to poor performance of individual algo-
rithms while benefiting from a diversity of predictions.
After Phase I concluded, we received a report indicating
the performance of our solutions on the test set (Fig. 2).
We also received class labels for the test set so we could
evaluate additional alternatives for optimizing predictive
performance.

In Phase I, none of our solutions produced consist-
ently accurate predictions on the test set (Fig. 2). Accur-
acy for the voting-based classifier increased relative to
its performance on the training dataset, but it was well
below baseline accuracy (predicting the majority class by
default). Our classifiers appeared to be unable to effect-
ively account for the imbalance between hepatotoxic and
non-hepatotoxic drugs in the CMap dataset. Our classi-
fiers tended to predict hepatotoxic vs. non-hepatotoxic
outcomes in proportions that reflected the training data-
set. However, the test set included fewer molecules that

were hepatotoxic than the training set; thus our models
predicted hepatotoxic outcomes too frequently. This is
reflected in the performance metrics for the test dataset,
in which our models achieved increased sensitivity but
decreased specificity (Fig. 3b-c).

Phase Il
In addition to providing class labels for the test set, the
CAMDA organizers provided us with suggestions from
reviewers. These suggestions gave us ideas for improving
classification performance, which we evaluated in Phase
II. Because we did not have an additional, independent
dataset, our Phase II evaluations were only exploratory
in nature. We explored four types of techniques for
improving performance: a multi-sample normalization
method and batch correction, feature scaling/selection/
reduction techniques, custom class weights, and scaling
of the voting-based ensemble method. To quantify the
effects of these alternative approaches, we compared the
performance of our classifiers with and without each
change, averaged across all classification algorithms—
with the exception of adjusting the class weights, which
was only possible for a subset of the algorithms (see
Methods). Figure 3 illustrates the effects of these changes.
In Phase I, we preprocessed the microarray array using
the SCAN algorithm, a single-sample normalization method.
We hypothesized that preprocessing the data using the
FARMS algorithm (a multi-sample normalization method)
would result in improved performance by reducing technical
variability across the samples via quantile normalization. In
addition, because the CMap data had been processed in
many batches, we hypothesized that correcting for batch
effects using the ComBat algorithm would increase
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Table 2 Phase | cross-validation results

Accuracy Sensitivity Specificity MCC

PC3 MCF7 PC3 MCF7 PC3 MCF7 PC3 MCF7
Multilayer Perceptron 063 0.65 0.69 0.69 032 0.35 0.01 0.03
Gradient Boosting 067 0.60 0.69 0.67 039 027 0.04 -0.05
K-nearest Neighbor 0.68 0.64 0.70 0.72 0.50 041 0.11 0.12
Logistic Regression 0.70 0.62 0.72 0.68 0.57 027 0.20 -0.04
Gaussian Naive Bayes 035 035 0.71 0.73 0.32 0.32 0.02 0.03
Random Forest 0.66 0.70 0.69 072 033 0.54 0.01 0.19
Support Vector Machines 0.68 0.68 1.00 1.00 - - - -
Voting-based Ensemble 0.68 0.67 0.69 0.69 044 033 0.06 0.01

These results indicate how each classification algorithm performed on the training set after hyperparameter tuning. Overall, the Logistic Regression and Random
Forests algorithms performed best,thus we selected these for submission to the challenge. The voting-based ensemble never outperformed all the individual
algorithms, yet it never performed worse than all the individual algorithms. Thus we also constructed a submission for the challenge based on this classifier. PC3
and MCF7 are names of prostate- and breast-cancer cell lines, respectively. Bolded values indicate relative strong performance for the three algorithms we
selected in Phase I. MCC = Matthews Correlation Coefficient. We were unable to calculate specificity or MCC for the Support Vector Machines algorithm because it

predicted all cell lines to have the same class label

classification performance. In some cases, these changes im-
proved predictive performance slightly, whereas in other
cases the performance was reduced, irrespective of whether
we used SCAN, FARMS, and/or batch adjustment (Fig. 3a).

Although microarray normalization methods help to
remove technical biases and multi-sample corrections
can remove inter-sample variations, some classification
algorithms assume that each feature has been scaled to
have the same mean and standard deviation. Accord-
ingly, in Phase II, we used scikit-learn’s RobustScaler
functionality to scale the expression data for each gene;
this method also adjusts for any outliers that may exist.
Secondly, we reduced the feature space via feature selec-
tion (using the ANOVA F-value) and dimensionality
reduction (using Principal Component Analysis). These
adjustments did not improve performance consistently
(Fig. 3b).

