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Abstract

Background: While the local-mode HMMER3 is notable for its massive speed improvement, the slower glocal-
mode HMMER2 is more exact for domain annotation by enforcing full domain-to-sequence alignments. Since a unit
of domain necessarily implies a unit of function, local-mode HMMER3 alone remains insufficient for precise function
annotation tasks. In addition, the incomparable E-values for the same domain model by different HMMER builds
create difficulty when checking for domain annotation consistency on a large-scale basis.

Results: In this work, both the speed of HMMER3 and glocal-mode alignment of HMMER2 are combined within the
xHMMER3x2 framework for tackling the large-scale domain annotation task. Briefly, HMMER3 is utilized for initial
domain detection so that HMMER2 can subsequently perform the glocal-mode, sequence-to-full-domain
alignments for the detected HMMER3 hits. An E-value calibration procedure is required to ensure that the search
space by HMMER2 is sufficiently replicated by HMMER3. We find that the latter is straightforwardly possible for
~80% of the models in the Pfam domain library (release 29). However in the case of the remaining ~20% of
HMMER3 domain models, the respective HMMER2 counterparts are more sensitive. Thus, HMMER3 searches alone
are insufficient to ensure sensitivity and a HMMER2-based search needs to be initiated. When tested on the set of
UniProt human sequences, xHMMER3x2 can be configured to be between 7× and 201× faster than HMMER2, but
with descending domain detection sensitivity from 99.8 to 95.7% with respect to HMMER2 alone; HMMER3’s
sensitivity was 95.7%. At extremes, xHMMER3x2 is either the slow glocal-mode HMMER2 or the fast HMMER3 with
glocal-mode. Finally, the E-values to false-positive rates (FPR) mapping by xHMMER3x2 allows E-values of different
model builds to be compared, so that any annotation discrepancies in a large-scale annotation exercise can be
flagged for further examination by dissectHMMER.

Conclusion: The xHMMER3x2 workflow allows large-scale domain annotation speed to be drastically improved over
HMMER2 without compromising for domain-detection with regard to sensitivity and sequence-to-domain
alignment incompleteness. The xHMMER3x2 code and its webserver (for Pfam release 27, 28 and 29) are freely
available at http://xhmmer3x2.bii.a-star.edu.sg/.

Reviewers: Reviewed by Thomas Dandekar, L. Aravind, Oliviero Carugo and Shamil Sunyaev. For the full reviews,
please go to the Reviewers’ comments section.
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Author summary
Over the past decade, the OMICs frenzy from arrays to se-
quencing has swarmed genomic research with voluminous
amount of data and elucidated lists of candidate genes/
proteins. Yet, many of these genes/proteins remained not
well-understood in relation to the observed phenotype.
The major gap to our full understanding stems from our
lack in complete gene/protein functions which, in turn,
impedes researchers from assembling the sets of biomolec-
ular mechanisms that can sufficiently explain the observed
phenotype in these OMICs experiments; the knowledge of
gene/protein functions is a premise necessary for deliver-
ing the big promises in personalized medicine.
Despite so, experimental characterization of gene/protein

function still receives insufficient attention nowadays. This
can be attested by the dwindling number of characterized
genes/proteins reported over the past decade. Sadly, one can
expect this number to continue to grow at a slow rate.
On this basis, the only viable approach is to computation-

ally transfer function annotation of the well-studied gene/
protein sequences to the less-studied or novel ones for
functional hints. Implicitly, this entails that these in-silico
function annotations must always be kept consistent regard-
less of the revisions made to function annotation databases
or associated software tools used during the computations.

Background
The value of biomedical and biotechnological applications
from biomolecular sequence information is generally lim-
ited by the degree of functional annotation of non-coding
genomic regions, protein-coding genes and the proteins
themselves [1, 2]. Whereas experimental characterization of
all genes in all organisms is out of question by their sheer
number, computational annotation transfer from a smaller
number of well-studied proteins greatly expands the space
of functionally characterized protein sequences [3–5].
While lexical analysis and certain simple sequence

motif-function correlations are helpful for understanding
functions for non-globular protein segments, the hom-
ology concept based on significant levels of sequence simi-
larity (mostly with regard to the hydrophobic pattern and
functional residues indicative for conservation of fold,
structure and function) is the foundation for understand-
ing functions of globular protein regions [3–5]. A pair of
sequences is considered homologous as a result of a statis-
tical assessment of their alignment with a statistical muta-
tion model quantified with an E-value criterion.
Since an element of chance implies a chance for error,

unjustified annotations can arise and percolate into data-
bases [6–9]. Thus, functional annotation is a challenging
and non-trivial task [9–15].
Traditionally, large-scale domain function annotation is

achieved through the HMMER [16–18] algorithm with
companion domain libraries like Pfam [19, 20] and SMART

