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Abstract

Background: Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy
source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often
co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation.
This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism.

Results: We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-
localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton
genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the
cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-
localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene
orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among
different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate
metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-
five significant pairwise links between genes belonging to different functional classes. The number of such links per class
range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal
neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an
important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate
from local duplication events.

Conclusions: Overall, we describe a complex web formed by evolutionary relationships of bacterial carbohydrate
metabolism genes, manifested as co-localization patterns.

Reviewers: This article was reviewed by Daria V. Dibrova (A.N. Belozersky Institute of Physico-Chemical Biology,
Lomonosov Moscow State University, Moscow, Russia), nominated by Armen Mulkidjanian (University of Osnabrück,
Germany), Igor Rogozin (NCBI, NLM, NIH, USA) and Yuri Wolf (NCBI, NLM, NIH, USA).
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Background
Bacterial carbohydrate metabolism is extremely diverse.
Carbohydrates serve as a major energy source; they are
also involved in a variety of cellular processes, such as
the cell wall biosynthesis. This study focuses on a large-
scale analysis of bacterial genomic loci related to the
carbohydrate metabolism. It is a common knowledge
that bacterial genes belonging to same metabolic path-
way are often co-localized in the chromosome [1–5].

Numerous studies regarding gene functions are dedi-
cated to specific operons within single genomes or
genomes of closely related species. Comparative gene
studies throughout the years influenced the understand-
ing of reasons behind gene co-localization, revealing its
importance in gene co-evolution and co-regulation and
showing that physically interacting proteins tend to be
encoded by genes co-localized in a specific order on the
chromosomes [6]. Co-localization patterns could be
shared fully or partially between species, not only due to
common ancestry, but also to the horizontal transfer
events [7, 8]. Chromosomal localization in combination
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with protein similarity is a useful tool for the prediction
of gene function [9–13].
We studied genes encoding carbohydrate transforming

enzymes, such as hydrolases, phosphorylases, dehydra-
tases, acetylases, etc., as well as related transporters and
transcription regulators. We analyzed overall co-
localization tendencies of these genes, belonging to a
large and important segment of metabolism, simultan-
eously in a broad number of bacterial species.
Configurations that genes form in bacterial chromo-

somes, e.g. chromosomal gene clusters (without a refer-
ence to the operon structure, the order of genes, or their
orientation) will be further called cassettes. In a recent
study [14], 68.7% of 4.5 million protein-coding genes
from prokaryotic genomes were found to form con-
served cassettes based on their COG content (a cassette
was considered conserved if the respective COGs
(clusters of orthologous groups) [15] combination
occurred at least twice among the studied genomes);
thus about a third of genes seemed to behave as single-
tons and did not have apparent links to their genomic
neighborhood. In well-studied genomes like Escherichia
coli and Bacillus subtilis, about a third of known genes
form monocystronic (single-gene) operons [16, 17]. One
of our goals was to compare these results with cassettes
composed solely of genes belonging to a specific
segment of the metabolism, here, carbohydrate catabol-
ism and synthesis. Around 148,000 genes and 264 differ-
ent COGs were studied in 665 genomes of 30 bacterial
classes. The studied genes had varying propensity
towards being involved in cassettes or existing as single-
tons. We explored the influence of two major factors,
gene functionality and species phylogeny, on these
preferences, characterizing cassette-forming tendencies
of each functional class and bacterial taxon. The variety
of cassettes was assessed based on their size and gene
content, which also allowed us to compare commonly
found combinations with participants of known carbohy-
drate metabolic pathways. We further analyzed possible
pairwise links between frequently co-localized genes
from different functional classes and orthologous
clusters. Finally, we studied cases of co-localized genes
with similar functions, in particular, assessing the possi-
bility of their origin by duplication. Altogether, we
obtained a comprehensive picture on both global and
local co-localization preferences of carbohydrate metab-
olism genes in bacteria.

Methods
Genomes and genes
The total number of analyzed genomes was 665, with a
randomly selected single strain per specie (see
Additional file 1). The total number of studied genes
was approximately 148,000; the gene data were obtained

from the IMG database [18], the majority of studied
genes belonging to the “G” category, which contains
annotation of genes associated with bacterial carbohy-
drate metabolism, including their known and predicted
functions, locations on the chromosomes, and COG
(cluster of orthologous groups) identification numbers
(which are assigned in the IMG database to all genes by
an automatic procedure, performing RPS-BLAST search
for each gene against COG position-specific scoring
matrices from the conserved domains database). Gene
sequences were obtained from GenBank [19].

Gene classification
A two-level classification system was developed based
on the functionality and orthology clustering of genes.
273 COGs were initially selected from the IMG database
“G” category, and 239 were found in the studied
genomes after eliminating the strain bias as described
above. Approximately 2% of genes had additional COG
identification numbers, which often indicates gene
fusion and serves as evidence of a functional relationship
[20]. According to Mavromatis et al. [14], approximately
6% of all bacterial and archaeal genes are fusion prod-
ucts. Such cases in our study were further treated as co-
localized genes. From the fusion data we selected 34
additional COGs; each of them contained genes
suggested to be involved in the carbohydrate metabolism
according to their annotations. Most of them belonged
to “M” (“Cell wall/membrane/envelope biogenesis”), “R”
(“General function prediction only” or “K” (“Transcrip-
tion”) categories. An example of such case is COG4158
from the “R” category; the genes were annotated as
"monosaccharide ABC transporter membrane protein,
CUT2 family" and “ribose ABC transporter, permease
protein”, hence, we assigned this COG to our “trans-
porter” functional class. The final set comprised 264
COGs (Additional file 2).