In an attempt to mitigate the effects of class imbalance,
we adjusted weights assigned to the class labels. By default,
classification algorithms in scikit-learn place an equal
weight on each class label, but many algorithms provide an
option to adjust these weights. We attempted many differ-
ent weight ratios, even placing 50 times more weight on the
minority class than the majority class. These adjustments
often improved sensitivity or specificity, but none of these
changes resulted in a higher MCC value (Fig. 3c).

Finally, we made various attempts at improving the
voting-based classifier. We used hard voting rather than
soft voting. With this approach, the predictions for the
individual classifiers are treated as discrete rather than
probabilistic values, which may improve ensemble pre-
dictions in situations where probabilistic predictions are
poorly calibrated. In addition, we increased the number
of individual classifiers used for voting. We retained the
same classification algorithms, but we included predic-
tions for multiple hyperparameter combinations per

algorithm. We suspected that a larger and more diverse
set of predictions would improve voting performance.
None of these approaches resulted in consistent improve-
ments for any of the metrics except specificity (Fig. 3d);
these were counterbalanced by decreases in the other
metrics.

Discussion

Our goal was to make progress toward accurately pre-
dicting DILI based on gene-expression profiles of cell
lines. The ability to predict these outcomes could reduce
patient injury, lower costs associated with drug develop-
ment, and optimize treatment selection. As a step
toward these objectives, we analyzed gene-expression
levels from cancer cell lines that had been treated with
small molecules; we used machine-learning classification
to predict DILI. Our study design relied on the assump-
tion that drugs causing liver injury induce transcriptional
changes that are common across many or all of these
drugs and that these transcriptional changes might also
occur in liver tissue in vivo.

In Phase I, we employed seven classification algorithms as
well as a soft-voting ensemble classifier that aggregated pre-
dictions from six of the seven individual algorithms. On the
training data, we observed relatively high performance for
the Random Forests and Logistic Regression algorithms,
which coincides to an extent with prior findings [10]. How-
ever, when applied to the test set, neither algorithm consist-
ently produced predictions that exceed what can be attained
by defaulting to the majority class. The soft-voting approach
yielded better performance than the individual algorithms at
times, but this pattern was inconsistent. Voting-based ap-
proaches often outperform single-classifier approaches be-
cause they combine diverse algorithmic techniques—where
one algorithm fails, other(s) may succeed. However, they rely
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random-chance expectations, but it was always worse on the test set

Fig. 2 Phase | training and test results of our three submitted classifiers. Using the training data, we evaluated and attempted to optimize 7
classification algorithms as well as a soft-voting based classifier. Based on this analysis, we selected three approaches: soft voting (Ensemble), a
Logistic Regression classifier (logReg), and a Random Forests classifier (RF). After evaluating these predictions, the CAMDA Challenge organizers
provided class labels for the test set. These graphs illustrate the performance of the classifiers on the training and test sets during Phase I. a In
some cases, the classifiers outperformed baseline accuracy (red lines), which reflect the predictive performance when classifying all cell lines as
the majority class. However, the classifiers performed only marginally better—and sometimes worse—than the baseline. b-c Sensitivity increased
and specificity decreased for the test-set predictions relative to the training-set predictions; this reflects different levels of class imbalance
between the training and test sets. d On the training set, the Matthews Correlation Coefficient (MCC) was sometimes better than expected under
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on a diverse range of inputs; using algorithms from a narrow
range of methodologies will generally be less performant.
We emphasize the importance of considering multiple,
diverse performance metrics when evaluating classification
results. Even though our classification algorithms some-
times attained higher levels of accuracy on the test set
than the training set (Fig. 2a), these improvements were
likely a consequence of different levels of class imbalance
between the training and test sets—a higher proportion of
drug compounds induced liver injury in the training sam-
ples than in the test samples. Our classifiers were prone to
over-predicting liver injury. Although accuracy and sensi-
tivity typically benefitted from this bias, specificity typic-
ally offset these gains when considered in the broader
context. Accordingly, we believe that the degree of class

imbalance was a key reason that our methods underper-
formed. To address this limitation in Phase II, we assigned
higher weights to the minority class, thus potentially help-
ing to account for class imbalance. Even though this ap-
proach rests on a solid theoretical foundation [11], it
resulted in minimal, if any, improvements in overall
performance.

