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Abstract

Background: The MAQC/SEQC consortium has recently compiled a key benchmark that can serve for testing the
latest developments in analysis tools for microarray and RNA-seq expression profiling. Such objective benchmarks are
required for basic and applied research, and can be critical for clinical and regulatory outcomes. Going beyond the
first comparisons presented in the original SEQC study, we here present extended benchmarks including effect
strengths typical of common experiments.

Results: With artefacts removed by factor analysis and additional filters, for genome scale surveys, the reproducibility
of differential expression calls typically exceed 80% for all tool combinations examined. This directly reflects the
robustness of results and reproducibility across different studies. Similar improvements are observed for the top
ranked candidates with the strongest relative expression change, although here some tools clearly perform better
than others, with typical reproducibility ranging from 60 to 93%.

Conclusions: In our benchmark of alternative tools for RNA-seq data analysis we demonstrated the benefits that can
be gained by analysing results in the context of other experiments employing a reference standard sample. This

allowed the computational identification and removal of hidden confounders, for instance, by factor analysis. In itself,
this already substantially improved the empirical False Discovery Rate (eFDR) without changing the overall landscape

of sensitivity. Further filtering of false positives, however, is required to obtain acceptable eFDR levels. Appropriate
filters noticeably improved agreement of differentially expressed genes both across sites and between alternative

differential expression analysis pipelines.

Reviewers: An extended abstract of this research paper was selected for the CAMDA Satellite Meeting to ISMB 2015
by the CAMDA Programme Committee. The full research paper then underwent one round of Open Peer Review
under a responsible CAMDA Programme Committee member, Lan Hu, PhD (Bio-Rad Laboratories, Digital Biology
Center-Cambridge). Open Peer Review was provided by Charlotte Soneson, PhD (University of Zirich) and Michat
Okoniewski, PhD (ETH Zdrich). The Reviewer Comments section shows the full reviews and author responses.
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Background

The MAQC [1] and SEQC [2, 3] consortia have over the
years compiled key resources for testing the performance
of experimental platforms and computational analysis
tools for expression profiling. Such objective benchmarks
are required for effective research as well as clinical and
regulatory applications. In this study, based on the latest
SEQC data sets, we investigate the sensitivity, specificity,
and reproducibility of RNA-seq differential expression
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calls. Going beyond the first comparisons presented in
the original SEQC study [2, 3], we here present extended
benchmarks including effect strengths typical of common
experiments. In particular we focus on comparisons of
SEQC standardized reference samples A and C, where C
consists of 3 parts of sample A and 1 part of sample B
(see Methods) [1, 2]. This pair of samples has the smallest
average effect strength (signal) amongst the different pos-
sible pair-wise comparisons of the MAQC/SEQC samples
A, B, C, and D, allowing us to also consider perfor-
mance for more subtle signals, such as expression changes
for typically weakly expressed molecular switches. For a
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comprehensive benchmark of alternative methods for dif-
ferential expression analysis, we here consider all 55,674
known human genes [4], for an unbiased assessment of
the impact of RNA-seq pipeline choice. Our comparison
of selected tools represents the wide range of algorithms
currently available for gene expression estimation and
differential expression calling, reflecting the rapid devel-
opment of the field. The studied metrics cover sensitivity,
specificity, and reproducibility. Our benchmark tests both
the consistency of results from genome wide screens or
surveys as well as the robust identification of the top
ranked candidates with the strongest relative expression
change.

Methods

Experimental study design and data

This study builds on the main synthetic benchmark
data set of the SEQC consortium, where known mix-
tures of standardized reference samples have been
sequenced by multiple platforms in a setup controlling
for laboratory site specific effects [2]. In particular, the
well-characterized reference RNA samples A (Universal
Human Reference RNA) and B (Human Brain Reference
RNA) from the MAQC consortium have been used [1].
Samples A and B were then mixed in known ratios, 3:1
and 1:3, to construct samples C and D, respectively. In this
data analysis benchmark our results are based on the sub-
set of samples A and C at six Illumina HiSeq 2000 sites
where each sample has been sequences with 4 technical
replicates.