Cassette analysis
Cassettes were identified based on gene proximity in
chromosomes. Genes were considered to form a cassette
if they belonged to the previously described carbohy-
drate gene database and were located next to each other,
with intergenic distances not exceeding 200 nt, as in the
OperonDB project [21]. One 1500 nt gap was allowed
per cassette, so roughly one additional gene not neces-
sarily known to be involved in the carbohydrate metab-
olism or with an unknown function could not break a
cassette. The order of genes in a cassette and their
orientation were not taken into account.
All collected cassettes were analyzed based on their

gene number, which will be further regarded as the
cassette size, and sorted on both levels of the classifica-
tion, by their COG content and by their functional
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content. The cassette diversity was studied by calculating
the occurrence numbers for all cassette types. Abundant
COG and functional patterns within cassettes were com-
pared to known metabolic pathways obtained from
Metacyc [22] and KEGG [23].

Co-localization of functions
One of our goals was to study pairwise co-localization
properties of genes belonging to different functional
classes. To assess statistical significance of such links, we
created a random model. We shuffled studied carbohy-
drate metabolism genes 10,000 times over their positions
in each genome separately and calculated co-localization
numbers for each pair of function classes, so that if each
of the two function classes was present in a cassette at
least once, it counted as a co-localization event. We used
the obtained distribution to calculate the p-value for the
observed co-localization events. If no such events
occurred, the p-value of 1/10001 was assigned to the
pair. The Bonferroni correction was applied for the
number of analyzed pairs with the significance level
(Alpha) 0.05. A similar analysis was carried out for the
same-class gene co-localization, regarding cases when
genes from the same functional class were present
within the same cassette exactly two times, exactly three
times, etc.

Co-localization of COGs
We analyzed co-localization tendencies of different
COGs within each pair of functional classes. To account
for the COG size (the number of genes in a COG), we
compared observed co-localization numbers for genes
from different COGs with expected co-localization num-
bers, that depended only on COGs sizes, obtaining a
chi-like value for each COG pair (squared difference
between expected and observed values divided by the
expected value). Co-localization numbers were clustered
by the k-means algorithm implemented in Perl [24]. We
iterated clustering with an increasing number of clusters
and added penalty dependent on the squared number of
clusters. The same procedure was carried out for the
chi-square-like values. COG-pairs which belonged to
clusters with highest values in both clusterizations were
considered significantly abundant.

Сomparison of gene sequences
To test whether same-COG genes within each cassette
result from a duplication, we compared the sequences of
such genes to each other and to all other genes of the
same COG from our database, and searched for bi-
directional best hits. We used the NSimScan tool [25]
with the following parameters: -k 7 -t 80 –it 50 –xt 50 –
mrep. NSimScan is a tool searching for similarities in
nucleotide sequences. -k: is the “k-mer size”, regulating

the word size in the lookup; −t: is the “k threshold”,
specifying the diagonal score threshold that triggers
further processing; −-it is the minimal percent identity
at the minimal allowed alignment length; −-xt is the
minimal percent identity at maximal possible alignment
length; and –mrep parameter turns on the mode where
only one best representative per group of repeating simi-
larities is reported.

Results and discussion
Singleton genes and cassette variety
Fifty three percent of 148 thousand bacterial carbohy-
drate metabolism genes formed cassettes. This yields
a significant role of singleton genes despite expecta-
tions of stronger clustering tendencies of functionally
related genes based on recent literature [1, 4, 10, 14,
26, 27]. Several studies of evolutionary modules,
however, suggest that genes from a number of well-
studied bacterial metabolic pathways may not demon-
strate conserved co-localization [3, 28], and our study
extends this observation.
In total, the studied genes formed over 26 thousand

cassettes. Most cassettes were short; 55% were two-gene,
and 20% were three-gene cassettes (Fig. 1). The distribu-
tion of cassette sizes among different functional classes
and different bacterial taxa is available in Additional file 3
and Additional file 4, respectively. Most distributions are
similar to the general distribution in Fig. 1, with a few
exceptions. An example are genes from the transporter
functional class, which occur in 2-gene cassettes almost
as often as they occur in 3-gene cassettes, most likely
due to the abundance of large complexes such as ABC-
systems, which consist of at least three subunits.
The cassettes comprised 10.4 thousand distinct COG

combinations and 2.5 thousand distinct functional com-
binations. Based on the functional content, 45% of the
cassettes were unique, occurring only once in the stud-
ied genomes. Only 43% of all studied genes coding for
carbohydrate metabolism proteins belonged to con-
served cassettes (a cassette was considered conserved if
at least two cassettes with the same COG content were
present in our database), in comparison to 69% of all
protein-coding bacterial genes present within conserved
combinations, according to Kyrpides et al. [14]. It seems
that a large fraction of prokaryotic genes do not form
evolutionarily conserved combinations, and for the
carbohydrate metabolism genes this fraction is even lar-
ger. This effect can partly be explained by the possibility
that some genes form evolutionarily s combinations with
genes related to other segments of metabolism, for
example, genes linked to nucleotide metabolism or other
pathways which simultaneously involve carbohydrate
residues linked with other types of molecules, such as
glycolipids, glycoproteins, etc.
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The fraction of genes from a given set located within
cassettes was named as the cassette propensity of this
set. Functional classes differed greatly in the cassette
propensity, ranging between 23 and 93% (Table 1). Clas-
ses with the smallest cassette propensity were nucleosi-
dases, phosphatases, and mutases (23, 38, and 42%,

respectively). Again, one of the explanations for such
low cassette propensity could be involvement of respect-
ive proteins in other types of metabolism. For instance,
nucleosidases produce monosaccharides and hence
belong to the carbohydrate metabolism, but they are also
linked to nucleotide metabolism pathways, and may
form s combinations with genes from the latter.
The highest propensity of 93% was demonstrated by the

small class of malto-oligosyltrehalose synthases, followed
by the transaldolases/transketolases and, understandably,
by the transporter class. The latter is due to the fact that,
as mentioned above, many transporters, such as the ABC
or the PTS systems, consist of multiple subunits encoded
by genes that are often organized in operons.
The cassette propensity for different COGs varied even

stronger, ranging from 0 to 100% (Fig. 2). Large COGs
(containing over four thousand genes) had a significant
fraction of singletons; the cassette propensity for most of
them, including secondary transporters of the MFS
superfamily and transcriptional regulators, was less than
40%. The exception is glycosyltransferase COG0438,
comprising 6587 genes, which is involved in the cell
envelope biosynthesis and has cassette propensity of
66%. Some medium-sized COGs (two to four thousand
genes), on the other hand, had the cassette propensity of
over 90% (for example, the ABC-transporters mentioned
above). The smallest COGs (less than two thousand
genes) with a high propensity belonged to the dehydro-
genase, isomerase, kinase, epimerase, and transaldolase/
transketolase classes. The propensity distribution for
COGs from different functional classes is available as a
histogram in Additional file 5.
The phylogeny played an important role in the cassette

propensity; for different bacterial taxa it varied between
37 and 76% (the analysis was restricted to taxa with at

