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profiles
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Abstract

Background: Microbial communities can be location specific, and the abundance of species within locations can
influence our ability to determine whether a sample belongs to one city or another. As part of the 2017 CAMDA
MetaSUB Inter-City Challenge, next generation sequencing (NGS) data was generated from swipe samples collected
from subway stations in Boston, New York City hereafter New York, and Sacramento. DNA was extracted and Illumina
sequenced. Sequencing data was provided for all cities as part of 2017 CAMDA contest challenge dataset.

Results: Principal component analysis (PCA) showed clear clustering of the samples for the three cities, with a substantial
proportion of the variance explained by the first three components. We ran two different classifiers and results were
robust for error rate (< 6%) and accuracy (> 95%). The analysis of variance (ANOVA) demonstrated that overall, bacterial
composition across the three cities is significantly different. A similar conclusion was reached using a novel bootstrap
based test using diversity indices. Last but not least, a co-abundance association network analyses for the taxonomic
levels “order”, “family”, and “genus” found different patterns of bacterial networks for the three cities.

Conclusions: Bacterial fingerprint can be useful to predict sample provenance. In this work prediction of provenance
reported with over 95% accuracy. Association based network analysis, emphasized similarities between the closest cities
sharing common bacterial composition. ANOVA showed different patterns of bacterial amongst cities, and these findings
strongly suggest that bacterial signature across multiple cities are different. This work advocates a data analysis pipeline
which could be followed in order to get biological insight from this data. However, the biological conclusions from this
analysis is just an early indication out of a pilot microbiome data provided to us through CAMDA 2017 challenge and will
be subject to change as we get more complete data sets in the near future. This microbiome data can have potential
applications in forensics, ecology, and other sciences.

Reviewers: This article was reviewed by Klas Udekwu, Alexandra Graf, and Rafal Mostowy.
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Background
The advent of NGS technologies has experienced a tre-
mendous effect on –omics applications. The reduction of
costs since its introduction [1] has accelerated the use of
this technology on metagenomics experiments [2, 3].
Phylogenetic survey analyses based on 16S gene diversity
have been fundamental on identification of bacterial var-
ieties [4–6]. This sequencing revolution, in conjunction
with high performance computing, and recently developed

computing tools has had a vast impact on new 16S gene
studies [5, 7]. The use of WGS data on microbiome exper-
iments has been widely reported and has multiple advan-
tages when compared with 16S amplicon data [8].
In this work, we focus on the MetaSUB Challenge data-

set as part of the 2017 CAMDA competition. MetaSUB
International Consortium aims to create longitudinal
metagenomic map of mass-transit systems, and other
public spaces around the world. They partnered with
CAMDA for an early release of microbiome data of
Boston, New York, and Sacramento for the massive data
analysis challenge. Swab samples collected from subway
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stations in these three cities, were Illumina-sequenced at
variable depths, and provided for further analyses in com-
pressed FASTQ format. The data set consisted of 141,
1572, and 18 samples from Boston, New York, and Sacra-
mento, respectively (Table 1). Subsequent bioinformatics
processing was conducted in the “HiPerGator” high per-
formance cluster at the University of Florida. Sequence
data files were uncompressed, quality filtered, and open-
reference operational taxonomic units (OTUs) were
picked using QIIME pipeline [9]. After quality control, the
effective number of samples included in this work was
134 in Boston, 777 in New York, and 18 in Sacramento
(Table 1). OTUs were aggregated as counts and normal-
ized for three taxonomic ranks. The selected ranks were
“order”, “family”, and “genus”, based on the number of
common levels across all three cities (see Fig. 1). A sum-
mary of the common levels for each taxonomic rank is
also presented in Table 1.
Our motivation is to unravel the bacterial fingerprints

of all these three different cities (similarities and differ-
ences) using only common bacterial signatures within
three taxonomic ranks. In particular, we consider four
different statistical analyses; each is conducted across
cities using a common taxonomic rank, and the analysis
is repeated for each rank. The analyses include PCA,
sample provenance prediction using classification tech-
niques, differential abundance of bacteria across cities
using ANOVA, and network analysis based on statistical
association of bacterial signatures.

Results
Principal component analysis
First we describe the results of our PCA conducted on
these samples. Table 2 presents a summary of the vari-
ability explained by the first three components. As seen
in this summary, the total amount of variance explained
by the first 3 principal components was consistently
greater than 80% for all taxonomic ranks. Plots of princi-
pal components are presented in Fig. 2, sorted by taxo-
nomic ranks with “order” on the left and “genus” on the
right. The top row illustrates bi-plots of components 1
and 2 with a remarkable clustering of the samples from
the three cities. As seen in all three plots (A1, B1, and
C1), the majority of variables with each taxonomic rank
were highly correlated with the first principal

component (being nearly parallel to the corresponding
axis). On the other hand, as seen in plot A1, the “order”
enterobacteriales showed a higher correlation with the
second principal component. This might highlight a low
importance of this “order” for Boston, and New York.
This was also concordant in plots B1, and C1 for “fam-
ily” enterobacteriaceae, and “genus” enterobacter, re-
spectively. Second row in Fig. 2 presents three-
dimensional (3D) plots of first 3 components (A2, B2,
and C2). The clustering of the cities is even more clear-
cut from these 3D-plots. These plots, along with the bi-
plots, also support the premise that Boston, and New
York both have similar bacterial patterns compared with
Sacramento.