Gene expression profiling

In this study the AceView gene models have been used [4].
We previously have shown that, despite its age, AceView
remains the most comprehensive and accurate annota-
tion database for human [2]. The expression profiles of
human AceView genes have been assessed by selected
tools representing the state of the art in expression profil-
ing analysis. Expression estimates are represented in the
form of read count equivalents. r-make (based on STAR)
[5] and Subread [6] performs an alignment of sequenced
reads to the genome, followed by counting reads that fall
into known gene regions. The popular TopHat2 tool [7]
with the ‘~G’ option pursues a hybrid approach, where
based on the provided gene model the virtual transcrip-
tome is constructed and reads are first aligned to it, in line
with our earlier analysis first showing that this improves
the precision of expression estimates [8]. In the next steps
these aligned reads are mapped back to the genome and
the remaining not aligned yet reads are aligned to the
genome sequences. Gene and transcript expression lev-
els are then estimated using the matching Cufflinks2
[9] tool that processes the genome-based alignments. In
contrast, BitSeq [10] directly uses the transcriptome
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alignments (here we have aligned the reads to the tran-
scriptome with use of SHRiMP2 [11]) to assess transcript
abundances. These are then summarized to obtain expres-
sion level estimates for genes. kallisto [12] takes an
alignment free approach, where transcript abundances are
estimated directly from reads based on the idea of pseudo-
alignment for rapidly determining the compatibility of
reads with target transcript sequences, without the need
for a full alignment. This lightweight approach has been
motivated by Sailfish [13] which is not considered here.
Transcript expression estimates are again summarized to
obtain expression estimates for genes. This approach of
obtaining gene level estimates from transcript level results
has recently been found to improve gene-level inference in
differential analyses for RNA-seq [14]. Details of how all
tools were run can be found in the Supplementary materi-
als of the original SEQC/MAQC-III study; [2] kallisto
has been used with default parameters.

Factor analysis

Factor analysis was performed to remove unwanted varia-
tion. We examined the tool svaseq [15], which provides
SVA [16] with adaptations for RNA-seq data. SVA [16]
together with PEER [17]were the leading preprocessing
tools of the original SEQC study [3]. Gene expression esti-
mates for all samples were used to detect latent variables.
Co-variates associated with sample type were included
for inference and the inferred hidden confounders were
removed from the signal.

Differential expression calls

In differential expression analysis of samples A/C we can
focus on genes down-regulated in sample A because the
effect strength of any potential up-regulation is limited to
maximum of 4/3-fold increase by design, as sample C is 3
parts of sample A and one part of sample B. We therefore
expect no up-regulated genes satisfying commonly used
thresholds for effect strength.

We examined the effect of method choice in differen-
tial expression analysis by comparison of three popular
alternatives: 1imma [18], edgeR [19, 20], and DESeq2
[21], each of which has been run with default set-
tings. For instance, 1imma by default includes TMM[20]-
normalization and voom[22] preprocessing. The FDR was
controlled by Benjamini-Hochberg adjustment for mul-
tiple testing. Genes were called differentially expressed
for ¢ < 5%. Additional filter rules were optionally
applied, requiring a minimum effect strength of 1 (i.e.,
|log,(FC)| > 1, meaning a fold change larger than
2). In addition, the optional filter required an Average
Expression above a specific threshold. This threshold was
defined for each combination of methods for expres-
sion estimation and differential expression calling so as
to equalize intra-site sensitivity after svaseq correction.
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It was set so that for an average site 3,000 genes were
identified as differentially expressed. The same thresh-
olds have been applied to inter-site differential expression
calls. Once the effect strength filter has been applied, even
dropping the 45% least strongly expressed genes removes
only 16% of the remaining differential expression calls
(Tables 1 and 2), which constitutes just 2.5% of all AceView
genes.

Empirical false discovery rate

Taking advantage of the SEQC study design [2]we can
infer an empirical False Discovery Rate (eFDR) by com-
paring the amount of genes identified as differentially
expressed in the cross-site same—same comparison (A-vs-
A and C-vs-C) with the differentially expressed genes in
the A-vs-C comparison: eFDR = (A} —vs— Ay +C; —vs—
Cy)/(A1 —vs—Cy+ Ay —vs— Cy), where: Xy —vs — Y is
the number of genes identified as differentially expressed
when comparing sample X from site N with sample Y
from site M.

Table 1 Differential expression calls

EE DEC raw sva sva+FC sva+FC+AE
r-Make limma 7226 8078 4498 [56%)] 3058 [38%]
edgeR 7314 8720 4908 [56%)] 3058 [35%]
DESeq?2 6974 8380 4552 [54%)] 3060 [37%]
Subread limma 9772 9557 4795 [50%] 3016 [32%)]
edgeR 10202 10522 5398 [51%] 3036 [29%)]
DESeg2 9308 9709 4662 [48%] 3052 [31%)]
TopHat2/  limma 8854 8782 4450 [51%] 3058 [35%]
Cufflinks2 edgeR 7329 7104 4386 [62%) 3018 [42%]
DESeq2 8536 8489 4077 [48%)] 3061 [36%]
SHRIMP2/ limma 8952 8276 4086 [49%)] 3045 [37%]
BitSeq edgeR 8791 8663 4526 [52%)] 3025 [35%]
DESeq2 7590 7878 3804 [48%] 3038 [39%]
kallisto limma 8984 8851 4410 [50%] 3022 [34%]
edgeR 9356 9284 4666 [50%] 3039 [33%]
DESeq2 8016 8296 3915 [47%] 3044 [37%]