Fig. 1 Gene cassette size distribution among 665 studied genomes

Table 1 Functional classes of genes

Functional class Enzyme EC
number

Number
of genes

Cassette
propensity

Transcriptional Not applicable 39,136 35,29%

Transport Not applicable 29,701 70,83%

Glycosyltransferase 2.4.1. 14,579 62,30%

Glycosidase 3.2.1. 11,475 64,74%

Kinase 2.7.1.; 2.7.9 9250 57,95%

Isomerase 5.3.1. 6458 55,20%

Dehydrogenase-OH 1.1. 5518 57,67%

Decarboxylase 4.1. 2788 58,97%

Nucleotidyltransferase 2.7.7.; 2.7.8 2125 70,96%

Dehydratase 4.2. 2091 52,75%

Phosphatase 3.1.3. 2036 37,77%

Epimerase 5.1.3. 1753 61,78%

Deacetylase 3.5.1. 1525 51,02%

Transaldolase/transketolase 2.2.1. 1514 70,54%

Mutase 5.4.2. 1502 40,35%

Carboxylic-esterase 3.1.1. 1153 63,49%

Dehydrogenase-O 1.2. 781 69,78%

Nucleosidase 3.2.2. 597 23,28%

Malto-oligosyltrehalose synthase 5.4.99 100 93,00%

Functional classes of carbohydrate metabolism genes (assigned according to
the Enzyme Nomenclature classification obtained from the IMG database [14]),
number of genes in each class, and their tendency towards localization within
carbohydrate metabolism cassettes (cassette propensity)
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least two genomes with at least a hundred annotated
carbohydrate metabolism genes in each) (Fig. 3). Taxa
with the highest cassette propensity were Dictyoglomales
and Fusobacteriales (76%), Thermotogales (72%), and
Lactobacillales (65%), consistent with known preference
of some of these bacteria (e.g. the Streptococcus species
[16]) towards long operons. The bacteria with the smal-
lest cassette propensity were Planctomycetia (37%),
Chlamydiae (37%), Chlorobia (40%), Deferribacteres
(42%) and Cyanobacteria (43%). Among large taxa, with
over eight thousand annotated carbohydrate metabolism
genes in each, Deltaproteobacteria had the lowest cas-
sette propensity (46%), Betaproteobacteria were in the

middle with 50%, Alphaproteobacteria, Gammaproteo-
bacteria and Actinobacteria had the cassette propensity
slightly above average (54, 56, and 57%, respectively),
while Clostridia and Bacillales leaned towards higher
values (60 and 64%, respectively).
The most common protein functions encoded by

genes involved in cassettes were transporter, glycosidase,
and glycosyltransferase. The longest cassette (found in
Stackebrandtia nassauensis DSM 44728), comprising
fifteen genes, contained eleven transporters, two isomer-
ases, one glycosidase, and one glycosyltransferase.
Transporter genes occurred in 18% of all cassettes; 10%
cassettes contained two or more. Glycosidases were

Fig. 2 Cassette propensity of genes from different COGs. Genes from different COGs within the same functional class may have different cassette
propensity. Dots represent different COGs, shape and color of each dot indicates its functional class, stated on the right

Fig. 3 Cassette propensity among bacterial taxa. Cassette propensity of carbohydrate metabolism genes for different phyla and classes of bacteria
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found in 19% of all cassettes; 5.8% cassettes had at least
two glycosidases, and 1.7% had at least three (the highest
number was seven glycosidases in a cassette, in
Prevotella ruminicola 23 and Bifidobacterium dentium
Bd1). Glycosyltransferases were found in 19% of all
cassettes; 9.4% cassettes had at least two glycosyltrans-
ferases, and 3.3% had at least three (the highest number
was nine glycosyltransferases in a cassette, in Pedobacter
saltans DSM 12145 and Bacillus weihenstephanensis
KBAB4). No functional class was present in more than a
fifth of all studied cassettes, which points to a significant
diversity of gene co-localization patterns linked with the
bacterial carbohydrate metabolism.

Co-localization of genes from different functional classes
To explore patterns of the cassette composition, we
compared co-localization counts of genes of various
functions within real cassettes and in random simula-
tions as described in the Methods section; obtained
counts are listed in the Additional file 6. Out of 190
possible pairs of functions for the nineteen studied
classes, 45 had a gene co-localization count higher than
random (with a calculated p-value of 0.0001 or less),
indicating the presence of a functional link (Fig. 4). Only
24% of all possible pair links had passed the given cri-
teria, despite expectations for many functional classes to
show distinct co-localization preferences reflecting
abundant metabolic reaction adjacencies.
The number of links per class varied between zero and

eight. The overall abundance of genes with a certain

function did not necessarily yield a large number of links
involving this function; for example, the transporter
genes, despite being a large class with over twenty-one
thousand genes located within cassettes, did not form
any links. The size of a class, overall, did not determine
the number of links; for example, the transaldolase/
transketolase class with only a thousand genes located
within cassettes formed six links, while the similarly
sized deacetylase class formed only three. The cassette
propensity of a class did not necessarily determine the
number of its links, either. The decarboxylase class with
the cassette propensity of around 60% was involved in
eight links (the maximum observed number of links per
class), while the glycosyltransferase class with a similar
cassette propensity formed only four. Most of the 45
links were formed by genes from the decarboxylase,
dehydrogenase-OH, and dehydrogenase-O classes
(having eight, eight, and seven links, respectively),
meaning that these classes have the most diverse, yet non-
random preferences towards the neighbor functions.
Most of the significant links consisted of functions

forming known and abundant metabolic pathways. The
isomerase-kinase pair is present in many pathways
including lactose, galactose, chitin, and arabinose deg-
radation; the decarboxylase-kinase pair is present in all
variants of the Entner-Doudoroff pathway; the
epimerase-mutase pair is found in the glycolysis/gluco-
neogenesis-related pathways and the mannan degrad-
ation pathways; the dehydrogenase-carboxylic esterase
pair is involved in the galactose degradation pathways