Classification analysis
Class prediction of city of origin was conducted using in
two different approaches. First, prediction of sample
provenance was carried out using the Random Forest
[10] classifier (RF). This is a well-regarded classifier for
its superior theoretical and practical performances, and
is robust to over fitting. The model was fitted for each
taxonomic rank. The overall classification error rates
were 3.01, 3.12, and 6.77% for “order”, “family”, and
“genus” respectively; note that RF calculates these rates
internally by using the out-of-bag error of samples. Re-
sults for each city are presented in Table 3. The error
rate for “genus” was somewhat elevated compared to the
other two, perhaps as a consequence of having less fea-
tures (10) compared to the other two (19, and 23). The
classification error for New York samples was particu-
larly low, probably because of the large amount of se-
quencing data available for this city. Sacramento also
showed low classification errors even though the data
set had only 18 samples for this city. However, as shown
even by our PCA, these samples had a distinctive bacter-
ial signature compared to the other two making them
easier to identify by a classifier such as RF. Overall, the
Boston samples were the hardest to distinguish possibly
due to their similarity with New York samples. Perhaps
a larger representative sample from Boston would pro-
duce a better classifier.
The importance of each predictor can be measured

based on the mean decrease in accuracy when the pre-
dictor is removed from the model; these results are pre-
sented in Fig. 3. In plot A, the top three “orders”,
namely clostridiales, rhizobiales, and enterobacteriales
are the most effective in predicting a city. Interestingly,
in plot B, the top “families” belong to the same top “or-
ders” from plot A. On the other hand, the top “genera”
in plot C did not correspond to those in plots A and B.
The second approach we implemented was an Ensem-

ble [11] classifier (EC), which is restricted to binary pre-
dictions. Results are presented (see, Fig. 4) in terms of

Table 1 Sample count for city and effective samples analyzed
and resulting number of common entries for each of the
selected taxonomic ranks included in this work

City Effective samples Total samples Order Family Genus

New York 777 1572 19 23 10

Boston 134 141

Sacramento 18 18
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classification accuracy, sensitivity, specificity, and area
under the curve (AUC). Ensemble results showed that
prediction accuracy, and sensitivity for Boston-
Sacramento (B-S), and New York-Sacramento (NY-S)
pairs were consistently over 98% for all taxonomic ranks.
It is interesting to note that the overall accuracy for the
three-city classification system was only slightly worse as
shown in the previous paragraph for RF results. Accur-
acy, and sensitivity results for Boston-New York (B-NY)
pair were smaller - 92, and 60%, respectively, both at
taxonomic rank “genus”. Specificity results were the best
for B-NY and worst for B-S for all ranks. AUC was gen-
erally greater than 95% across all three ranks, although
at taxonomic rank “genus” appeared to have a large
variation.

Differential abundance analysis
Analysis of variance for taxonomic rank “order” revealed
that bacterial abundance is highly significantly different
for most of the common levels across the three cities.
Table 4 shows minimum, averaged, and maximum p-
values, and counts for each “order” across the three
cities, reported for the corresponding Tukey group after
5000 replications. It can also be inferred from Table 4
that city means for the first four orders were all signifi-
cantly different across city (group a-b-c), with a small
percentage of the samples (< 5%) corresponding to
Tukey’s group a-a-b. Additionally the top 11 order

means were significantly different in all the replications
and were in a large number of them counted as a-b-c (>
30%) and in some others as a-a-b. The analysis also
found a few features that were significantly different only
in a small number of replications, proving the effective-
ness of the balanced ANOVA. These orders were sphin-
gomonadales, and rhodospirillales, with 324 and 649
significant cases respectively.
Effective number of species (S) found in all cities across

the three taxonomic ranks, is shown as proportional-area
Venn diagram in Fig. 1. The plot shows greater diversity
in Sacramento compared with both Boston, and New York
for all taxonomic ranks also the diversity increases, as
taxonomic rank moves from “order” to “genus”. Mean
species diversity (αt) [12, 13] were calculated for all taxo-
nomic ranks across cities (see eq. (5)) for two values for
the weight modifier “q” (0.5, and 2.0). Using bootstrap
based test [14] results (see Table 5) showed that mean spe-
cies diversity (q = 0.5) was significantly different (α = 0.05)
for taxonomic ranks “order”, and “family”. For “genus”,
test for Mean species diversity between the three cities
was borderline significant. Results for the second weight
modifier (q = 2) showed that mean species diversity, across
all taxonomic ranks, was not significant in our bootstrap
analysis. These opposing results, for values of the weight
modifier, can be interpret as an over-inflated weight of
low abundance species in the mean species diversity when
q = 0.5, hence the number of time when the sum of
squares deviated from the real value was low. Conversely
when q = 2 high abundance species have a larger effect in
the mean species diversity calculations.