[21, 22]. This involves searching against a library of func-
tional domains for each query protein sequence, a process
that needs to be repeated for all protein isoforms (many
thousands even for bacterial genomes and typically dozens
of thousands for a eukaryote genome) and for all genomes
under study. The HMMER2 version with its glocal mode is
highly valued by the genomics community for its exact
domain placement over query sequences; i.e., it enforces full
alignments to domain models (each domain being a unit of
function); the latter being the modus operandi of the
sequence homology concept. Additionally, HMMER2 is
known for its reliability of E-value guided domain assign-
ments despite slow computation. Fortunately, the recent
HMMER3 is marked by its quantum leap in computation
speed that makes any large-scale domain annotation task
practical on standard computers. However, HMMER3 can-
not reproduce HMMER2’s glocal mode alignments, it works
just in the fragmented domain alignment mode. Hence, nei-
ther HMMER variants alone is a complete solution for prac-
tical large-scale annotation of known globular domain given
the large stream of new genomic data from the current era.
Taken together, the preceding conditions give rise to the

utility and design rationale behind xHMMER3x2. First, the
basic idea is to utilize HMMER3’s improved speed to first
scan for statistically significant sequence-to-domain hits.
Then, the sequence-to-full-domain alignments of these hits
are reproduced through the glocal-mode of HMMER2.
Overall, this approach will greatly reduce the search space
for HMMER2 so that xHMMER3x2’s overall speed will be
most similar to HMMER3 while retaining the more desirable
glocal-mode alignments. The major aspect is then to ensure
that the search space of glocal-mode HMMER2 is sufficiently
replicated by HMMER3 local-mode for any given E-value
cutoff as faithfully as possible. We achieve this goal through
the receiver operating characteristic (ROC) calibration of the
domain library to be used by xHMMER3x2 so that the E-
values for every domain model from different builds are
made comparable through the false-positive rate measure.
In hindsight, the application of the calibration procedure

on the Pfam domain library reveals three post-calibration
findings that underline some of the fundamental differences
between HMMER3’s search style and HMMER2’s glocal
mode that justify for the necessity of xHMMER3x2 to unify
both HMMER variants into a common framework. Another
important outcome is that the false-positive quantification
by xHMMER3x2 results in a key step for flagging discrepan-
cies in large-scale domain annotation for manual scrutiny.

Results and discussion
Post-calibration finding 1: On average, HMMER3 E-values
need to be more stringent than HMMER2 glocal-mode
E-values to exhibit the same FPR
The function annotation task via the HMMER algorithm is
innately coupled to the domain libraries. In this work, the
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Pfam library (release 29) with a total of 16295 domain
models was examined. Furthermore, to capture the same
search space of glocal-mode HMMER2 via the local-mode
HMMER3, a calibration (or normalization) procedure is
needed to relate the different E-values generated by either
tool for the same sequences and domain models (See
Methods on “Calibration procedure ..”).
Briefly, this entails the objective comparison of the re-

ceiver operating characteristic (ROC) curves generated by
the two HMMER builds (i.e., HMMER2 and HMMER3)
for each domain model. The query sequence set is specific
to every domain model and it is composed of a positive
set of α protein sequences (from the seed sequences of the
Pfam domain model of interest, actually the potentially
“true hits”) and the consensus sequences of the remaining
16294 domain models (if these sequences are hit, they are
regarded as “false hits”).
Figure 1 depicts the false-positive rate (FPR) value against

the median E-value of negative domain hits in Pfam library
(release 29) for the two HMMER builds in a doubly logarith-
mic plot. The HMMER2 (in solid red) and HMMER3 (in
solid blue) plots are shown with their interquartile ranges
(IQRs) in dotted red and blue lines respectively. In a nut-
shell, the FPRs for each domain model are computed over
16294 negative domain consensus sequences of the Pfam
library. For each domain, a list of i negative E-values are

sorted in ascending order and labelled with its order from 1
to i. The order is in fact the FP value and the FPR range for
this domain is, hence, between 1/16294 and i/16294.
Over the full body of the Pfam library, we found in our