Fig. 4 Links between functional classes. Bubbles represent functional classes. The size of a bubble corresponds to the relative class size. Black
lines connect classes which form the co-localization links. Green color of a bubble indicates that genes from the respective class have a significant
tendency to co-localize with each other
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[21, 23]. This is consistent with observed tendencies in
many specific cases, of proteins that are parts of same
metabolic pathways to be encoded as genes co-located
on the chromosomes within same genomic loci or
operon [3, 4, 6]. However, many pairs of functions,
present in many known metabolic pathways, such as the
glycosidase-kinase pair or the glycosyltransferase-kinase
pair, did not pass the significance criteria; this yet again
points to the fact that gene co-localization is not a strict
requirement for consequent enzyme functions.
Pairwise combinations of functions are formed by pair-

wise combinations of COGs. We analyzed the most
abundant COG pairs for each pair of classes. Each class
pair contained up to ten such pairs; up to two of them
had also passed the statistical significance filter,
described in the Methods section. These results are
listed in Additional file 7.
Linked functional pairs sometimes formed apparent

three-way connections. For some of them, e.g. for the
kinase, isomerase, and dehydrogenase-O classes, the
respective three most abundant COG pairs for three of
the possible class pairs were comprised of three COGs
in total, so all these COGs were compatible with each
other, and the respective three-COG combination also
existed in a number of genomes. However, this was not
a universal case, e.g. for pairs formed by the nucleotidyl-
transferase, glycosyltransferase, and dehydrogenase-OH
classes, the respective three most abundant COG pairs
were formed by six different COGs, whereas their cross-
combinations were rare.
We suggest that a combined study of functional and

COG links, and, in particular, three-way connections, may
provide new data for COG annotation. For instance, the
most abundant nucleotidyltransferase-glycosyltransferase
pair consisted of COG0448, annotated as glucose-1-
phosphate adenylyltransferase (EC 2.7.7.27), and
COG0297, annotated as glycogen synthase (EC:2.4.1.21),
that uses ADP-glucose; and indeed, these two enzymes are
involved in two consequent steps of starch metabolism
pathways. Similarly, the most abundant nucleotidyltrans-
ferase – dehydrogenase-OH pair consisted of COG1091,
annotated as dTDP-4-dehydrorhamnose reductase
(1.1.1.133), and COG1209, annotated as glucose-1-
phosphate thymidylyltransferase (EC 2.7.7.24); both these
enzymes are part of the dTDP-6-deoxyhexose biosynthesis
pathway. On the other hand, the annotations for both
members of the most abundant COG pair formed with
the glycosyltransferase and dehydrogenase-OH classes
(COG0451 and COG0438) are not as clear. Both are large
gene clusters, over six thousand and over thirteen thou-
sand genes, respectively, and contain genes encoding
proteins of many various predicted functions such as
dTDP-4-dehydrorhamnose reductase for COG0451 and
glycogen synthase for COG0438. The respective genes are

co-localized over a thousand times in various bacterial
taxa, more often than any other dehydrogenase-OH and
glycosyltransferase COG pair. Such distinct co-
localization may indicate a strong functional and evolu-
tionary relationship between these genes, and is a reason
to further investigate the functional specifics of respective
proteins and their biological roles.

Co-localization of genes with similar functions
Twelve out of forty-five of the observed functional links
were formed by same-class pairs, which meant that
twelve out of nineteen functional classes demonstrated a
significant tendency for co-localization with genes from
the same class (Table 2).
Classes with the largest fraction of co-localized same-

class genes were transporter, glycosidase, transketolase/
transaldolase, and glycosyltransferase (Table 3).
Interestingly, glycosyltransferases and transaldolases/

transketolases were more often found several times
within a cassette than as a single representative of a
given function. Genes of the same class co-localized
within cassettes can be divided into two groups: genes
encoding subunits of protein complexes, and genes
encoding separate proteins. The most common example
of the former are represented by the transporter
functional links with at least three transporter genes
involved. Cassettes with only two transporter genes did
not pass the threshold for the Bonferroni correction; this
can be explained by the common multi-domain
structure of transporter complexes, such as ABC-
transporters, which require three genes encoding three
respective subunits. Same-class gene pairs from most
other classes encode independent proteins, which, in
some cases, may be involved in the same metabolic
pathway. For instance, several glycosidases may be
required for different stages of polysaccharide degrad-
ation, and studies show that the respective genes may
belong to a single operon or several co-localized
operons; e.g., in Gramella forsetii the laminarin
utilization operon contains three glycosidases, and two
adjacent alpha-1,4-glucan utilization operons contain
four glycosidases [29]. Several glycosyltransferases are
often involved in the cell wall biosynthesis; indeed,
genomes of Lactococcus lactis and other lactic acid
bacteria may contain more than seven glycosyltransferase
genes per operon [30]. Transaldolase and transketolase
enzymes are involved in the pentose phosphate pathway,
and the respective genes, such as E. coli talA and tktB
genes, may be co-localized. As for less frequent cases, it is
known, for example, that two or three kinases may be
involved in different phosphorylation processes within the
same pathway, such as the lactose degradation [22, 23];
and it would explain co-localization of the respective
genes. On the other hand, for many same-class gene pairs,
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such as the decarboxylase-decarboxylase pair, the reason
for co-localization is not obvious.
One of the mechanisms behind co-localization of genes