The table displays the number of differential expression calls, reflecting sensitivity,
as obtained after specific analysis steps. For all combinations of methods for
expression estimation and differential expression calling, we compare the typical
numbers of genes classified as differentially expressed (g < 5%). The columns show
median results across sites for: raw expression estimates; expression estimates after
svaseq correction; expression estimates after svaseq correction and application
of additional filters for effect strength, i. e, fold-change (| log, FC| > 1); and
expression estimates after svaseq correction and application of additional filters
for effect strength (| log, FC| > 1) and minimum average expression (AE thresholds
in Table 2). The last two columns also give a percentage relative to the numbers of
genes found after svaseq correction and no additional filters. This highlights that
the additional filtering for weak expression removes only a further 16% of genes
originally classified as differentially expressed in addition to the ones already
removed by the usual filters for log-fold change, affecting just 2.5% of all genes

Page 3 0of 12

Table 2 Average expression thresholds

EENDEC limma edgeR DESeq2
Subread 426 46.6 454
r-Make 426 48.1 46.8
TopHat2/Cufflinks2 426 47.8 46.1
SHRIMP2/BitSeq 416 47.8 45.1
kallisto 413 464 428

Our benchmark compares the specificity and reproducibility of differential
expression analysis for different tools. For a meaningful comparison, all tools are run
to give the same sensitivity. For each combination of methods for expression
estimation (EE) and differential expression calling (DEC), a threshold for removing
the most weakly expressed genes was therefore determined to adjust sensitivity as
required. The percentile of genes filtered is shown for which 3,000 genes were
found at an average site (g < 5% and absolute log-fold change larger than one)

Inter-site reproducibility

The overall agreement between lists of differentially
expressed genes has been calculated as the ratio of list
intersection and list union. The agreement of the top N
candidates has been calculated as the ratio of the length
of the intersection of the top N genes from the com-
pared lists (differentially expressed candidates have been
order by effect strength) divided by N. The direction of
fold change is taken into account: genes showing opposite
directions of change are considered not to agree, and are
thus excluded for computing the list intersection assess-
ing agreement. All gene lists are sets, either including or
excluding gene names, with no gene counted more than
once.

Results

In our benchmark analysis we investigated a wide range of
tools for differential expression analysis. This analysis typ-
ically includes two steps, that are sometimes performed by
different tools: estimation of gene/transcript expression
levels, and significance calls for differential expression.
Our comparative benchmark assessed a representative
selection of tools for expression estimation, includ-
ing r-make [5], Subread [6], TopHat2/Cufflinks2
[7,9], SHRiMP2/BitSeq[10,11],andkallisto [12],in
combination with several established tools for differential
expression calling, including 1imma [18, 22, 23], edgeR
[19, 20], and DESeqg2 [21]. While new tools are rapidly
emerging in the field, the selection in our comparative
survey covers the main approaches in the current state
of the art of RNA-seq analysis for differential expression
analysis.

Differential expression call sensitivity

Depending on the methods employed, the numbers of
genes called differentially expressed vary roughly between
6 and 11 thousand (Fig. 1 and Table 1). To investigate this
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Fig. 1 Intra-site differential expression calls. At each site, we identify
genes differentially expressed between samples A and C. The y-axis
[DEG] shows the number of significant differential expression calls

(g < 5%), reflecting sensitivity. Violin plots summarize the results for
all sites. Plots for various methods of expression estimation are shown
along the x-axis, with methods for differential expression calling
indicated by colour

further we examined M(A) plots, where genes are repre-
sented by dots coloured according to which methods iden-
tified them as differentially expressed. Figure 2 shows typ-
ical M(A) plots observed. In an A-vs-C comparison (left
panel) we can identify areas where different methods are
particularly sensitive. Variations in the sensitivity of meth-
ods for different effect strengths (M) and gene abundances
(A) reflect the range of alternative approaches to data nor-
malization and statistics used for differential expression
calling. Among the examined methods, DESeq?2 seems to
be the most conservative in calling genes of low average
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expression differentially expressed. This may be appropri-
ate considering the relatively high variance of low count
data that is characteristic of weakly expressed genes in
RNA-seq [8]. Moreover, a same—same comparison (C-vs-
C, Fig. 2 right panel) demonstrates that weakly expressed
genes are also more strongly affected by random site-to-
site variation, which we have shown to be largely due
to the library preparation step [3]. Genes identified as
differentially expressed in this same—same comparison
constitute false positives in a search for biologically rel-
evant differences, allowing us to infer an empirical False
Discovery Rate (eFDR) from this benchmark to also assess
specificity.