test calculations that the false-positive (FP) values span be-
tween 1 and 626 for HMMER2 and between 1 and 2143
for HMMER3. In turn, this translates to the sampled FPR
ranges of between 6.14e-5 (1 out of 16294) and 3.84-2 (626
out of 16294) for HMMER2 and between 6.14e-5 and
1.32e-1 (2143 out of 16294) for HMMER3. Then, at each
sample FPR or FP points, the median E-values of the nega-
tive domain hits of the Pfam library were taken to give the
median E-value ranges of between 2.13e-9 to 2.40e + 1 for
HMMER2 and between 1.35e-20 and 7.1e-2 for HMMER3.
A reproducible feature to note for HMMER2 software suite
is the occurrence of a breakpoint due to the switch in statis-
tical model from the extreme value distribution (EVD) to
the logistic model when the similarity score grows larger. In
our previous work, the median E-value of Pfam domain (re-
lease 23) for this switch occurs at 1.0e-7 [10] which falls
within the current (release 29) E-value breakpoint range of
between 10−3 and 10−8.
Separately, the upper FPR limit of HMMER2 is lower than

that of HMMER3 since it detects much less false-positive
hits than HMMER3. This is unsurprising since HMMER2
enforces complete sequence-to-domain alignment when

Fig. 1 False-positive rates against median domain E-value cutoffs of the Pfam library (release 29) for HMMER2 and HMMER3 model builds. The
HMMER2 (in solid red) and HMMER3 (in solid blue) plots are depicted with their IQRs (interquartile ranges) in dotted red and blue lines respectively.
The average E-value cutoff of HMMER3 needs to be more stringent than HMMER2. The magnitude difference between them is about 106 ~ 1011.
When one imposes the recommended E-value cutoff of 0.1 for HMMER2, the corresponding FPR will be at 5.60e-3 (see dotted vertical line) with
91 false-positives. The equivalent HMMER3 E-value will be 4.15e-7. For extreme stringency (i.e., FPR < 6.14e-5 or FP < 1), the required HMMER2 and
HMMER3 E-value cutoffs are 2.13e-9 and at 1.35e-20 respectively (see leftmost dotted vertical line)
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operating in glocal-mode, while HMMER3 does not (and
the occurrence of a sequence similar to a fraction of the do-
main suffices). And for the intended purpose of capturing
the search space by HMMER2, the common upper limit of
FPR at 5.60e-3 (see label corresponding to 91 false-positives
in Fig. 1) is theoretically sufficient for both HMMER vari-
ants, albeit at different E-value of 0.1 for HMMER2 and at
4.15e-7 for HMMER3.
In any case, an overall comparison of the two negative do-

main hits plots reveals that the median E-value needs to be
more stringent in HMMER3 than in HMMER2 given a
fixed FPR. The magnitude difference is about (106 ~ 1011)
across the sampled range. This is consistent with the
HMMER manual’s recommended E-value cutoff of < <1 for
HMMER3 and <0.1 (between 0.1 and 1 requires manual
checking) for HMMER2 to gather trusted hits. As an
example, when one imposes the recommended trusted
domain E-value cutoff of 0.1 for HMMER2, the correspond-
ing FPR will be at 5.60e-3 (see dotted vertical line). The lat-
ter translates into 91 false-positive hits. Meanwhile, the
equivalent HMMER3 E-value will be 4.15e-7 at this FPR
setting. If extreme stringency is applied to achieve zero FP
(i.e., FPR <6.14e-5 or FP <1 given our search database size),
then the required HMMER2 and HMMER3 E-values will
be at 2.13e-9 and at 1.35e-20 respectively (see leftmost dot-
ted vertical line in Fig. 1).
However, complicated situations can arise as the

HMMER2 and HMMER3 E-values enter the lower FPR of
below 5.6e-3 (FP = 91) where the IQR of the two plots start
to overlap. Essentially, this implies that there can be cases
where the HMMER2 E-values can exhibit higher stringency
than its HMMER3 equivalent, therefore bucking the
general trend of HMMER3’s stringency over HMMER2. As
such, a direct comparison of E-values from different
HMMER builds even for comparable sequence-to-domain
alignments is not always a straightforward exercise.