Additionally, we attempted to improve classification
performance using a multi-sample normalization method,
adjusting for batch effects, scaling features, selecting fea-
tures, reducing data dimensionality, and using multiple
hyperparameter combinations as input to the voting-
based classifier. Although these techniques might have
resulted in improvements in other classification scenarios,
they resulted in minimal improvements, if any, in
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Accuracy | Sensitivity | Specificity | MCC

Single-sample normalization

+ batch correction 0.033 0.060 -0.059 0.014

Multi-sample normalization +

. 0.005 0.032 -0.089 -0.077
batch correction

Accuracy | Sensitivity | Specificity | MCC

Feature scaling -0.004 -0.008 0.010 -0.005
Feature selection -0.016 -0.033 0.043 0.017
Dimensionality reduction 0.013 0.024 -0.026 -0.019

Accuracy | Sensitivity | Specificity | MCC

1:2 0.081 0.142 -0.132 -0.075
Balanced -0.007 -0.012 0.010 -0.018
2:1 0.052 0.090 -0.079 -0.066
5:1 0.042 0.078 -0.086 -0.068
10:1 -0.029 -0.039 0.007 -0.124
25:1 -0.054 -0.086 0.059 -0.122
50:1 -0.068 -0.114 0.092 -0.104

Accuracy | Sensitivity | Specificity | MCC

Hard voting -0.035 -0.060 0.053 -0.038
Scaled soft voting -0.029 -0.082 0.158 0.056
Scaled hard voting -0.047 -0.090 0.105 -0.0M1

Fig. 3 Relative gain (or loss) in classification performance after Phase Il optimizations, relative to Phase I. In Phase I, we implemented 4 types of
changes to our classification approach in an attempt to improve performance relative to Phase I. For each type of adjustment, the numbers in
this figure represent average differences across all relevant classification algorithms. (The class_weight hyperparameter only applies to some
classification algorithms; we calculated averages only for the algorithms that supported it). Green indicates relatively high performance compared
to Phase | on the test set; purple indicates lower performance. a Performance metrics for data that had been normalized using either the SCAN
or FARMS algorithm after batch adjustment with Combat. b Performance metrics after each variable had been scaled, after feature selection, or
after dimensionality reduction. ¢ Performance metrics after altering weights assigned to each class label. Numbers indicate weights assigned to
the non-DILI vs. DILI class labels. d Performance metrics for variations on the voting-based ensemble approach. The hard-voting approach
combined binarized predictions across the algorithms, whereas soft voting used probabilistic predictions. The scaled methods combined
predictions from default and non-default hyperparameter combinations for each algorithm

predictive ability in our analysis. The batch-effect cor- [13] can be used in situations where batch labels are
rection method that we used (ComBat) requires the unknown or more generally to detect hidden variation.
researcher to assign batch labels to each biological Indeed, hidden factors—perhaps due to treatment
sample. Alternative tools such as PEER [12] and SVA  duration and physiological complexity—-may have
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confounded this study. DILI was determined based on
a meta-analysis of patient data, whereas our predic-
tions were derived from treatments administered to
cell lines over the course of only a few hours or days.

Conclusions

The original goal of this CAMDA challenge was to pre-
dict hepatic injury from mRNA expression profiles. Our
findings suggest that some or all of the following factors
may explain our limited success in predicting these out-
comes: 1) gene-expression microarray measurements are
often noisy, 2) mRNA expression levels in cell lines may
be inadequate surrogates for in vivo responses in this
setting, 3) larger datasets may be needed, and 4) more
sophisticated analytic techniques may be needed.

Methods

Data preprocessing

The training set was a subset of CMap consisting of gene-
expression data and known DILI status for 190 small mole-
cules (130 of which had been found to cause DILI in
patients). The test set consisted of an additional 86 small
molecules. The CMap gene-expression data were generated
using Affymetrix gene-expression microarrays. In Phase I,
we used the Single Channel Array Normalization (SCAN)
algorithm [14]—a single-sample normalization method—to
process the individual CEL files (raw data), which we down-
loaded from the CMap website (https://portals.broadinsti
tute.org/cmap/). As part of the normalization process, we
used BrainArray annotations to discard faulty probes and
to summarize the values at the gene level (using Entrez
Gene identifiers) [15]. We wrote custom Python scripts
(https://python.org) to summarize the data and execute
analytical steps. The scripts we used to normalize and pre-
pare the data can be found here: https://osf.io/v3qyg/.