with similar functions is local duplication. It is likely if
genes from a pair also belong to the same COG, which

was 44% of the cases, involving 189 out of 264 studied
COGs. We calculated the alignment score for genes from
each of such pairs using the NSimScan tool as described
in the Methods section. We then found the best matches
for both genes among other genes from all studied ge-
nomes. These scores were compared. Only in 3.6% cases
same-COG genes created a bi-directional best hit with
each other. In all other cases the genes had better matches
located elsewhere, and in 62% these better matches were
not located within same cassettes or even same genomes.
Paralogs are subject to significantly weaker purifying

selection than orthologs [31], so these results do not rule
out the duplication origin for the co-localized genes
which have the same best match with a single third gene.
In this scenario the original pair could be a result of a
local duplication, where each gene from a pair has been
evolving faster compared to its non-duplicated orthologs
in other genomes, thus they are both more similar with
these orthologs than they are with each other. However,
over 90% of same-COG pairs had two different best
matches for their genes.
Overall, it seems that the vast majority of co-localized

genes of the same class did not originate from recent
local duplications. An explanation behind co-localization
of same-COG genes could also be xenologous gene dis-
placement, where one of the ancestral genes from a pair

Table 2 Co-localization of genes from same functional classes

Functional class Genes in
cassette

Number
of cassettes

P-value

Transaldolase/transketolase 2 280 < E-300

3 6 2,29E-042

4 2 < E-300

Kinase 2 619 2,28E-025

Dehydratase 2 61 1,51E-019

Nucleotidyltransferase 2 101 1,96E-084

Isomerase 2 375 1,53E-033

3 26 4,55E-007

Decarboxylase 2 112 9,69E-029

3 3 6,50E-002

Dehydrogenase-OH 2 335 2,61E-075

3 33 4,94E-037

4 3 2,24E-007

Deacetylase 2 34 1,47E-009

Dehydrogenase-O 2 16 6,02E-031

Glycosyltransferase 2 1593 2,62E-276

3 578 < E-300

4 195 < E-300

5 58 < E-300

6 18 < E-300

7 11 < E-300

8 3 < E-300

9 2 < E-300

Glycosidase 2 1094 1,99E-063

3 321 5,02E-161

4 87 1,96E-121

5 24 1,86E-099

6 5 7,12E-042

7 2 1,29E-008

Transport 3 2648 < E-300

4 931 < E-300

5 157 7,99E-037

6 59 6,51E-029

7 18 7,42E-014

8 5 3,85E-005

Genes from twelve out of nineteen classes demonstrate a tendency towards
localization with genes from the same class. For each number of class
representatives in a cassette, the number of such cassettes among studied
genomes is given. The P-value indicates probability of obtaining these co-
localization numbers in a random distribution

Table 3 Genes localized within cassettes with same-class neighbors

Function Genes with same-class neighbors

Transport 78,10%

Glycosyltransferase 68,45%

Transaldolase-transketolase 54,87%

Glycosidase 49,31%

Transcriptional 40,71%

Kinase 25,88%

Dehydrogenase-OH 24,54%

Isomerase 23,34%

Decarboxylase 14,42%

Nucleotidyltransferase 13,40%

Dehydratase 11,33%

Deacetylase 9,13%

Dehydrogenase-O 5,87%

Nucleosidase 4,32%

Carboxylic-esterase 3,01%

Mutase 2,97%

Epimerase 2,77%

Malto-oligosyltrehalose synthase 2,15%

Phosphatase 0,00%

Percentage of genes from each functional class localized within carbohydrate
metabolism cassettes (not singletons) with other same-class genes also
present within cassettes
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of duplicated genes is replaced via horizontal transfer
with a gene from an outside source. Such pseudoortho-
logs acquired from different sources are called xenologs.
Another reason could be acquisition of pseudoparalo-
gous genes, where a homologous gene is transferred next
to the original gene from another genome without
replacements [32].
Genes of similar function located together on the

chromosome, especially in very large clusters like glyco-
syltransferases and glycosidases, could perhaps work as a
‘screwdriver set’, being expressed when a number of
similar actions are required simultaneously, so respective
proteins would perform similar tasks in the carbohydrate
degradation or biosynthesis processes. Simultaneous
expression of genes with similar functions could be
important, for example, during the degradation or bio-
synthesis of complex polysaccharides, or in poor envir-
onmental conditions requiring utilization of all possible
carbohydrates. It is known that under glucose starvation
some bacteria, for instance, the Bacillus species, are
capable of simultaneous activation of many genes
responsible for the catabolism and transport of alterna-
tive carbon sources [33, 34]; this concerns, in particular,
many transporter and hydrolase genes; it might be that
co-localization of genes with similar functions is useful
for the regulation of transcription in such cases.

Conclusions
We present the results of a thorough large-scale explor-
ation of the chromosomal organization of genomic loci
related to the bacterial carbohydrate metabolism. Evolu-
tionary relationships of genes, manifested as co-
localization patterns, differ between gene functions,
orthologous gene clusters, and bacterial taxa. Overall
they form a complex and diverse system with a signifi-
cant role of singleton genes and very short gene
cassettes. In 665 bacterial genomes only 53% of 148
thousand studied genes were co-localized with other
carbohydrate metabolism genes, and 55% of the cassettes
they formed contained only two genes.
Two major factors influencing the carbohydrate

metabolism gene tendency to co-localize (the cassette
propensity) were found to be gene function and bacterial
phylogeny. The cassette propensity varies between 23
and 93% in different gene functional classes, with malto-
olygosyltrehalose synthase, transporter, and transaldolase
and transketolase classes having the highest cassette
propensity. It varies between 40 and 76% among
bacterial taxa, with the highest cassette propensity
observed in Fusobacteriales, Dictyoglomales, and
Thermotogales classes.
We demonstrated forty-five significant pairwise co-