Post-calibration finding 2: About 20% of HMMER2
domain models have better sensitivity than the HMMER3
counterpart over all the FPR range
After the domain library calibration procedure, the
HMMER builds with the better sensitivity can be evalu-
ated for the domain library. Briefly, the area under curve
(AUC; see Eq. 1) of the HMMER2 and HMMER3 models
are first computed for a fixed FP value, x. These evaluated
FP values, which correspond to respective FPRs (in paren-
theses), are x1 = 1 (6.14e-5), x2 = 5 (3.07e-4), x3 = 10
(6.14e-4), x4 = 20 (1.20e-3), x5 = 30 (1.80e-3), x6 = 40
(2.50e-3), x7 = 50 (3.10e-3), x8 = 60 (3.70e-3), x9 = 70
(4.30e-3), x10 = 80 (4.90e-3), x11 = 90 (5.50e-3) and x12 =
100 (6.14e-3). Furthermore, to enhance the stability of the
model selection, a predefined set of FP values A (see
Eq. 2) and its associated model counts (Eqs. 3 and 4) are
evaluated and taken as the overall criteria for model

selection (See Methods on “ Criteria for domain model
build…” for details).
Figure 2a depicts the total number (see Eqs. 5–7) of

HMMER2 (in red), HMMER3 (in blue) and undetermined
(in green) model builds selected by the various sets of FP.
The FP set starts with all the evaluated FP values of 1 to
100. As the plot moves along the horizontal axis from left
to right, the smaller FP values are dropped progressively.
Based on the HMMER2 plot (in red), a stringent set of
3066 HMMER2 models were found to be more sensitive
than their HMMER3 counterparts for all evaluated FP sets.
As the smaller FP values are dropped, more HMMER2
domains were added until a maximum of 3502 models have
been reached. This is about 21.5% of the evaluated Pfam
domain library (release 29). Meanwhile, a large proportion
of HMMER3 domain models remain more sensitive than
their HMMER2 counterparts. Quantitatively speaking, this
is between 68.5% (11158/16295) and 78.3% (12757/16295)
of the domain library (blue plot). A sizeable percentage of
domain models (up to 12.7% of the Pfam library) has shown
to be fluctuating between HMMER2 and HMMER3
depending on the evaluated FP value set (green plot) and
hence, not deterministic for selection.
Figure 2b shows the normalized AUC difference (see

Eq. 1) being expressed as percentage and averaged over the
sets of selected HMMER2/HMMER3/undetermined do-
main models corresponding to Fig. 2a. Basically, a large
difference implies higher sensitivity of either the HMMER2
or HMMER3 models. Specifically for the HMMER2 sets
(red plot), the average AUC difference ranges between 1.61
and 3.59% while this is held steadily at about 0.3% (blue
plot) for the HMMER3 sets. For the sets of undetermined
models, the average AUC difference stabilizes to 0% as
more low FP values were excluded (green plot) and are
hence deemed to perform closer to the HMMER3 models.
Overall, the domain sensitivity evaluation revealed that

about 20% (between 3066 and 3502; see Additional file 1
from xHMMER3x2 website) of the HMMER3 models were
found unsuitable for the initial domain scanning in the
xHMMER3x2 workflow. Interestingly, these 3502 models
were biased towards shorter domain models with a median
of 171 alignment positions (IQR = 170). The latter is
suggestive of alignment quality issues when coupled to the
local-mode HMMER3. In any case, these HMMER3
models cannot capture the HMMER2 search space suffi-
ciently and hence, their HMMER2 model counterparts
need to be used despite a longer computational speed. For-
tunately, the slowdown caused by this 20% of the Pfam li-
brary is not detrimental; the slowest xHMMER3x2 will still
outperform the standalone glocal-mode HMMER2 at least
by an order of magnitude (see below, Results section 5).
In hindsight, larger numbers of domain hits (which can

include false-positives at the same time) can generally be
expected from local-style search mode (as in HMMER3)
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compared with the glocal mode regime (as in HMMER2)
since alignments over the full domain model are not
enforced in the first case. Fortunately, HMMER3 provides
larger number of hits and, as a trend, better sensitivity
than HMMER2. However, on the flip side, HMMER3’s
tendency towards partial domain coverage is insufficient
to justify for function annotation transfer since a full do-
main necessarily implies a unit of function. The extent of
HMMER3’s partial coverage over various FPR values is
quantified in the next section.