Specificity improvements

We can calculate an empirical False Discovery Rate
(eFDR) by comparing the cross-site sensitivities for A-
vs-C, C-vs-C, and A-vs-A comparisons (Fig. 3 and Fig. 4
left panel). Notably, over two thousand false positives
were identified in cross-site same—same comparisons (A-
vs-A or C-vs-C), irrespective of the employed computa-
tional analysis tools. In some cases over ten thousand
false positives were found, approaching the number of
differential expression calls in A-vs-C comparisons. Con-
sequently, without further processing, high eFDRs are
observed. The number of false positives can be reduced
when unwanted variation is removed [16, 17]. For this,
experimental results must be analysed in the context of
similar experiments, e.g., from public repositories. In
our study we can use different sequencing sites to pro-
vide such a context. Applying svaseq [15] to remove
unwanted variation we could achieve a drastic reduction
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Fig. 2 Traditional M(A) plots for A-vs-C and A-vs-A comparisons. The left panel displays the overlap of differential expression calls by different
methods for an A-vs-C comparison, while the right panel shows results for a C-vs-C comparison. Partial agreement between different methods is
indicated by different colours (see legend). Grey clouds represent unregulated genes. Plots show data for a typical site for read counts after

normalization but without correction by factor analysis or any filters

5 0 5 10 15
average expression [log2]




tabaj and Kreil Biology Direct (2016) 11:66

Page 5 of 12

o
a

DEG [thousand]
5
[
|=—s—
DEG [thousand]
5
[

o o
=

=

=) o
—

——
(S
=) o
e
—

limma edgeR DESeq2
O AvsC O AvsC O AvsC
201 m AvsA 201 m AvsA 201 m AvsA
O CvsC O CvsC O CvsC

a

=)

R E—

]|

DEG [thousand]

r-Make
Subread
TopHat2G/
BitSeq
kallisto
r-Make

Cufflinks2
SHRIMP2/

Fig. 3 Inter-site differential expression calls. We identify genes differentially e

Subread
TopHat2G/

Cufflinks2
SHRIMP2/
BitSeq
kallisto
r-Make
Subread
TopHat2G/
Cufflinks2
SHRIMP2/
BitSeq
kallisto

xpressed between samples from alternative sites. The y-axis [DEG] shows

the number of differential expression calls (g < 5%). Violin plots summarize the results for all possible pairs of alternative sites. Each panel shows
data for a particular method of differential expression calling. Plots for various methods of expression estimation are shown along the x-axis. Colour
indicates the samples compared: A-vs-C (cyan), A-vs-A (magenta), and C-vs-C. High counts in same-same comparisons reflect a lack of specificity

of false positives (Fig. 5). This was achieved without a
change to the overall sensitivity landscape of the A-vs-C
comparison (see Table 1 for intra-site and Fig. 5 vs Fig. 3
for inter-site A-vs-C comparisons). As a result the eFDR
could be improved from 30 — 50% to typically below 10%
(Fig. 4 left vs middle panel). Even after svaseq, however,
we observed some instances of eFDRs up to 50% (outlier
sites for TopHat2/Cufflinks?2). For reliable differen-
tial expression analysis, a further improvement of eFDR
levels is thus needed. Additional filtering steps have been
successfully used to that effect [1-3, 24]. For RNA-seq,
unlike for microarrays, beyond filters for small effect size
(fold change) also filters for small expression levels are
necessary. This is needed in order to remove False Pos-
itives arising from the large scatter for weakly expressed

transcripts, which can be seen as a ‘comet head’ in typi-
cal M(A) plots (Fig. 2). With appropriate additional filters,
the eFDR could consistently be reduced below 5%. Except
for the combination of TopHat2/Cufflinks2 with
edgeR, the typical eFDR even dropped below 1% (Fig. 4).

Effects on implicated genes

The goal of many studies in the medical and the
life sciences is to identify pathways of interest by
differential expression profiling. Comprehensive lists
of differentially expressed genes which can reliably
be reproduced by other laboratories are central to
this widely employed approach. In site-to-site com-
parisons of the genes for which significant differ-
ential expression was identified, agreement ranged
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Fig. 4 Empirical False Discovery Rate (eFDR). We estimate an eFDR by dividing the number of differential expression calls in inter-site A-vs-A and
C-vs-C comparisons by the number of calls in A-vs-C comparisons. The left panel shows the original results for g-value thresholding only (no
additional processing or filters). In the middle panel, hidden confounders have been removed by svasegq. In the right panel, additional filters have
also been applied. Plots for various methods of expression estimation are shown along the x-axis, with methods for differential expression calling

indicated by colour
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Fig. 5 Inter-site differential expression calls after removing unwanted variation with svaseq. We identify genes differentially expressed between
samples from alternative sites. The y-axis [DEG] shows the number of differential expression calls (g < 5%). Violin plots summarize the results for all
possible pairs of alternative sites. Each panel shows data for a particular method of differential expression calling. Plots for various methods of
expression estimation are shown along the x-axis. Colour indicates the samples compared: A-vs-C (cyan), A-vs-A (magenta), and C-vs-C. High counts
in same-same comparisons reflect a lack of specificity. Note the improvements relative to Fig. 3

from 70 — 76%, depending on the employed meth-
ods. Application of additional filters for effect size
and abundance improved agreement to 79 — 85%.
Similarly, in method-to-method comparisons, agreement
was typically not higher than 64% even after application
of svaseq (cf. Fig. 2a). The additional filters improved
this to 86 — 91%. Notably, however, research interest is
often focused on the genes with the strongest fold change.
Using so-called ‘violin plots’ to represent the distribu-
tions of results, Fig. 6 plots the percentage agreement
across sites (y-axis) for the N top ranked differentially
expressed genes sorted by effect strength for different N
(as indicated on the x-axis). Each panel presents results
for a different method of differential expression calling,
while different colours correspond to different methods
for expression estimation (see legend). With the additional
filters, there is generally good agreement across sites for
the 1000 top ranked genes, for all methods. The reliabil-
ity with which methods identify short lists of the 50—-100
genes of highest interest with the strongest effect size
(largest fold change), however, varies considerably. Such
variation in performance can be understood as resulting
from the different assumptions and models underlying
each computational analysis pipeline, including both the
steps of estimating expression levels and of finally making
differential expression calls (involving explicit or implicit
noise models, £).