localization links between functional classes of genes.
The number of such links varied from zero to eight per

class. Decarboxylase and dehydrogenase genes showed
the most diverse and specific preferences towards func-
tions of neighboring genes, while transporter genes and
glycosidase genes, despite being involved in a large num-
ber of cassettes, did not show any significant prefer-
ences. Different COGs were involved in the links
between classes. Characterization of the most abundant
COG pairs for each class pair may be a source for
hypothesis about specific functions of the involved genes
with subsequent experiment analysis.
Genes from eleven functional classes also demonstrated

tendency to be co-localized with genes from the same
functional class. The respective proteins could either be
parts of complex systems, such as bacterial transport
system, or work separately, in such processes as polysac-
charide degradation or cell wall biosynthesis, where
several glycosidases or glycosyltransferases are involved
simultaneously. Genes from transporter, glycosidase, and
glycosyltransferase classes are most common among
same-class co-localization events, and genes from the
transketolase and transaldolase and the glycosyltransferase
classes are more often found in cassettes multiple times
than as single representatives. Most of these same-class
co-localization do not seem to originate from recent local
duplications. Our study thus highlights the previously
undescribed large-scale evolutionary tendency towards co-
localization of genes with similar functions.

Reviewers’ comments
Reviewers’ report 1
Dr. Daria V. Dibrova, A.N. Belozersky Institute of
Physico-Chemical Biology, Lomonosov Moscow State
University, Moscow, Russia (nominated by Armen
Mulkidjanian, University of Osnabrück, Germany)

Reviewer comments
The manuscript "Sugar Lego: Gene composition of
bacterial carbohydrate metabolism genomic loci" by A.
Kaznadzey, P. Shelyakin and M.S. Gelfand describes a
large-scale analysis of gene co-localization involving a
COG-based (after Cluster of Orthologous Groups)
classification of genes. The gene co-localization is one of
important methods for uncovering protein functions and
assigning correct genome region annotation, however
many key papers on this subject were done more than a
decade ago, and the field could now be revisited in much
broader context. In sum, I find the topic of this paper
actual and promising. The manuscript can be published
after a minor revision.
Author’s response: We thank the reviewer for the

comments that allowed us to improve the manuscript.
1. The reader would be very interested in a complete

list of COGs that were analysed, with their names and
functional classification according to the COG database,
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sorted into functional classes mentioned in the paper. If
supplied together with the results, such information as
e.g. cassette propensity values for each COG, number of
members attributed to a COG and its “best neighbors”
on cassettes, would serve as a large-scale result summary
and a material for further studies (as suggested for the
cases of “three-way connections”, line 285).
Author’s response: We have created a (Additional file

2) with detailed information on each studied COG,
including all parameters suggested in this comment
(NCBI COG description, gene number, cassette propen-
sity, etc.). We also provide the propensity percentile data
based on the overall COG propensity distribution.
Instead of “best neighbors”, obtained through a filtering
procedure based on comparison with random distribu-
tions (the data is already available in the existing
Additional file 7, previously called Additional file 3), here
we provide a list of the most common neighbors from the
three most frequent cassettes for each COG.
2. Those COGs that showed tendency to group with

themselves or other COGs from the same functional
class could be additionally marked. Currently they are
not listed in the Additional files (squares in the main
diagonal of Additional file 3 are empty, whereas Table 3
and the text indicate multiplicity of such cases).
Author’s response: We have added the contents of the

main diagonal in Additional file 7 (previously Additional
file 3), which include the data on frequently co-localized
COGs from same classes.
3. It is well-known that large amount of bacterial

genes does not belong to any COG. However, the
procedure used by the authors should allow such
genes to enter cassettes. Information on the “COG-
less” genes within cassettes related to the carbohy-
drate metabolism set might be potentially very
interesting, so that such cases should be described
and discussed.
Author’s response: In this study we have used

carbohydrate metabolism genes from the IMG database.
Each of these genes has at least one COG assigned to it
as a result of an automatic procedure, description of
which we have added to the Methods section. Thus we
do not have any “COG-less” genes in our analysis. Some
poorly annotated genes not described in the IMG
database could be present in our cassettes in the
“invisible mode”, because one 1500 nt gap is allowed
per cassette (which is approximately the length of one
extra bacterial gene and its intergenic regions). Our
procedure did not include identifying such genes,
which were either absent from the IMG database, or
were not annotated there as carbohydrate metabolism
related genes. It could be an interesting subject for
annotation based on chromosome co-localization, but
it is out of scope of this study.

4. A vector format would be better for Figs. 1, 2 and 3.
Perhaps their current low resolution is an artifact of the
manuscript packing for a review.
Author’s response: We are providing images in a better

resolution. Also, during the review process we have
identified an error in Fig. 2 (demonstrating cassette
propensity of COGs from different functional classes),
caused by an incorrect scaling procedure (mentioned in
further comments). We have updated the figure and the
respective commentary. We have also created an
addition to Fig. 2 in the form of a histogram which shows
the distribution of different functional classes over
cassette propensity (Additional file 5).
5. Line 62: the COG abbreviation is used without

being introduced, and respective papers (Tatusov et al.,
1997, or the most recent Galperin et al., 2015) are not
cited in the manuscript. Further (lines 69–70) the
following expression is used: “orthologous clusters of
genes (COGs)”. The expression appear to be misleading,
because: 1) it appears that all clusters of genes which are
mentioned are orthologous and 2) even if this expression
would be rephrased as “clusters of orthologous genes”
(as in line 89), a single COG is not a cluster of ortholo-
gous genes, but rather a cluster of orthologous groups of
genes, i.e. not all genes inside a COG are true orthologs.
This is particularly important, because the authors use
an assignment of proteins to COGs from an external
database; the assignment appear to be based on
sequence similarity to COGs, but not on a direct de
novo COG construction.
Author’s response: As explained in response to Comment