Post-calibration finding 3: Average domain coverage by
HMMER3 positive hits is about 88% of the domain model
length
In a strict sense, partial sequence-to-domain alignments
generally do not justify for a sequence segment having
the function of the domain hit since the completeness of
a 3D structural unit (as implied by the domain unit) is a
precondition for functional annotation transfer. The
latter is especially relevant to HMMER3 since it can only
operate in local-mode.
To study the completeness of domain coverage by

HMMER3, we first computed the average “coverage per
domain model” by taking the total coverage of detected

positive hits divided by the total detected positive hits at
a FPR for a given domain model. Finally, an overall aver-
age is taken over all 16295 HMMER3-build Pfam
models. Figure 3a depicts across the sampled FPR range
of between 6.14e-5 and 6.14e-3 (in logarithmic scale) to-
gether with the standard error bars at each evaluated
FPR value. Briefly, the “coverage per domain model”
gives an idea of how much the sequence-to-domain
alignment hits cover the domain model on average. If
the domain coverage of a model is complete in all cases,
then the average is expected to be one. Across the FPR
range, the average domain coverage of the Pfam domain
models with HMMER3 straddles at about 0.88 (see hori-
zontal dotted line) with the lower limit (median-1.5IQR)
of the average domain coverage at about 0.85.
Although the average “coverage per domain model” re-

mains relatively stable across all FPR values, incomplete
domain coverage is expected to have different impact
especially in cases of relatively long and of the shorter
domain models. Figure 3b gives the distribution of
domain length of the Pfam release 29 library. There are a
total of 1801 domains with length of 485 alignment posi-
tions or more (i.e., >median + 1.5IQR; see vertical line in
Fig. 3b). Therefore, the lack of coverage constitutes at least

Fig. 2 No. of more sensitive HMMER2 models and sensitivity performance of HMMER2 and HMMER3 Pfam (release 27) model builds. a depicts the
proportions of HMMER2 (red), HMMER3 (blue) and undetermined (green) model builds for the various sets of FP values. Based on the HMMER2 plot
(in red), a stringent set of 3066 to 3502 HMMER2 models were found to be more sensitive than their HMMER3 counterparts at all evaluated FP values.
This is 21.5% of the evaluated Pfam domain library (release 27). On the other hand, 68.5% (11158/16295) to 78.3% (12757/16295) of the HMMER3
domain models remain more sensitive than their HMMER2 counterparts (blue plot). Up to 12.7% of the domain library fluctuates between HMMER2
and HMMER3 depending on the evaluated FP value (green plot). b shows the average normalized AUC difference (in terms of percentage) for the sets
of HMMER2, HMMER3 and undetermined models. The average AUC difference ranges between 1.61 and 3.59% for HMMER2 models (red plot) while it
is held steadily at about 0.3% (blue plot) for HMMER3. For the sets of undetermined models, the average AUC difference stabilizes to about 0%
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58 ((1–0.88) × 484.5) missing alignment positions. The lat-
ter is about the size of the smallest known domain (e.g.,
zinc finger models); thus, completeness of the respective
domain range in the query sequence is at least doubtful.
On the other hand, there are 1429 with domains length of
58 alignment positions and less, where annotation trans-
fers are even more unjustified under incomplete coverage.
Taken together, these 3230 (1801 + 1429) implicated
models make up almost 20% of the Pfam library. There-
fore, despite HMMER3’s generally superior sensitivity, it
suffices only for initial fast domain detection. Ultimately,
HMMER2 will still be required for re-alignment over the
full domain model, especially for the shorter ones.

The xHMMER3x2 workflow and webserver implementation
Figure 4 gives an overview of the three-staged xHM
MER3x2 workflow. Briefly, xHMMER3x2 first invokes
HMMER3 to scan for initial domain hits over a set of
query sequences that matches the search space of
HMMER2. The hits are then carried over to HMMER2
for refinement into full sequence-to-domain alignments.
In the first stage of xHMMER3x2, N (3066 ~ 3502)

HMMER2 and M (13229 ~ 12793) HMMER3 models can
be utilized for the search (where N< <M) based on the
sensitivity evaluation between HMMER2 and HMMER3

models in Fig. 2a. The upper E-value limit is set to 0.1 for
HMMER3 and 24 for HMMER2 which corresponds to
the maximum sampled FP values of 2143 and 626 respect-
ively according to Fig. 1. Essentially, the smaller search
space of HMMER2 should be sufficiently captured.
Generally speaking, since the total number of utilized