Discussion and conclusions

High-throughput expression profiling is a fast moving
field both in terms of innovation in measurement tech-
nology as well as advances on the data analysis side.
Especially for RNA-seq a plethora of new tools is being
developed, and the selection of an effective pipeline is
not trivial [24]. Going beyond the comparisons of the

original SEQC study [2, 3], we here present comprehen-
sive benchmark results covering all known genes and a
range of effect sizes typically observed in experiments.
The different expression level distributions observed in
experiments reflect systemic traits of biological samples
and any influence of hidden factors connected with site
or protocol related variations. Differences in the charac-
teristics of signal noise and bias may then affect the per-
formance of specific methods for differential expression
analysis, depending on their underlying statistical mod-
els. We hence report in detail on the observed sensitivity,
specificity, and reproducibility of a range of popular com-
putational methods for differential expression analysis by
RNA-seq.

The sensitivity was in general determined by the chosen
approach for expression level estimation, with the cor-
responding effect dominating over any variation due to
method choice for differential expression calls (two-way
ANOVA, p < 5%). An analysis of results in the context
of related experiments allowed the application of modern
tools [16, 17] to identify and remove hidden confounders,
yielding a much improved eFDR without affecting the
overall sensitivity landscape. Thus, we have demonstrated
the effectiveness of factor analysis for compensating site-
specific artefacts. Reliable differential expression calls
from RNA-seq, however, still required additional filters
of genes with low abundances or small effect strengths,
in order to address initially high rates of false positives.
We could demonstrate clear and drastic improvements for
both genome-scale surveys as well as the identification
of genes with strong expression changes, giving priori-
tized candidates for further investigation. Notably, with
the appropriate filters we could achieve good agreement
across sites and also between different pipelines, making
algorithm choice less critical in general.
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Fig. 6 Inter-site reproducibility of differential expression calls. We assess the reproducibility of the top ranked differentially expressed genes across
sites. The y-axis plots the percentage of genes (POG) identified as differentially expressed in the same direction and with significance in both
alternative sites compared. We investigate this for the 50 top-ranked genes on the left of the plot, and consider larger lists going to the right along
the x-axis. The violin plots summarize the results for all possible pairs of alternative sites. The observed pipeline specific effects were more
pronounced for the shorter lists, which typically are of more immediate relevance in a search for leads or biomarkers. Agreement for the top 1000
genes was above 90% irrespective of pipeline choice. Results for BitSeqgor kallisto and DESeqg2 were also robust for shorter lists. Hidden
confounders were removed from expression estimates by svaseq, and additional filters for average expression and effect strength were applied
for differential expression calls. Genes meeting criteria for differential expression calls were ranked by effect size (| log, FC|)

Still, our benchmark results bear out a number of
trends, and comparisons thus support several con-
servative recommendations. Notwithstanding the
potential utility for transcript discovery, pipelines rely-
ing on TopHat2/Cufflinks2 for an estimation of
expression levels performed the worst, while newer
tools such as BitSeq or kallisto in general per-
formed better. It is noteworthy that even when novel
transcript discovery is desired, better performance
can be obtained by a separate discovery step and
subsequent quantification and differential expression
analysis for known and newly identified transcripts
[8]. For identification of the top-ranked differentially
expressed genes, DESeq2 reliably performed well.
Prioritization of candidates for further examination
typically focuses on the most strongly differentially
expressed genes. For the top-ranked genes, a combi-
nation of kallisto or BitSeq with DESeq2, factor
analysis, and additional filters performed particularly
well.

Outlook

In a comparative benchmark extending the FDA SEQC
reference study we identified effective RNA-seq data
processing pipelines with the best performance in
differential expression profiling. We could achieve a
substantial improvement of specificity and reproducibil-
ity — all the while maintaining good sensitivity. While
this report focused on differential expression at the
gene level, RNA-seq also allows the analysis of alter-
native gene transcripts. Although the functional rele-
vance of alternative transcripts has long been recog-
nized [25], a large fraction are only weakly expressed.
This brings additional challenges in dealing with the
disambiguation of reads, sequencing noise, and biases
in the estimation of expression levels and differen-
tial analysis. Consequently, a study of the sensitivity,
specificity, and reproducibility of differential expres-
sion profiling that discriminates alternative transcripts is
beyond the scope of this study and will be examined
elsewhere.
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Reviewers’ comments

Reviewer’s report 1: Michat Okoniewski, PhD

ID Scientific IT Services, ETH Ziirich

The manuscript by P. Labaj and D. Kreil is a creative and
educative extension of the SEQC study. The SEQC was
designed to be a multi-lab effort and to prove the utility of
RNA-seq, which was finally successful and presented the
many-sided view of the data analysis, interpretation and
use in biomedical research.