3, here we have used annotations provided by the IMG
database, where genes are assigned to COGs by comparing
protein sequences to COG PSSMs from the CDD database
using RPS-BLAST. It is not a de novo construction, and
COG numbers here indeed represent groups of orthologous
clusters of genes and are provided by an outside source.
We have added an explanation to the Methods section.
The article on the NCBI COG database is now cited.
6. Line 85: "The total number of analyzed genomes

was 665, with a randomly selected single strain per
specie" - from which initial sample were these 665
genomes sampled? Additional file 1 would benefit from
adding taxonomic information, which will, for instance,
reveal the domination of proteobacteria (291 species
from 665 are proteobacterial).
Author’s response: The selected species have been

taken from the set of the IMG database bacteria species
with annotated carbohydrate metabolism genes. We have
added the taxonomic information on each species to
Additional file 1.
7. Line 86: "The total number of studied genes was 148

thousand" Better to use numbers. Also it relates to the line
69, as well as other cases where numbers are written as text.
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Author’s response: We have switched words to
numbers, as suggested.
8. Line 87: It could be important to mention

whether this “G” category in the IMG is the
functional classification of original COGs, or an
IMG classification.
Author’s response: The “G” category (“Carbohydrate

transport and metabolism”) is an original category from
the NCBI COG database. We have added this explanation
to the Methods section.
9. Lines 96–97: Did I understood correctly that the

cases of multi-COG proteins "were further treated as
co-localized genes"? How many multi-COG proteins
were in your sample? How did this affect the
shuffling procedure (were they shuffled independ-
ently or not)?
Author’s response: Multi-COG proteins were

treated as co-localized genes. We have added respect-
ive commentary about their numbers to the manu-
script. During the shuffling procedure they were
shuffled independently.
We have analyzed in depth a number of individual

cases and could not devise an explicit procedure for
the separation of domain fusions and multiple pre-
dicted functions for a single, non-fused gene. At that,
this is an important issue for the genome annotation
in general, addressed, in particular, by Tripp et al.
(Nucleic Acids Research, 2011) which has yielded
global reannotation in GenBank and resolution of
most of such ambiguities. Developing a new procedure
which would allow us to resolve the remaining cases
in our dataset was out of scope of this study, but in
any case potential fusions should not have affected the
results, since they have been observed in only 2% of
the genes.
10. Lines 97–99: It would be nice to see additional

information on COGs which were added to the
analysis being identified as fused with known COGs
of carbohydrate metabolism within genes. The reason
that "each of them contained at least several genes
suggested to be involved in the carbohydrate metabol-
ism according to their annotations" appear to be
blurry; how are these COGs named and classified in
the COG database itself?
Author’s response: We have added a more detailed

description on the process of adding new COGs to the
database; we have also corrected the information on the
total number of COGs obtained from the fusion study.
Fusion-derived COGs are now marked green in the
Additional file 2, where their general NCBI descriptions
are also available. We have also added an example of
genes annotation of such COG from the IMG database,
which revealed its link with carbohydrate metabolism
and allowed us to include it in our study.

11. Line 121–122: From my point of view, the
paper would win greatly if the results of the per-
formed comparison with established pathways would
be added to the manuscript, perhaps as a scheme for
most interesting cases. The functional classification
used in the paper is too general to connect it with
biological realm. Could at least the most interesting
interactions between functional classes and COGs be
mapped on a reaction scheme?
Author’s response: Here, we aimed at finding

general co-localization connections between major gene
functions and COGs. These results are potentially
applicable in pathways analyses, but the latter are
out of the scope of this study. However, we provide a
number of examples in the section "Co-localization of
genes from different functional classes" and "Co-
localization of genes with similar functions", where we
compare obtained functional links and COG co-
localization tendencies with several known metabolic
pathways and reactions.
12. Lines 127–128: The explanation of the shuffling

procedure could be expanded. Which “studied genes”
were shuffled - only those of carbohydrate metabolism
or all genes?
Author’s response: Here, we studied only carbohydrate

metabolism genes, and to create a random model, we
shuffled all 148 thousand of them over their positions
(both cassette genes and singletons). We have added
respective comment to the Methods section.
13. Line 151–152: A short explanation of what does

the NSimScan tool does and the meaning of parameters
used is required here, so that the reader can understand
what extent of similarity between the sequences com-
pared to other proteins in COG is sufficient to claim
duplication. It should be also explained what does
“duplication” here means; the explanation from lines
358–359 could be moved here.
Author’s response: NSimScan is a published tool

searching for similarities in nucleotide sequences. We
have added its description to the respective Methods
section, along with description of the parameters. We
have also moved the description of the duplication search
criteria, as suggested.
14. Line 105: typo in Table 1, “phosphotase” should be

“phosphatase”. It is also repeated in Additional file 3.
Also “malto-oligosyltrehalose” appear to spell different,
as “maltooligosyl trehalose”.
15. Figure 2: the X axis is labeled log (Number of

genes), while values on it are given as 103, 104 etc. It
should be 3, 4 etc.?
Author’s response: Corrected with thanks.
16. Figure 3: What is “Proteobacteria: Cytophagia”

(12th bar)? To my knowledge, the parent taxon for
Cytophagia class is Bacteroidetes.
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Author’s response: Cytophagia class indeed belongs to
Bacteroidetes, corrected.