Network analysis
Networks presented in Fig. 5 are purposely placed geo-
graphically, west on the left, and east on the right. The
first row depicts the networks for each city for taxo-
nomic rank “order.” Plots in the top row show “orders”

Fig. 1 Area-proportional Venn Diagrams of discovered entries across all three taxonomic ranks. a), b), and c) represent the counts for taxonomic
ranks “order”, “family”, and “genus”, respectively. Three cities intersection represents the count of common variables used for most of the analyses
in this work. Total count for each city represents the effective number of species (S)

Table 2 Total amount of variance explained by principal
components 1-3 for all three taxonomic tanks
(“order”, “family”, and “genus”)

Rank PC1 PC2 PC3 Total

order 69.8% 7.3% 6.7% 83.8%

family 78.7% 5.2% 4.7% 88.6%

genus 86.8% 4.7% 3.1% 94.6%
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rhodobacteriales, and bacteroidales (green) as highly
connected nodes for east cities, which belong to higher
taxonomic rank “class” alphaproteobacteria, and bacter-
oidia, respectively. Nodes in red are those “orders”
found across all cities, all belonging to “classes” alpha-
proteobacteria and gammaproteobacteria. Networks for
taxonomic ranks “family” in the second row, show an in-
teresting change across cities, with central nodes in red
that are common between Boston and New York and
nodes in green that are common between New York and
Sacramento. The last row shows networks for taxonomic
ranks “genus”. In all cities we can identify a sub-
structure with a hub node in green corresponding to the
“genus” sphingobacterium. This central node shares four
highly connected nodes (in red) for the east-coast cities
but lose complexity for the city of Sacramento as the
number of connections for each node drops considerably
compared with the other two cities. In general we have
found that cities of Boston and New York have more
complex networks for all taxonomic ranks when com-
pared with networks from Sacramento.

Discussion and conclusion
It has been well established that WGS metagenomics
can fail to detect rare species since DNA is not se-
quenced with enough depth as a result of its rarity [15,
16]. Nevertheless, this was not an issue for the develop-
ment of this work since our main objective was to deter-
mine the common bacterial signature of the three cities
in the form of normalized counts of taxonomic ranks
and use this data to predict the source of origin of a spe-
cific sample. We present a set of tools complementing,
rather than competing with one another, in characteriz-
ing the differential signatures in terms common bacteria.
Overall the different analytical components of this work,
collectively, conveyed the following consistent message:
The bacterial signatures of common OTUs, are city spe-
cific in terms of normalized counts for the three taxo-
nomic ranks.
PCA findings showed a large proportion of the vari-

ability (> 80%) is accounted for by the first three princi-
pal components for the three taxonomic ranks.
Prediction of provenance based on bacterial fingerprints
was also highly effective (classification error < 6%, and
accuracy > 90%) for all classifiers tested, although the
classifiers performed better for ranks “order”, and “fam-
ily” as a result of having more common predictors (19,
and 23 respectively). ANOVA showed that the bacterial
signature is city specific with specific patterns of differ-
entiation. While ANOVA showed differential bacterial
patterns across cities, the effective number of species di-
versity showed that Sacramento had the largest number
of species. This can be the result of warmer climate con-
dition of Sacramento that promotes bacterial growth

Fig. 2 PCA bi-plots of principal components 1, and 2 are presented in a1, b1, and c1 for taxonomic ranks “order”, “family”, and “genus”,
respectively. Three-dimensional plots of first three components are presented in a2, b2, and c2 for taxonomic ranks “order”, “family”, and
“genus”, respectively. Colors are: orange for Boston, green for New York, and blue for Sacramento

Table 3 Random forest classification error of city across all
taxonomic ranks “order”, “family”, and “genus”

City Order Family Genus

Number of predictors

19 23 10

Classification error

Boston 11% 18% 34%

New York 1% 1% 2%

Sacramento 6% 0% 11%
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and ecological diversity compared with the colder cli-
mates of Boston, and New York, but we note that the re-
sult may be biased by the effect of uneven “wet lab”
protocols for DNA extraction and sequencing, and very
unequal city sample sizes, although we tried to deal with
the later issue by subsampling. Finally, network analysis
showed that each city has a different overall bacterial
network structure. A careful review of nodes from Bos-
ton, and New York revealed common subnetwork-
structures sharing similar bacterial patterns, which is be-
lieved to be result of geographic proximity, and common
ecological niche for northeast coastal cities contrasting
with a southwestern city in California. Network analyses
for future datasets with a more balanced design, and
more standardized DNA extraction and sequencing pro-
tocols, might lead to interesting ecological perspectives
regarding species that live in mutualism or symbiosis,
and others that show patterns of competition.
The results presented in this work, all support the fact

that it is possible to capture the bacterial signal from
samples collected in three cities using OTUs counts
from common bacteria; nevertheless it is definitely pos-
sible that the quality of the results and conclusions could
be greatly improved if a review of the experimental-
design lead to a more balanced number of samples for

each city, combined with objective-specific protocols for
DNA extraction and sequencing of the samples, which
should ensure a more uniform sequencing depth and
quality, specially across cities. As a closing remark the
authors emphasize that these analyses were conducted
on preliminary data and results are a valuable source to
plan future experiments and analyses.