HMMER3 models far exceeds that of HMMER2 (80%
versus 20%), the speed of xHMMER3x2 is expected to be
closer to the faster HMMER3 than the slower glocal-mode
HMMER2. As such, reasonable computational speed can be
achieved without sacrificing for detection sensitivity but with
the caveat that the HMMER3 hits might be fragmented to
various extents. Upon the selection of the appropriate model
builds, the respective hmmpfam (HMMER2) and hmmscan
(HMMER3) runs are executed with the respective sub-
libraries of HMMER2 and HMMER3 domain models.
In the second stage, the two runs from the dominant

HMMER3 and the minority HMMER2 will result in K local-
mode and L glocal-mode sequence-to-domain alignments
respectively for a given query sequence. The resulting K
local-mode alignments will be searched against the same K
domain models but in glocal-mode HMMER2. The latter is
considered as the full domain re-alignment step as intended
by glocal-mode HMMER2 originally. Since the number of
models used in the realignment step is expected to be much

Fig. 3 Average coverage per domain model and average True-positive rate of the Pfam domain models (release 27). In a, an average for each
domain model is computed by taking the total coverage of detected positive hits divided by the total detected positive hits. The average of a
full domain coverage is one. An overall average is taken over all 16295 HMMER3-build Pfam models for each false-positive rate (FPR). Across the
FPR range, the average domain coverage of the Pfam domain models hovers about 0.88 as indicated by the horizontal dotted line. b gives the
distribution of domain length of the Pfam library. There are a total of 1801 domains with length of 485 alignment positions or more (i.e., larger
than 1.5 times the inter-quartile range above the median; see vertical line in b)
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less than the total number of HMMER3 models used (i.e., K
<<N < <M), this is an area of major speed gain by
xHMMER3x2 over pure HMMER2. At the end of stage two,
xHMMER3x2 would have produced K pairs of HMMER2/
HMMER3 and L HMMER2 sequence-to-domain hits over
K+L domain models for every query sequence.
The third stage of xHMMER3x2 estimates the FPR (and

FPs out of 16294) values of the domain hits based on their
E-values. For each domain model, the previously calibrated

HMMER2/HMMER3 ROCs are purposed to assign the
particular domain hits to the appropriate FPR interval
based on their E-values. The intervals are bounded by the
evaluated FPR (FP) points: 6.14e-5 (1), 3.07e-4 (5), 6.14e-4
(10), 9.21e-4 (15), 1.20e-3 (20), 1.50e-3 (25), 1.80e-3 (30),
2.50e-3 (40), 3.10e-3 (50), 3.70e-3 (60), 4.30e-3 (70), 4.90e-3
(80), 5.50e-3 (90) and 6.14e-3 (100) as depicted in Fig. 4.
The estimated FPR (FP) values of the domain hits are sim-
ply the nearest margin of their assigned FPR interval.

Fig. 4 The xHMMER3x2 webserver workflow. The three-staged xHMMER3x2 workflow is shown. In the first stage of xHMMER3x2, N (3066 ~ 3502)
HMMER2 and M (13229 ~ 12793) HMMER3 models can be utilized for the search (where N < <M) based on the sensitivity evaluation between
HMMER2 and HMMER3 models in Fig. 2a. Upon the model selection, the respective hmmpfam (HMMER2) and hmmscan (HMMER3) runs are
executed with the respective sub-libraries of HMMER2 and HMMER3 domain models. In the second stage, the two runs will result in K local-mode
and L glocal-mode sequence-to-domain alignments respectively. The resulting K local-mode alignments will be searched against the same K
domain models but in glocal-mode HMMER2 to perform the full domain re-alignment step. The third stage of xHMMER3x2 estimates the FPR(FP)
values of the domain hits from their E-values using the previously calibrated HMMER2/HMMER3 ROCs. The FPR intervals are bounded by the
FPR(FP) points: 6.14e-5 (1), 3.07e-4 (5), 6.14e-4 (10), 9.21e-4 (15), 1.20e-3 (20), 1.50e-3 (25), 1.80e-3 (30), 2.50e-3 (40), 3.10e-3 (50), 3.70e-3 (60),
4.30e-3 (70), 4.90e-3 (80), 5.50e-3 (90) and 6.14e-3 (100)
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The overall xHMMER3x2 workflow is implemented as
a software suite in PERL language. It is freely available
for download at http://xhmmer3x2.bii.a-star.edu.sg for
local installation. Since xHMMER3x2 requires the
carefully-selected domain models for its proper perform-
ance, the list of calibrated models for the recent Pfam
domain libraries (release 27, 28 and 29) are also pro-
vided at the same site. Alternatively, an online webserver
(for up to 1000 FASTA-formatted sequences) exists at
the download site as well. When multiple sequences are
inputted, the result is returned via email in tabulated
form as electronically readable file containing query se-
quences, Pfam model hits together with their alignments
E-values and standardized FPRs. Upon input of a single
sequence, the HMMER2 and HMMER3 results are pre-
sented graphically-enhanced for easy comparison.