Reviewers’ report 2
Igor Rogozin, NCBI, NLM, NIH, USA

Reviewer comments
This study focuses on a large-scale analysis of bacterial
genomic loci related to the carbohydrate metabolism.
The authors described the complex system of evolution-
ary related genomic neighborhoods of bacterial carbohy-
drate metabolism genes.
Author’s response: We thank the reviewer for the com-

ments that allowed us to improve the manuscript.
I do not see major methodological problems. I have

questions about the “Cassette analysis”: "Cassettes were
identified based on gene proximity in chromosomes.
Genes were considered to form a cassette if they
belonged to the previously described carbohydrate gene
database and were located next to each other, with inter-
genic distances not exceeding 200 nt. One 1500 nt gap
was allowed per cassette..." I think that these conditions
(200/1500) are more strict than the usual analysis of
gene pairs (that requires only co-localization). These
thresholds look reasonable and may be an ad hoc result
of the previous experience. I am sure these thresholds
improved the accuracy of prediction and final quality of
functional inferences. Did the authors try to optimize
those parameters? Could variation of these parameters
improve quality of neighborhood prediction in future
studies or the authors are confident that these are
(nearly-)optimal parameters? Any comments will be
helpful for other researchers in the field.
Author’s response: The threshold for gene co-

localization on the chromosome was selected based on
the literature, where 200 nt is considered an adequate
maximum distance between bacterial gene neighbors. For
instance, it has been used in gene pair analysis in the
OperonDB in (Ermolaeva et al.), and we have added this
reference to the Methods section. In some cases, even
stricter parameters have been used, e.g., 50 nt in
(Salgado et al.) for operons in Escherichia coli. The
1500 nt gap is roughly a length of one bacterial gene with
two intergenic distances.
In a preliminary study, we allowed for a 15 k nt

distance (assuming that longest cassettes will be about
12–13 genes). This, however, led to inaccuracies, as
multiple cassettes could be grouped into one, while in
fact they were intersperced with multiple non-
carbohydrate metabolism genes.
Minor issues:
I think that this may be a typo: "we describe the com-

plex system formed by evolutionary relationships of bac-
terial carbohydrate metabolism genes, manifested as co-

localization patterns". I am not sure that the “system” may
be formed by “relationships” in this context. I think that
this sentence require some modifications. I am not sure.
Author’s response: Changed “system” to “web”.

Reviewers’ report 3
Yuri Wolf, NCBI, NLM, NIH, USA

Reviewer comments
Kaznadzey and co-authors survey genes related to carbo-
hydrate metabolism in a wide selection of bacterial
genomes, with the specific focus on gene co-localization.
They find that, like most other genes in bacterial
genomes, sugar-related genes form cassettes ranging in
size from trivial (singletons) up to 15 genes long. The
authors also find that the propensity to form non-trivial
cassettes depends on the gene class (EC number) and
the host taxonomy. Both the approach used by the
authors and the results are quite reasonable and provide
a potentially useful quantitative benchmark for further
studies of links between the function and evolution in
microbial genomes.
Author’s response: We thank the reviewer for the

comments that allowed us to improve the manuscript.
In my experience the simple number (or fraction) of

co-localized genes is a useful, but somewhat
information-poor measure of the degree of co-
localization. I would be tempted to quantify the co-
localization as a property of the distribution of the
cassette size, starting with the overall distribution
presented in Fig. 1 (is it better approximated as an expo-
nent? a power law? something else?), and proceeding to
changes in its shape or parameters for subsets of the
data (gene classes and bacterial taxa). This has a chance
to provide a better resolution.
Author’s response: For a more detailed analysis of the

cassette size distribution analysis, we calculated the cassette
size distribution for different functional classes and bacterial
phyla. Most distributions are similar to the general distribu-
tion in Fig. 1, with several exceptions. One of them is the
transporter functional class, which occurs almost as often in
2-gene cassettes as it does in 3-gene cassettes, due to large
transporter complexes, such as ABC-transporters; the other
is malto-oligosyltrehalose-synthase class, which is the smal-
lest functional class (containing only 100 genes), which most
likely does not yield a s distribution. We have added re-
spective comment to the Results section.
Also, in order to improve resolution on other sets of

data, we have constructed a histogram showing the
distribution of COGs from different functional classes
over cassette propensity (Additional file 5), and now
provide percentile information regarding position in the
overall COG propensity distribution for each COG in the
Additional file 2.
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The lack of significant co-localization links between
the transcriptional regulation class and the rest of the
carbohydrate metabolism genes requires some attention.
Is the identification of transcriptional regulators as the
members of carbohydrate metabolism cassettes specific
enough? Is the regulation occurs mostly in trans? Or,
maybe, does it indicate that the estimation procedure
itself performs suboptimally?
Author’s response: In our database, transcriptional

regulators were parts of many cassettes, but the overall
cassette propensity of studied transcriptional regulators
was only 35%. We obtained data on all studied genes
from the IMG database, where the COGs were assigned
by comparing protein sequences to COG PSSMs from the
CDD database using RPS-BLAST. This kind of process
might not always be ideal for assigning correct specificity
to transcriptional regulators and may lead to grouping of
regulators responsible for pathways from different
segments of metabolism, despite the initial assignment.
This could have, in turn, lead to overestimation of single-
ton regulators involved in our analysis of carbohydrate
metabolism genes. Moreover, transcription factors are
often duplicated, forming paralogs with same of different
specificity, and hence it is difficult to assign specificity to
regulators acting in trans (co-localization combined with
analysis of binding motifs is a powerful approach, but
requires manual examination of each case). On the other
hand, many transcriptional regulators carbohydrate
metabolism, indeed, work in trans; so their low cassette
propensity is not entirely unexpected.

Additional files

Additional file 1: Bacterial genomes. 665 studied bacterial genomes,
specified by species and strain name and taxonomy data available from
GenBank [19]. (XLS 81 kb)

Additional file 2: Clusters of Ortholous Groups of genes (COGs) used in
the study. Genes marked in green were added after fusion case analysis
described in the Methods section. (XLS 67 kb)

Additional file 3: Distribution of cassette sizes among functional classes.
(JPEG 128 kb)

Additional file 4: Distribution of cassette sizes among bacterial taxa.
(JPEG 103 kb)

Additional file 5: Histogram of distribution of COGs from different
functional classes over cassette propensity. (JPEG 137 kb)

Additional file 6: Co-localization of functional classes. Co-localization of
genes from different functional classes, with P-value less than 0.00001;
mean co-localization numbers in the random simulation are given in
column 4. (XLS 6 kb)

Additional file 7: Co-localization of COGs. Most abundant co-
localization cases of genes from different COGs. COG pairs in bold have
additionally passed the criteria for statistical significance described in the
Methods section. (XLSX 15 kb)
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genomes database
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