Methods
For the 2017 meeting, CAMDA has partnered with the
MetaSUB (Metagenomics & Metadesign of Subways &
Urban Biomes) International Consortium (http://meta-
sub.org/), which has provided microbiome data from
three cities across the United States as part of the Meta-
SUB Inter-City Challenge.
Illumina next generation sequencing data was gener-

ated from swab DNA samples taken on subway stations
from Boston, New York, and Sacramento. Data was pro-
vided in the form of FASTQ files for each sample, plus a
supplementary dataset with information regarding swab
places, sequencing technology, DNA extraction, and
amplification, samples names, etc. A quality control of
the reads was conducted to improve taxonomical classi-
fication with QIIME. The raw OTUs generated with
QIIME, were aggregated for each sample to generate a

Fig. 3 Variable importance for the Random forest classifier, as determined by the mean decrease in accuracy. a), b), and c) are importance plots
for taxonomic ranks “order”, “family”, and “genus” respectively

Fig. 4 Ensemble results, in terms of Accuracy, Sensitivity, Specificity, and AUC for each taxonomic rank. a), b), and c) correspond to taxonomic
rank “order”, “family”, and “genus” respectively. Each individual plot shows pairwise classification results for comparisons of Boston – New York,
Boston – Sacramento, and New York – Sacramento
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matrix of OTUs counts for the three cities. The subse-
quent statistical analyses were conducted on the basis of
common OTUs, finding additional patterns in the rela-
tive abundance that was not as obvious as the presence
of city-specific OTUs. Other aspects of bio-diversity
beyond what is apparent from Fig. 1 (such that Sacra-
mento samples exhibited the most biodiversity) were not
investigated further.

Table 5 Bootstrap results (replications = 2000) for mean species
diversity across all taxonomic ranks. Table shows p-values for
two values of weight modifier (0.5, and 2)

q Order Family Genus

0.5 0.004 0.006 0.084

2 0.930 1.000 0.999

Fig. 5 Abundance association networks for the three cities based on bacterial fingerprints using common OTUs. Left column corresponds to
networks from Sacramento, CA; middle column are networks from New York, NY; and right column from Boston, MA. Top row has networks
for the taxonomic rank “order”, middle row is for the taxonomic rank “family”, and bottom row is for “genus”
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Sequencing data description
Boston sequencing data consisted of a total of 141 sam-
ples ranging from 1 Mbp to 11 Gbp single read Illumina
data. The majority of the samples (117 Amplicon sam-
ples) were target sequenced after PCR amplification.
Additionally, the rest of the samples (34) were whole
genome shotgun (WGS) sequenced. Moreover, a small
fraction of the amplicon samples did not effectively con-
tribute to OTU counts, and hence they were removed
from the analyses. Ultimately a total of 134 samples were
included in further downstream analyses.
All 1572 New York samples were WGS, ranging from 0

Mbp to 19 Gbp of Illumina-sequence data. After quality
control a subset of 777 samples effectively yielded OTU
counts and were included in all subsequent analyses.
In the city of Sacramento, six locations were sampled

three times each on different surfaces for a total of 18
WGS sequenced samples ranging from 2.8 to 3.4 Gbp. All
the samples contained enough sequencing data after qual-
ity control to positively contribute to OTU counts, there-
fore all 18 samples were included in all the analyses.

Bioinformatics and data processing
Sequencing data from each city was uncompressed and
quality filtered to ensure improved OTU picking. Filter-
ing FASTQ files was done with FASTX-Toolkit [17] at
variable Phred quality scores ranging from 35 to 39 with
a variable minimum percent of bases that must satisfy
the chosen quality averaged score ranging from 40 to 80.
This filtering scheme was designed for the purpose of ef-
fectively reducing the size of the large FASTQ files with-
out compromising the open-reference OTU picking and
for keeping the computational burden in check. This
strategy not only accomplished the later goal but also re-
moved the low quality FASTQ files which were unusable
for detecting any 16S gene signal; The reduced sample
sizes and their distributions according to the taxonomic
ranks are provided in Table 1. This quality control
yielded sequencing data in the order of a few Mbp up to
5 Gbp as a maximum. It is noteworthy that we proc-
essed amplicon FASTQ files with the same approach. In
the study we merged WGS (only the 16S region) and
Amplicon data in a combined fashion in order to have
enough sample size. However, in order to establish the
similarity of data distribution for the two platforms, we
implemented a Kolmogorov-Smirnov test of the equality
of the distributions comparing the data from both the
platforms for each one of the features or levels found for
the three taxonomic ranks. The null hypothesis states
that the empirical distribution of the normalized counts
from the WGS data is not significantly different from
the empirical distribution of the normalized counts for
the Amplicon data. Results confirmed that the data from
both platforms are similar enough to be used together

for further downstream analyses. No significant p-values
were found in the Kolmogorov-Smirnov test (p-valuemin