xHMMER3x2 improves on computational speed over
HMMER2 and domain-detection sensitivity over HMMER3
To evaluate the real-world performance of xHMMER3x2,
the sequences and Pfam domain annotations of the human
UniProt/SwissProt sequences were evaluated. The source
file was extracted from the public resource at ftp://ftp.uni-
prot.org/pub/databases/uniprot/current_release/knowledge
base/complete/uniprot_sprot.dat.gz.
To create a reference set for evaluation purpose, the se-

quences were re-annotated via the glocal-mode HMMER2
against the Pfam domain library (release 29). Only the re-
annotated domains that overlap with the existing UniProt/
SwissProt Pfam annotations were retained. The latter aims
to exclude UniProt annotations that cannot be reproduced
by this computation as a result of direct inheritance from
previous releases, percolation errors, etc. Overall, our re-
annotation resulted in 27878 (out of 27988 reported
annotations) Pfam domain hits which span across 17517 se-
quences over 5719 unique domain models. Since the
complete human proteome is a moving scientific target
[23], the re-annotated set used here is only for benchmark-
ing purpose only. The list of originally-reported and re-
computed domain annotations for the human UniProt/
SwissProt sequences is available at the xHMMER3x2 web-
site (see Additional file 2). Furthermore, a cutoff E-value of
1e-9 (corresponds to the negative domain E-value for FP <
1 in Fig. 1) was applied to derive a stringent set of 24696
positives domains which now covers 16175 sequences over
5509 unique domain models.
To examine the trade-offs between computational speed

and domain-detection sensitivity, these 16175 sequences
were subjected to hmmscan/hmmpfam searches via
HMMER3 (as reference), glocal-mode HMMER2 and 5
configurations of xHMMER3x2 (where N= 3502, N = top
1500/1000/500 and N= 0) against the Pfam library (release
29). The top most sensitive HMMER2 domain models were
ranked according to the AUC evaluation via Eq. 1.

Figure 5 illustrates the domain-detection sensitivity and
speed differences against HMMER3 (in log scale) for both
HMMER2 and xHMMER3x2. The horizontal dotted line
across the x-axis sets the reference where there is no
speed difference from HMMER3. The leftmost boxplot
depicts the most time-consuming HMMER2 at about 221
times (i.e., Mh2/Mh3 = 102.34; see left-hand side of Eq. 12)
slower than HMMER3, but with the improved sensitivity
of 4.3% (100% versus 95.7%) over HMMER3. This
translates to capturing 1074 more hits than HMMER3. In
hindsight, this finding corroborates with our earlier post-
calibration finding that some HMMER3 domain models
have lower sensitivity than HMMER2.
For the various setting of xHMMER3x2, the fastest is

achieved by running all HMMER3 models (i.e., N= 0; see
rightmost boxplot) which is only 1.1 times (i.e., 100.04)
slower than HMMER3 (due to the necessary full domain
re-alignment of glocal-mode HMMER2 in xHMMER3x2;
see Fig. 4 Stage 2) but about 201 times (221÷1.1) faster
than HMMER2. In hindsight, the re-alignment step of
xHMMER3x2 does not impede its overall speed and the
condition where K < <N< <M is generally true. However
this is not without a caveat that its sensitivity has been
compromised to 95.7% (same as HMMER3).
Meanwhile, the trade-offs between speed and sensitivity