For each treatment on each cell line, CMap provides
gene-expression data for multiple biological replicates of
vehicle-treated cells. For simplicity, we averaged gene-
expression values across the multiple vehicle files. We
then subtracted these values from the corresponding
gene expression values for the compounds of interest.
Finally, we merged the vehicle-adjusted data into separ-
ate files for MCF7 and PC3, respectively.

The SCAN algorithm is designed for precision-medicine
workflows in which biological samples may arrive serially
and thus may need to be processed one sample at a time
[14]. This approach provides logistical advantages and en-
sures that the data distribution of each sample is similar,
but it does not attempt to adjust for systematic differences
that may be observed across samples. Therefore, during
Phase II, we generated an alternative version of the data,
which we normalized using the FARMS algorithm [16]—a
multi-sample normalization method. This enabled us to
evaluate whether the single-sample nature of the SCAN
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algorithm may have negatively affected classification ac-
curacy in Phase I. Irrespective of normalization method, it
is possible that batch effects can bias a machine-learning
analysis. Indeed, the CMap data were processed in many
batches. Therefore, for SCAN and FARMS, we created an
additional version of the expression data by adjusting for
batch effects using the ComBat algorithm [17].

Feature selection

Initially in Phase I, we used a variance-based approach
for feature selection (with the goal of identifying which
genes would be most informative for classification). We
calculated the variance of the expression values for each
gene across all samples; then we selected different quan-
tities of genes that had the highest variance and used
those as inputs to classification. However, in performing
10-fold cross validation on the training set, we observed
no improvement in classification performance regardless
of the number of high-variance genes that we used, so
we decided not to use feature selection for our Phase I
predictions. To perform cross-validation, we wrote cus-
tom Python code that utilizes the scikit-learn module
(version 0.19.2), [18].

In Phase II, we used the following scaling and feature-
selection methods in an attempt to improve performance:
robust scaling, feature selection based on the ANOVA F-
value, and principal component analysis. We used scikit-
learn implementations of these methods and used default
hyperparameters [18].

Classification

We performed classification using the following algo-
rithms from the scikit-learn library: Gradient Boosting
[19], Logistic Regression [20], K-nearest Neighbors [21],
Random Forests [22], Multilayer Perceptron [23], Sup-
port Vector Machines [24], and Gaussian Naive Bayes
[25]. For each of these algorithms, we used scikit-learn
to generate probabilistic predictions. For the voting-
based ensemble classifier, we used the VotingClassifier
class in scikit-learn. In Phase I, we used “soft” voting,
which averages probabilistic predictions across the indi-
vidual classifiers [8]. In Phase II, we used “hard” voting,
which predicts the class label as that which received the
larger number of discrete votes.

In Phase I, we sought to select optimal hyperparameter
values for each algorithm via cross validation on the
training set. We evaluated a variety of parameter combi-
nations (combinations of model settings) for each algo-
rithm, assessing each combination based on its effect on
accuracy, specificity, sensitivity, and the Matthews Cor-
relation Coefficient (MCC) [26]. Each of these metrics
prioritizes different aspects of classification performance;
perhaps the most useful is MCC because it takes into ac-
count the frequency of each class label and thus is
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suitable for evaluating a binomial classifier’s perform-
ance when the class is imbalanced, as was true with our
data. We used an ad hoc approach to optimize hyper-
parameters, making judgments about algorithm per-
formance based on visualizations; for example, we
evaluated the “number of trees” hyperparameter for the
Random Forests algorithm, using values ranging between
5 and 100, and observed relatively high performance
across all four metrics when 25 trees were used (Fig. 4).
We used a similar approach to optimize additional
hyperparameters (e.g., tree depth, maximum leaf nodes,
minimum number of samples required to split an internal
node, minimum samples per leaf for the Random Forests
algorithm). We evaluated each hyperparameter in
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isolation; a limitation of this approach is that it did not ac-
count for possible interactions across hyperparameters.