= 0.2387 and p-valuemax = 0.9945).
Filtered FASTQ files were converted to FASTA files

with a “bash” script in order to standardize the descrip-
tion line for each sequence making it acceptable for
QIIME pipeline. This step was required since we faced
some incompatibility between FASTA files automatically
generated by open-source converters. OTUs picking was
conducted with QIIME in open-reference mode. This
strategy was preferred since our purpose is to effectively
detect the 16S gene region from as many bacterial spe-
cies as possible. QIIME pipeline was run in three steps.

pick open reference otus:py−o:=otus−i:=sample:fa−p::
=parameters:txt− f−a−O 12

ð1Þ
biom convert−i:=otus=otu table:biom−o:

=otus=from biom:txt−−to−tsv

ð2Þ
assign taxonomy:py−i:=pynast aligned seqs

=aligned:fasta−m rdp

ð3Þ
The first step was the open reference OTU picking (1).

The second was to convert the binary biom table into a
text format output (2). The final step corresponds to
assigning taxonomy values to all OTUs within the out-
put table (3). OTU output counts were later aggregated
at three taxonomic ranks as input data for further statis-
tical analyzes. In other words, those OTUs that by map-
ping score are different, but correspond to the same
taxonomic rank are added and labeled as the corre-
sponding taxonomic rank they belong.
The chosen taxonomic ranks were “order”, “family”,

and “genus”. Figure 1 presents a summary of aggregated
OTUs for all the ranks. The selection of ranks was deter-
mined by the count of common levels within each
threshold. The raw data for each taxonomic rank was
then normalized to log counts per million for each city
before combining them in a single dataset. The
normalization was done based on Law et al. work [18]
given in Formula (4). The OTU proportions (trans-
formed) were calculated for each sample by

ygi ¼ log2
rgi þ 0:5

NRi þ 1
106

� �
; ð4Þ

where rgi is the gth OTU count for sample i, N is the

number of OTU categories, and Ri ¼ 1
N

PG
g¼1 rgi is the

mean number of mapped reads for ith sample. This
normalization scheme guarantees that the counts are
bounded away from zero by 0.5 to make the logarithm
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meaningful and to reduce the variability of log-cpm for
lowly expressed OTUs. Additionally, the library size was
offset by 1. Together these guarantees that the ratio is
strictly less than 1 and greater than zero.

Statistical analysis
The proceeding statistical analysis was conducted in
multiple stages in R [19]. The first was a PCA, which
showed that the normalized counts for all taxonomic
ranks carry strong enough signals to group the cities of
origin. The second was to build a statistical classifier,
which can produce a well-defined rule (e.g., a machine)
to predict the city of origin from the rank profiles of a
sample. To this end, we used two well-regarded classi-
fiers, all within the R environment, and compared the
findings. In a third stage we conducted a differential
abundance analysis using ANOVA and a novel bootstrap
based test using the alpha diversity indices. The final
stage was to implement a visual inspection of the co-
abundance networks in order to assess how the bacterial
abundances vary jointly across the cities.

Principal components analysis (PCA)
Unsupervised learning of normalized count data through
principal component analysis was conducted on a taxo-
nomic rank basis for “order”, “family”, and “genus”. The
analysis was entirely conducted in R based on correla-
tions structure. Eigenvalues were extracted to calculate
the variability in the dataset accounted by each compo-
nent. Two-dimensional PCA bi-plots, and three-
dimensional plots of the first three components were
generated for each taxonomic rank and color-coded by
city to better visualize patterns amongst samples from
each location (Fig. 2).

Classification analysis
Accurately predicting the origin of a sample only based
on common bacterial metagenomics is another objective
of this work. We used two well-regarded classifiers to
address this problem: random forest [10], and the adap-
tive optimal ensemble classifier [11].
The random forest (RF) classifier has improved classi-

fication accuracy as result of choosing vectors randomly
and independently with a positive impact on the growth
of each tree within the ensemble. This algorithm is ro-
bust to over-fitting (see theorem 1.2 in [10]), computa-
tionally efficient, and calculates estimates for class-
specific mean decrease in accuracy, and internal error.
RF was implemented with 10 variables or levels within
each taxonomic rank, randomly chosen at each split,
with 1000 trees. Results are provided in Table 3.
Next we describe the implementation of the ensemble

classifier (EC). As the name suggests, it is based on a
number of individual (or component) classifiers. Figure 6

depicts the workflow of the ensemble classifier. Steps 1
and 2 prepare the dataset for training, and testing,
followed by steps 3 to 5, which are classification, per-
formance assessment, and rank aggregation. Ultimately,
step 6 corresponds to prediction, and voting. EC is, how-
ever, restricted to binary classifications, so we separated
the dataset into three pairwise sets. For each pairwise
comparison, the analysis was conducted on a 2-fold
training-test cross validation run for 100 iterations. The
results are reported in Fig. 4.