The study was so rich in information, that the main
architects of it as well as external researchers can still find
additional gems of knowledge doing a creative re-analysis
of the datasets. In this case, the authors undertook the
non-trivial challenge of running in a systematic way sev-
eral major types of analysis and comparing them in terms
of differentially expressed genes using intersection and
unions of the lists of genes.

Conceptually, it is non-trivial to design the analysis
in such a way that it is possible, because the analysis
pipelines have various approach to primary (alignment)
and secondary (statistical) analysis as well as the output
of the tools is normally not directly comparable. Still, the
authors solved those data science challenges successfully
and could follow up with additional data analysis experi-
ments for to compare the methods and use of additional
tools improving the outcome, such as factor analysis or
making the final gene lists more precise by filtering.

The authors did also good job in selecting the appro-
priate dataset, which included more than usual amount of
“subtle” gene expression changes, that do not have a high
fold change, but should be detectable by clever statistical
methods.

The main advantages of the manuscript are: the
overview and comparison across methods and the educa-
tive results and good practices on making the RNA-seq
more precise - as one of the main problems here is the lack
of objective reference together with the need to find the
“biological truth”

Authors are definitely experts in the area, so most defi-
ciencies of the manuscript come form the fact that certain
aspects are too obvious for them and are explained too
briefly or not at all. This can be at times problematic for
the educational aspect of the paper, but not for the find-
ings and all those are in fact minor issues. In particular:

e (abstract) would be worth mentioning at once that
this is data analysis benchmark (not eg RNA-seq
wet-lab one)

Author response: We have extended the text
accordingly: “In our benchmark of alternative tools
for RNA-seq data analysis we demonstrate the
benefits that can be gained, in particular, by analysing
results in the context of other experiments employing
a reference standard sample.”
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o (abstract) abbreviation “eFDR” is introduced without
explanation. It happens also to some other
abbreviations, eg “POG” in Fig 6.

Author response: We have extended the text
accordingly: “In itself, this already substantially
improves the empirical False Discovery Rate
(eFDR) without changing the overall landscape of
sensitivity.” and “The y-axis plots the percentage of
genes (POG) identified as differentially expressed in
the same direction and with significance in both
alternative sites compared.”

e (abstract) would be good to tell somehow more
descriptively what is reproducibility in this context
Author response: “With artefacts removed by factor
analysis and additional filters, for genome scale
surveys, the reproducibility of differential
expression calls typically exceeds 80% for all tool
combinations examined.”

e (abstract) “analysing results in the context of other
experiments” - is not clear and slightly misleading
Author response: We have modified the text
accordingly: “In our benchmark of alternative tools
for RNA-seq data analysis we demonstrate the
benefits that can be gained, n particular, by analysing
results in the context of other experiments
employing a reference standard sample.”

e (introduction) would be good to explain more why
“considering subtle signals” is important
Author response: We have extended the text
accordingly: “This pair of samples has the smallest
average effect strength (‘signal’) amongst the different
possible pair-wise comparisons of the MAQC/SEQC
A, B, C, and D, allowing us to also consider
performance for more subtle signals, such as
expression changes for typically weakly expressed
molecular switches.”

e (introduction) would be good to explain more why
AceView was chosen for gene models, not eg.
Ensembl or NCBI RefSeq
Author response: We have added the according
explanation in the Methods section: “In this study
the AceView gene models have been used. We
previously have shown that, despite its age,
AceView remains the most comprehensive and
accurate annotation database for human.”

e (introduction and methods) the authors should not
assume the knowledge of details of SEQC study and
explain what samples A and C are
Author response: We have added the extended
explanation in the Methods section: “This study
builds on the main synthetic benchmark data set of
the SEQC consortium, where known mixtures of
standardized reference samples have been sequenced
by multiple platforms in a setup controlling for
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laboratory site specific effects. In particular, the
well-characterized reference RNA samples A
(Universal Human Reference RNA) and B
(Human Brain Reference RNA) from the MAQC
consortium have been used. Samples A and B were
then mixed in known ratios, 3:1 and 1:3, to
construct samples C and D, respectively. In this
data analysis benchmark our results are based on
the subset of samples A and C at six Illumina HiSeq
2000 sites where each sample has been sequences
with 4 technical replicates.”

(methods) what were the parameters of counting in
r-make and subread?

Author response: Details of how the tools have been
run can be found in the supplement to the SEQC
manuscript (doi:10.1038/nbt.2957), and the revised
text states: “Details of how all tools were run can be
found in the Supplementary materials of the original
SEQC/MAQC-III study; kallisto has been used with
default parameters.”