In an attempt to optimize the performance of the
voting-based classifier, we devised a weighting scheme,
which assigned higher weights to individual algorithms
that performed relatively well during cross validation; we
also experimented with excluding individual classifiers
from the voting-based classifier. The only approach that
appeared to have a consistently positive effect on per-
formance was to exclude the Gaussian Naive Bayes algo-
rithm, which had also performed poorly in isolation.
Our final voting-based model in Phase I excluded Gauss-
ian Naive Bayes and assigned an equal weight to each
individual classifier.
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o
(0]
1

o
~
1

o
N
1

o
o
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T e e S P R R

Specificity

MCC

© o
L (0]
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Value averaged across cross—validation folds
o
o

o
o

SN

N

25 50 75

25 trees (red lines). MCC = Matthews correlation coefficient

100 25 50 75
Number of trees

Fig. 4 Phase | results of hyperparameter optimization based on the “number of trees” hyperparameter for the Random Forests algorithm. We
used an ad hoc approach to tune algorithm hyperparameters on the training set. As an example, we tuned the “number of trees”
hyperparameter for the Random Forests algorithm. The performance varied considerably for different numbers of trees. All 4 metrics peaked near

100
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In Phase II, we attempted to improve the voting-based
classifier in multiple ways. First, rather than selecting a
single hyperparameter combination for each algorithm and
using those as input to the voting-based classifier, we used
multiple hyperparameter combinations for each classifica-
tion algorithm (except Gaussian Naive Bayes). For this
approach, we incorporated the following classification algo-
rithms (with the number of distinct hyperparameter combi-
nations): Multilayer Perceptron (n=05), Support Vector
Machines (n = 4), Logistic Regression (n = 2), Random For-
ests (n=5), K-nearest Neighbor (n=5), and Gradient
Boosting classifiers (n=3). We also investigated whether
assigning weights to each class label would help overcome
the effects of class imbalance and improve classification
performance. Four of the classifiers from Phase [—Random
Forests, Support Vector Machine, Logistic Regression, and
the soft-voting ensemble method—support a class_weight
hyperparameter, which allowed us to apply custom weights
to each class label (or to determine the weights algorithmic-
ally). Adjusting the class_weight hyperparameter required
providing a weight for the non-DILI (weight_1) and DILI
observations (weight_2), indicated here as weight_1:weight_
2. We used class weights of 50:1, 25:1, 10:1, 5:1, 2:1, 1:1,
and 1:2.

Reviewers’ comments

Reviewer’s report 1

Pawel P Labaj, Jagiellonian University (nominated by David
P Kreil, Boku University Vienna).

Reviewer comments

The manuscript by G. Rex Sumsion et al. presents ‘An
Ensemble Approach to Predicting Drug-induced Liver
Injury Using Gene-Expression Profiles’. DILI prediction
with use of single source of data (like expression micro-
arrays) is extremely challenging what has been presented
in the course of CAMDA conferences. Sometimes it is
very valuable to obtain information what will not work
and why. In this manuscript a multiple approaches has
been tested as well as some ‘improvements’ suggested by
CAMDA reviewers, but none is providing really good re-
sults. The proposed Ensemble approach is a good idea in
such cases, however, I would expect better explanation
when Ensemble approach might not work (more specific
comments in next point).

1. Overall the manuscript is well written, however,
reader can loose a track in both methods and
results. Better structure complemented with a
figure outlining the analysis procedure would
improve readability and by this improve the quality
of the manuscript.

2. What is missing in the manuscript is deeper
description of Ensemble approach with all pros and
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cons. This approach could be easily tricked if a few
used methods have similar bases / are from close
families of solution. Here it is not a case but should
be pointed out and described. Connected to this is
selection of used methods, just saying that these
ones are available ‘scikit-learn library’ is not enough.

3. Authors, in one of the improvements, have used
ComBat for batch correction, but this will work
only for known confounders. It would be interesting
to see, or at least, comment the application of
solutions which could detect also hidden
confounders, like PEER or SVA.

4. Figure presenting the overview of the analysis and
all additions should be provided to improve
readability. The additional comment to second
point is that CMap is created when cell line has
been treated with a specific dose, while DILI is
based on meta-analysis of real patients data. One
could expect that an important factor for DILI is
whether the therapy was short time or prolonged as
in the other even small toxicity can accumulate and
lead to DILL Of course the necessary data were not
provided here, but it could be that therapy type
factor could be detected as hidden confounder.

Authors’ response: We thank the reviewer for taking
the time to review our manuscript and for providing
these comments.

1. We have revised the text in the Methods and
Results sections to make the manuscript easier to
read. We have also revised the sub-section headings
to facilitate better organization. In addition, we have
added a figure that illustrates our workflow across
the two phases of the CAMDA challenge.