Differential abundance analysis
One-way analysis of variance of common taxonomic
rank across cities was performed for each common level
within taxonomic rank “order”. Due to the unbalanced
nature of the dataset (refer to Table 1), we randomly
subsampled cities of Boston and New York in subsets of
18 samples each, which correspond to the number of
samples of the third city of Sacramento. On this bal-
anced data sets we run the ANOVA analysis and repeat
this for a total of 5000 replicates. The null hypothesis
(H0) is that mean log-transformed normalized bacterial
counts are equal across cities, and the alternate hypoth-
esis (Ha) is that at least one of the means is not equal to
the others. We have controlled the FDR at 1% level for
the multiple hypotheses correction. Additionally, we as-
sess which of the three cities are different for each bac-
teria for the taxonomic rank “order” entries, by
implementing Tukey’s multiple comparison test [20].
We reported the number of times each “order” was sig-
nificantly different, the minimum, average, and max-
imum p-value, and also the pattern of the differences in
terms of three letters (‘a’, ‘b’ and ‘c’) in Table 4.
Last but not the least, we investigated whether there

were significant differences for the mean species diver-
sity [12, 13] of order “q” calculated as follow,

αt ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
N
j¼1

X
S
i¼1 pijp

q−1
ij j

q−1
q ; ð5Þ

where pij is the proportional abundance of species i
within sampling unit j, pi ∣ j is the conditional propor-
tions of species i given sampling unit j, S is the number
of entries found in each taxonomic rank (species rich-
ness), and “q” is the weight modifier. In (5), αt is condi-
tional to the sampling unit (city) and values were
calculated for two weight modifiers (0.5, and 2.0). As “q”
takes the value 0.5, the abundance is intermediate be-
tween the harmonic mean (q=0) and the geometric
mean as q approaches 1. The function represents the
arithmetic mean when q=2. A bootstrap [14] approach
was implemented on the basis of the dataset containing
all species discovered (raw counts), to determine how
consistent the mean species diversity was across cities. A
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total of N = 2000 bootstrap samples were generated by
randomly changing the city vector on the data set, keep-
ing the same number of samples, for each city as in the
original dataset. A sum of squares across cities was cal-
culated and tested as statistic (6),

θ ¼ αB−αð Þ2 þ αNY−αð Þ2 þ αS−αð Þ2; ð6Þ
where αB, αNY, and αS are alpha diversities within cities

and α is the mean alpha diversity. This statistics θ was
also calculated for all bootstrap samples as θ∗ (n=1, …,
2000) and p-value was calculated as follow,

p−value ¼ 1
N

X
2000
n¼1 I θ �

n > θ
� � ð7Þ

Results are provided in Table 5.

Network analysis
Network construction is often used in the context of
gene-gene, gene-protein or protein-protein association/
interaction networks [21]. However, one may use the
correlation of the transformed and normalized OTU
counts to construct a “co-abundance” network. In this
study, we applied Pihur et al.’s strategy [22] in conjunc-
tion with the dna R package [23] to identify connectivity
of bacterial fingerprints across three different cities for
each taxonomic rank and visually identify the similarity
and differential structure of them. Graphical networks
were generated with the network.modules function (dna)

, which calls the plot function from R package igraph
[24]. A matrix of Pearson’s correlations was generated
for common entries, across taxonomic ranks for each
city. Network plots were constructed connecting the
edges with absolute correlation values greater than a
threshold, which is specific for each network. Thresholds
for cities at each taxonomic rank were chosen on a case-
by-case basis in order to keep a similar number of nodes
at each city.

Reviewers’ comments
Reviewer’s report 1: Klas Udekwu
Reviewer’s comments: The article ‘Unraveling bacterial
fingerprints of city subways from microbiome 16S gene
profiles’ details the comparative analysis of 16S derived
bacterial signatures carried out using a statistiscal ana-
lyses (ANOVA) and PCAs as well as network analysis of
association. The study is well-designed and describes ad-
equately for the most part. The authors describe a city
specific microbiome fingerprint from their analysis ov
variance between the three chosen cities. While some is-
sues still require attention, the results of the analysis as
presented are clear and the methods used are adequate.
Some of the methods although insufficiently described,
are novel in such application and on the whole this rep-
resents a significant The tense used throughout the art-
icle however, should be maintained and the table and
figure formats required.

Fig. 6 Workflow of the ensemble classifier (reproduced from Datta et al. [11])
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1. Firstly, the numbering of the lines is off and
disturbing, several of the statistical tables can be
combined for simplicity and the figures need some
higher resolution.
Author’s response:

First, we want to thank the reviewer for his comments
and suggestions. In the current submission we have
removed the line numbers and only used the numbers
added by the submission manager. Regarding the
tables, we carefully reviewed them and decided not to
merge them because the rows/columns in these tables
have little overlap. Figures are created in high
resolution now.