(methods) the explanation on what tophat -G does is
not very clear and accurate

Author response: We have extended the explanation
of what TopHat does when used with -G option:
“The popular TopHat2 tool with the ‘~G” option
pursues a hybrid approach, where based on the
provided gene models the virtual transcriptome is
constructed and reads are first aligned to it, in
line with our analyses showing that this improves
the precision of expression estimates. In the next
steps these aligned reads are mapped back to the
genome and the remaining not aligned yet reads
are aligned to the genome sequences.”

(methods) BitSeq as “provided by SHRIMP2” is also
not appropriate description

Author response: We have improved the method
description accordingly: “In contrast, BitSeq
directly uses the transcriptome alignments (here we
have aligned the reads to the transcriptome with
use of SHRiMP2) to assess transcript abundances.”
(methods) Perhaps more precise and explicit
categorisation of the tools would be informative. A
schema/data-flow of the workflows with data
formats, tools and output integration/comparison
methods would help to understand this section
Author response: The Supplementary Fig. S1
provides the requested schema.

(methods) citing sailfish would be useful, even if
kallisto was chosen as representative in this software
category

Author response: Appropriate reference has been
added.

(results) the first paragraph is in fact repeated story of
methods
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Author response: As accurately observed by the
reviewer, the first paragraph of the Results section
intends to summarize the scope of the reported
benchmark work. A detailed description of the tools
is then provided in the Methods section.

e (results) perhaps an explanation of the need for small
expression level filters would be informative
Author response: We have extended the section in
question accordingly: “For RNA-seq, unlike for
microarrays, beyond filters for small effect size (fold
change) also filters for small expression levels are
necessary. This is needed in order to remove False
Positives arising from the large scatter weakly
expressed transcripts, which can be seen as a
‘comet head’ in typical M(A) plots (cf. Fig. 2).”

e (results - effects on implicated genes) would be good
if authors could at least hypothesise what the sources
of disagreement in the methods come from, as this is
a typical conceptual problem for RNA-seq analysis
beginners
Author response: We have added the possible
explanation at the end of the subsection: “Such
variation in performance can be understood as
resulting from the different assumptions and
models underlying each computational analysis
pipeline, including both the steps of estimating
expression levels and of finally making
differential expression calls (involving explicit or
implicit noise models, {).”

e (conclusions) criticising tophat/cufflinks is probably
too harsh, as the primary purpose of cufflinks is novel
transcript discovery, not the quantitation
Author response: We agree with the reviewer, in that
early versions the Cufflinks may have been developed
with the primary aim of novel transcript discovery.
The software then has developed into a very popular
tool not only for transcript discovery but also for
expression quantification and differential expression
calling. On the Cufflinks webpage, the first sentence
already states: “Cufflinks assembles transcripts,
estimates their abundances, and tests for differential
expression and regulation in RNA-seq samples.” We
have revised our text to clarify: “Notwithstanding
the potential utility for transcript discovery,
pipelines relying on TopHat2/Cufflinks2 foran
estimation of expression levels performed the worst,
while newer tools such as BitSeqor kallisto
performed better.”

Reviewer’s report 2: Charlotte Soneson, PhD

Institute of Molecular Life Sciences, University of Zurich

In this manuscript, Labaj and Kreil are comparing var-
ious abundance estimation and differential expression
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pipelines using RNA-seq data from the SEQC consor-
tium. They consider five abundance estimation methods
and three differential expression approaches, covering
a large part of the most common workflows used in
practice. The main conclusions are that the sensitivity is
mainly dependent on the choice of abundance estimation
method, and that accounting for hidden confounders
together with filtering out genes with low abundance
or fold change can improve FDR control and agreement
across methods and experiments.

The manuscript has the potential of being informa-
tive to the community, but would benefit from a better
description of the data as well as the employed methodol-
ogy. For example:

e a more thorough description of the subset of the
SEQC data that was used (number of replicates from
each site, type of replicate (technical)).

Author response: We have added the extended
explanation in the Methods section: “This study
builds on the main synthetic benchmark data set of
the SEQC consortium, where known mixtures of
standardized reference samples have been sequenced
by multiple platforms in a setup controlling for
laboratory site specific effects. In particular, the
well-characterized reference RNA samples A
(Universal Human Reference RNA) and B
(Human Brain Reference RNA) from the MAQC
consortium have been used. Samples A and B were
then mixed in known ratios, 3:1 and 1:3, to
construct samples C and D, respectively. In this
data analysis benchmark our results are based on
the subset of samples A and C at six [llumina HiSeq
2000 sites where each sample has been sequenced
with 4 technical replicates.”

e it would be very useful to have (e.g.) an R markdown
file outlining the whole analysis. That would, for
example, make it unambiguous what is meant by
“default settings” for the differential expression calling
methods and precisely how svaseq was applied.
Author response: The appropriate R code has been
provided as Supplementary Material in Additional file 1.