2. We modified the wording in the 3rd paragraph of
the Introduction section to say the following:
“Generally, voting approaches are most effective
when they incorporate individual classifiers that
perform reasonably well in isolation and when the
component classifiers use diverse methodological
approaches and thus are more likely to have
deficiencies in different areas of the input space,
often allowing for improved performance in
aggregate. We hoped that this would hold true for
predicting DILI in this study because the individual
algorithms that we used represent diverse
methodological approaches.” We also modified the
Discussion section as follows: “The soft-voting
approach yielded better performance than the
individual algorithms at times, but this pattern was
inconsistent. Voting-based approaches often
outperform single-classifier approaches because
they combine diverse algorithmic
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techniques—where one algorithm fails, other(s) may
succeed. However, they rely on a diverse range of
inputs; using algorithms from a narrow range of
methodologies will generally be less performant.” In
addition, we have provided an expanded table that
shows which parameters we used for each algorithm.

3. We added the following statement to the last
paragraph of the Discussion section: “The batch-
effect correction method that we used (ComBat)
requires the researcher to assign batch labels to
each biological sample. Alternative tools such as
PEER and SVA can be used in situations where
batch labels are unknown or more generally to
detect other types of hidden variation.”

4. In complement to the previous point, we have
modified the Discussion to add the point that the
reviewer mentioned: “... hidden factors—perhaps
due to treatment duration and physiological
complexity——may have confounded this study.
DILI was determined based on a meta-analysis of
patient data, whereas our predictions were derived
from treatments administered to cell lines over the
course of only a few hours or days.”

Reviewer’s report 2
Aleksandra Gruca, Silesian University of Technology
(nominated by David P Kreil, Boku University Vienna).

Reviewer comments

The authors analysed dataset from CAMDA 2018
DILI contest. The main goal of the contest is to ac-
curately predict DILI risk of particular drug based on
cell lines gene expression data. To achieve this, the
authors try different parameter settings for data pre-
processing and apply seven classification algorithms
that are finally combined in an ensemble approach.
The presented work is of a limited novelty. In gen-
eral, data processing workflow is designed correctly
and the analytical steps performed by the authors are
typical for such kind of problems. I do not find any
flaws in the proposed approach, although I also do
not see any novelty in it. On the positive side I notice
that the authors have tried several different combina-
tions of methods and parameters in searching for the
best outcome. However, none of the applied tech-
niques was able to significantly improve performance
of the classifiers which may be due to the fact that
DILI dataset from CAMDA 2018 contest is very diffi-
cult to analyse as it is characterised by a weak signal.

I have the following comments:

1. The analysed dataset in described very briefly in the
paper. The paper is a separate piece of scientific
work, therefore authors should not assume that the
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reader is familiar with CAMDA contest and the
dataset, and they should provide more detailed
description of analysed data. For example: how
many drugs were measured, what is the distribution
of objects between DILI and non-DILI class.

2. 1 suggest adding the figure representing proposed
workflow. It would also clarify if the preprocessing
steps were performed separately or as a single
workflow

3. I notice the following sentence (2nd paragraph of
page 8 of the manuscript): “Naive Bayes
algorithm, which had performed quite poorly in
isolation (Fig. 3)”. However, I cannot see any
data in Fig. 3 related to this sentence.

4. In the description of Fig. 3 I notice the following
statement: “For each adjustment in our procedure,
we measured the performance of all the classifiers
(with the exception of adjusting the class_weight
hyperparameter, which was only available for the
classifiers listed above ( ...)” . It is not clear what
the authors mean by “classifiers listed above”

5. In the Fig. 1 Y—axes for metrics accuracy,
sensitivity and specificity are not scaled the same
way and are of different ranges. As usually values all
of these measures are interpreted with the same
range, presenting them on different scales might be
misleading. I suggest either put all of them on the
same Figure or at least present them on a charts
that have the same Y-axis range.

Authors’ response: We thank the reviewer for taking
the time to review our manuscript and for providing
these comments.

1. We now provide information about sample sizes
and class imbalance in the Data preprocessing
section of Methods.

2. We have added a workflow diagram that illustrates
the key components of Phases I and II.

3. We thank the reviewer for catching this. We have
removed the part in parenthesis from the
manuscript.

4. We have thoroughly revised this figure caption (as
well as the others) to improve clarity.

5. We have updated this figure according to the
reviewer’s suggestion (using the same Y-axis scale
for all 4 sub-figures).
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