2. MAJOR concerns: here is little or no discourse
regarding the size of the three datasets, the quality
and discussion regarding disparities therein.
Author’s response:

To address this issue we have now created multiple
balanced data sets by randomly subsampling from the
original New York data. We show that the analysis
results of these balanced data are large consistent
across various replicates (Table 4). See the methods,
results and conclusions of the revised paper for details.

3. Concluding from three datasets of different weights,
quality and provenance that city specificity is
discernable without qualifying the caveats
adequately is inadvisable.
Author’s response:

We do recognize and correct for the presence of
multiple sources of biases related to these data sets
that were provided for the CAMDA challenge. We
have included comments regarding these aspects in
multiple places in the manuscript; see, for example, in
the last but one line of the Conclusions section.
However, our goal was to provide a possible data
analysis pipeline for such data and to demonstrate
that microbiome data collected from the city subways
do possess classification abilities even after
adjustments for various artificial sources of biases.

4. I suggest the authors change the wording slightly to
reflect the necessity for more datasets being
included in the study. The use of ‘expression’ to
term bacterial abundance in several places in the
text reflects transcriptomics and NOT
metagenomics. Please correct where appropriate.
The weight modifier set at different levels leads to
completely different outcomes. The authors should
discuss this. Figures require higher resolution even

for submission as it is impossible to discern some of
the text in the Figs 2, 3, 4.
Author’s response:

We have addressed this within the revised manuscript.

5. The last line of page 7 is indicative of the hurdles
one leaps in order to conclude as the authors do;
‘the signature is city specific (only) in terms of
NORMALIZED counts of OTUs for three
taxonomic ranlks.
Author’s response:

That is correct. In particular, we wanted to ensure
that the signatures are robust and not due to technical
differences between the samples from different cities.

6. I would appreciate a discussion regarding
normalization approaches they considered and how
they settle on this.
Author’s response:

Please look at Equation (4) of the manuscript. This
normalization scheme, has been used by many in the
microbiome community. We have additionally
included some discussions in the manuscript (right
after Eq. (4)) to provide the rational behind this
normalization.

7. A subset of randomized samples of equal number
and even representation irrespective of diversity,
analyzed in the same way would have given the
reader more confidence in the conclusions.
Author’s response:

As the results of ANOVA gets affected by unequal
sample size we have modified the ANOVA analysis
considering random subsamples of equal size (18, the
same as the sample size of Sacramento) from the New
York and Boston samples and conducted the ANOVA
analysis. The reported results are then based over all
the subsamples and demonstrate a large degree of
consistency (see, Table 4). Nevertheless, we recognize
that a more balanced experiment with similar “wet-
lab” protocols would give stronger conclusion. However,
we were restricted to the size of the data available for
CAMDA 2017. We include some discussion regarding
this in the Discussion and Conclusion sections.

Reviewer’s report 2: Alexandra Graf
Reviewer’s comments: The study tries to find city spe-
cific metagenome fingerprints. It uses several classical
statistics and machine learning methods to analyze the
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data from three different cities (New York, Sacramento
and Boston) provided by the CAMDA challenge. With-
out cell count the abundances measured in metagenome
datasets are only relative abundances. Any kind of com-
parison based on the differences in abundance between
samples, are questionable and will probably not result in
a microbial profile indicative of the cities real species
composition. Especially with such varying sequencing
depths as seen between the 3 cities as well as their dif-
fering experimental approach (Amplicon, WGS). Differ-
ences that are seen between the cities could stem from
all kinds of technical biases during sampling, DNA ex-
traction and sequencing.

1. The study uses QIIME to predict OTUs, using only
the 16S rRNA data. This enables the authors to
make use of all samples (16S and WGS) but
introduces a bias, since the 16S rRNA sequence
extractions from whole genome data behave
differently than Amplicon sequenced data.
Author’s response:

We want to thank Dr. Graf for her valuable comment.
Ideally, one would only use one platform for data
collection. It is to be noted that we neither had any
control over the quality and quantity of the data nor
the experimental design. We did not want to discard
the Amplicon samples because that would have led to
a substantially reduced sample size for Boston.
However, Dr. Graf ’s point is well taken. To that end,
we have tested that the distributions of the normalized
data from the two platforms are similar using a
Kolmogorov-Smirnov test. See the “Bioinformatics and
Data processing” section under “Methods”
(pages 11-12) for the details.

2. Furthermore, it is not discussed which 16S rRNA
region was used in the Amplicon sample
preparation. But it is known that different regions
show a taxonomically biased result.
Author’s response:

Unfortunately, since the samples were provided as part
of the 2017 CAMDA MetaSUB Challenge, there is no
further information regarding this issue, and after
reviewing the counts we obtained from Amplicon
samples, and how comparable they were with those
from WGS samples, we decided to move on with the
analyses.