e how were abundances from kallisto/BitSeq combined
into gene-level “read count equivalents”? Le., were
the estimated read counts summarized directly, or
were TPM estimates aggregated and then scaled to
read count equivalents? This could potentially make a
big difference, especially in the presence of
differential transcript usage between conditions.
Author response: For pipelines where only transcript
expression abundances are provided (BitSeq and
kallisto), gene-level ‘read count equivalents’ were
obtained by summing up the transcript-level read
counts equivalents’. Considering that different
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approaches can result not only in differences in
expression estimates but also in varying differential
expression calls, we treated all tools alike to obtain
(estimated) read counts without any conversions. We
are well aware of the fundamental differences
between ‘raw reads counts’, R/FPKM, RPM and TPM
measures, and these were extensively studied already
elsewhere [e.g. Dillies et al. (2012) Brief in Bioinf
14(6):671-683; Wagner at al. (2012) Theory in
Bioscience, 131:281]. In this manuscript we use raw
read counts’ or ‘raw read equivalents’ (for tools
providing expression estimates for alternative
transcripts not genes) on one hand for simplicity, and
on the other hand to facilitate a fair comparison of
the alternative differential expression methods. Many
of these were originally designed for ‘raw read counts’
by their authors.

it could be clearer that the focus is on genes that are
downregulated in the A sample (it says just
“downregulated”).

Author response: Text has been adjusted accordingly.
“In differential expression analysis of samples A/C we
can focus on genes down-regulated in sample A
because the effect strength of any potential
up-regulation is limited to a maximum of a 4/3-fold
increase by design, as sample C is 3 parts of sample A
and one part of sample B. We therefore expect no
up-regulated genes satisfying commonly used
thresholds for effect strength.”

what does it mean that “the direction of fold change
is taken into account” for the calculation of inter-site
reproducibility? If a gene is considered upregulated at
one site and downregulated at another, is it counted
twice in the union of the lists?

Author response: In case of situation when gene is
considered upregulated at one site and
downregulated at another, this gene is not counted as
agreed between the sites, although being on both lists
of (topN) differentially calling genes. We have
modified the description to make this point clearer.
“The overall agreement between lists of differentially
expressed genes has been calculated as the ratio of list
intersection and list union. The agreement of the top
N candidates has been calculated as the ratio of the
length of the intersection of the top N genes from the
compared lists (differentially expressed candidates
have been order by effect strength) divided by N. The
direction of fold change is taken into account:
genes showing opposite directions of change are
considered not to agree, and are thus excluded for
computing the list intersection assessing
agreement. All gene lists are sets, either including
or excluding gene names, with no gene counted
more than once.”
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e how were the M- and A-values shown in Fig. 2
determined? Are they taken from the output of one of
the differential expression methods or calculated
independently of these?

Author response: For a comparative visualization of
differential expression calls across methods, on a
canvas of M- and A- values from limma, we contrast
which genes have specifically been called as a
differentially expressed by individual methods. While
the choice of M(A) values from limma is in a sense
arbitrary, as M- and A- values of specific genes differ
between methods because of different internal
normalization procedures, some common values
needed to be chosen for purposes of comparative
display, with no effect on qualitative results.

e how, precisely, was the eFDR calculated?

Author response: We have added a dedicated
subsection in the Methods: “Taking advantage of the
SEQC study design we can infer an empirical False
Discovery Rate (eFDR) by comparing the amount
of genes identified as ‘differentially expressed’ in
the cross-site same—same comparison (A-vs-A and
C-vs-C) with differentially expressed genes in the
A-vs-C comparison: eFDR = (A; —vs — Ay + C1 —
vs — Co) /(A1 — vs — Cy + Ay — vs — C1), where:

XN — vs — Y1 is the number of genes identified as
differentially expressed when comparing sample
X from site N with sample Y from site M.”

e which values were used to perform the abundance
filtering? The average (normalized?) counts across all
samples?

Author response: The M and A values computed in
each specific pipeline have been used for filtering.

e DESeq2 performs a filtering of lowly abundant genes
by default. How does that automatically determined
threshold compare to the threshold imposed by the
explicit abundance filter applied by the authors?
Author response: The reviewer has raised a very
interesting question. The focus of this manuscript,
however, was in a comparison of tools employed with
their default settings as recommended by their authors.
We will further investigate this idea in future work.

e Minor points:

— In the last sentence of the Discussion, “will ve”
should be “will be”

— In table 2, should the last sentence read
“absolute log-fold change larger than one”
rather than “absolute log-fold change larger
than two”?

— Infigures 3 and 5, the y-axis label says
[tousand] instead of [thousand]

Author response: The pointed out typos have been
corrected. We also have double checked the rest of
the text to eliminate other mistakes and typos.
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Additional file

Additional file 1: Additional file 1 shows a schema of how the examined
tools were employed. Moreover, the R code is provided that was used to
run svaseq and call the various tools for differential expression analysis.
(PDF 262 kb)
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