3. The sample size differs considerably between the
cities (134 Boston, 777 NY, 18 Sacramento after QC
filter) which influences the statistical analysis
considerably. The amount of sequence data differs

considerably between the samples, which has an
influence on the taxonomic content of the samples
(< 1 Mbp to 19 Gbp), as will the non-microbial
proportion of the data, which also differs
considerably between the samples.
Author’s response:

The point is well taken. However, as stated earlier we
did not have any control over the experimental design
as the data were provided from the CAMDA 2017
challenge. We have modified the ANOVA analysis in
order to address the unbalanced nature of the dataset
by considering random subsamples of equal size
(18, the same as the sample size of Sacramento) from
the New York and Boston samples and conducted the
ANOVA analysis multiple times and reported finding
that were consistently supported.

4. The authors also talk about differential expression
(Page 6, Line 9 and Table 4), which obviously
cannot be inferred from genomic DNA data. And
as stated before also different abundances of species
between different samples cannot be inferred from
the analyzed data.
Author’s response:

We have changed the writing in the revised
manuscript.

Reviewer’s report 3: Rafal Mostowy
Reviewer’s comments: The article by Alejandro Walker
and colleagues takes on a challenge of using a computa-
tional approach to analyse microbiome data from three
locations (NY, Boston, Sacramento), and distinguish the
location from microbial composition alone based on
16 s rRna sequencing. The authors propose several dif-
ferent approaches to tackle the problem, including prin-
cipal component analysis, two machine learning
methods (Random Forest and Ensemble), differential
abundance analysis and network analysis. They find
compositional differences between the three locations
using all approaches, and thus conclude that micro-
biome data can have potential applications in forensics
and other sciences. As a non-expert in microbiome re-
search, I’m writing this review from a perspective of a
computational biologist. I find the problem very interest-
ing and the diverse set of approaches used by the au-
thors valuable. It is always reassuring to observe similar
patterns using very different methods (like PCA and re-
gression for example). Thus, the conclusion that bacter-
ial composition differs with location is quite well
supported in this study. So clearly, the paper makes a
valuable contribution to our understanding of whether
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we can guess a location based on a microbiome sample
from this location.

1. I can’t help but feel that it is a shame that the MS
does not go a step or two further and give
recommendations regarding potential pros and cons
of different approaches. In other words, the paper’s
punchline is that microbiome compositions indeed
differ by location, and that is probably a prior
expectation of almost everyone reading this paper.
Author’s response:

We thank you for your overall positive assessment.
However, we tend to disagree somewhat with your view
of the “punchline”. As you expressed so correctly, we
also understand that as a prior expectation. However,
we provided a set of tools complementing, rather than
competing with one another, in characterizing these
differential signatures. We have clarified this point in
the revised paper – see the conclusion and discussion
section.

2. The interesting thing about this paper is that the
differences are captured by such a variety of
methods, but the authors do not really provide the
reader with any understanding about what aspects
of microbial compositions (or differences between
them) these methods capture. One suggestion
would be to include a complementary
benchmarking effort to compare how well those
approaches do in detecting real differences (or
particular aspects of compositional differences).
Such data could be generated in silico, and
robustness of different approaches with respect to
detecting changes in microbial compositions could
be analysed.
Author’s response:

This paper grew out of the CAMDA 2017 MetaSUB
Challenge, and we investigated an aspect of the data
set provided to participants. We agree that with a
more comprehensive dataset (or simulation studies)
and comparative statistical analyses using that would
be of considerable value. However, that is beyond the
scope of this paper.

3. Furthermore, with regards to how useful different
methods are in finding compositional differences,
I’m yet to be convinced about the value of the
network analysis in this context. It is certainly a
nice idea to use abundance-similarity networks,
but I would expect either a more thorough
analysis of the resulting networks using a more
formal statistical approach, or a biological

interpretation of the results. Otherwise, I’m not
sure about the point of using such networks. It
would be good if the authors addressed this in
the MS.
Author’s response:

We have reviewed the manuscript regarding this
comment, and we are convinced that network
analysis provides a joint representation of all the
common OTUs together in terms of abundances
and at least visually observe whether the topology
of the networks in three different cities are the same
or not. This can also give a broad insight on how
bacterial populations are interacting, and how their
ecological niche on occasion overlaps depending on
geographic proximity.

4. Finally, I think that the explanation of the classification
approach could be a little better. In particular, I don’t
quite understand what the authors used as a predictor.
Was it a mere presence of the OTU unit, its frequency
or something else, and why? Please explain.
Author’s response:

We have modified the manuscript with regard to
the way we generated the data for the classifiers.
This can be easily understood by looking at Figure
1, where the intersections for the three cities show 19,
23 and 10 species for “order”, “family”, and “genus”.
The improved description of how the dataset was
generated, which can be found in page 12 and 13. This
gives a clear idea on how the counts were aggregated,
how and why only three taxonomic ranks were chosen
for further analyses. As a closing statement we can say
that the strength of the manuscript is that even with
the availability of this partial dataset disclosed out of
the CAMDA 2017 challenge data initiative and
considering a subset of the common “bugs” we can
reach to some interesting scientific conclusions which
can ultimately be validated further with the
forthcoming bigger datasets of CAMDA 2018. I hope
the revised manuscript provides a more comprehensive
understanding of the predictors.
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