can be observed when the various sets of selected
HMMER2 models were invoked by xHMMER3x2. Based
on Fig. 5, as N (i.e., the number of default HMMER2
models) decreases from 3502,1500,1000 to 500 (see sec-
ond to fifth boxplots from left), xHMMER3x2’s sensitivity
decreases from 99.8, 99.3, 99.1 to 98.6% respectively. In
contrast, its speed increases accordingly from 32× (Mh2/
(Mh3 +Kh3) = 101.50; see right-hand side of Eq. 12), 17×
(Mh2/(Mh3 +Kh3) = 101.23), 12× (Mh2/(Mh3 +Kh3) = 101.07)
to 6× (Mh2/(Mh3 +Kh3) = 100.80) slower than HMMER3.
Alternatively, this translates to 7 × (222÷32), 13 ×
(221÷17), 18.5 × (221÷12) and 37 × (221÷6.2) faster than
HMMER2 respectively. Overall, the best compromise is
achieved with the top 1000 most sensitive HMMER2
domains while the remaining as HMMER3 models. For
most occasions, this configuration is the recommended
and default mode in the xHMMER3x2 webserver since it
achieves the best balance between domain-sensitivity (at
99.1%) and speed (12× slower than HMMER3 but 18.5×
faster than HMMER2). However, when fast annotation is
the main consideration, xHMMER3x2 offers the “glocal-
mode HMMER3” as its fastest mode that is almost as fast
as the native local-mode HMMER3.
In summary, the xHMMER3x2 framework will always

produce the glocal-mode alignments and it can be config-
ured to achieve a balance between speed and domain-
detection sensitivity. On one extreme, it can be configured
for full speed when all HMMER3 models are selected, thus
mimicking a ‘glocal-mode’ HMMER3. On the other end,
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when all HMMER2 models are deployed, xHMMER3x2 re-
verts back to HMMER2 with the highest level of domain-
detection sensitivity.

False-positive quantification of calibrated domain hits
allows for direct comparison between HMMER variants to
evaluate for annotation consistency
At the end stage of xHMMER3x2, the FPR (FP) values
for all the sequence-to-domain hits would have been
estimated accordingly. To evaluate the consistency of
domain annotation, the 23622 common domain hits to
both HMMER2 and HMMER3 from the preceding ana-
lyzed set of 16175 human UniProt/SwissProt sequences
were further examined.
We define annotation consistency as the concordance

in statistical assessment of same domain hits between
HMMER2 and HMMER3 for a particular sequence seg-
ment. Figure 6a depicts the 23622 pairs of HMMER2/
HMMER3 E-values (as log-log plot) that now covers
5492 unique domain models. The set of blue points de-
notes the case where the estimated FP values of the
paired HMMER2/HMMER3 hits matched exactly, while
the red points denote the unmatched cases.

Based on the linear regression analysis, the mathematical
relationship of HMMER2 against HMMER3 E-values was
found to be y = 0.72x, R2 = 0.91 (matched cases) and y =
0.77x, R2 = 0.22 (unmatched cases). In other words, the
paired HMMER2/HMMER3 E-values are not equivalent,
and non-linear to each other particularly for the unmatched
cases given the bad R2 (coefficient of determination) values.
Additionally, about 86.5% of the pairs show higher strin-
gency of HMMER2 E-values over HMMER3, and vice versa
for the remaining pairs. To reiterate, direct comparison
using E-values to determine concordance proves to be diffi-
cult. It is also important to remember that the evaluated
Pfam annotations in UniProt are generally constrained to
one domain hit per sequence segment. In more realistic set-
tings, the same sequence segment can have multiple signifi-
cant domain hits. In the absence of FPR estimation, the
actual error rates associated to the overlapping domain hits
will simply be masked behind a set of inseparable E-values.
Utilizing the estimated FP values of the paired HMMER2/

HMMER3 hits, the difference (i.e., FPH2-FPH3) values were
taken. The histogram of the 23622 pairs of FP difference
values were shown in Fig. 6b. In contrast to the E-value plot,
95% (22428) of the data points converges to the singular
point at FPH2 = FPH3 or 0 (see blue dot). When the small

Fig. 5 Domain-detection sensitivity and speed differences of HMMER2 and xHMMER3x2 against HMMER3. The leftmost boxplot represents the
baseline difference where the average speed of HMMER2 is about 222× slower than HMMER3. However, the sensitivity of HMMER2 is 4.3%
(100% versus 95.7%) higher than that of HMMER3. The rightmost boxplot represents the fastest xHMMER3x2 by running all HMMER3 models
where its sensitivity is equal to that of HMMER3 at 95.7%. The trade-offs between computational speed and domain-detection sensitivity is given
by the middle boxplots. As N (i.e., the number of default HMMER2 models) decreases from 3502,1500,1000 to 500 (see second to fifth boxplots
from right), xHMMER3x2’s sensitivity decreases from 99.8, 99.3, 99.1 to 98.6% respectively. In contrast, its speed increases accordingly from 32×,
17×, 12× to 6.2× (Mh2/(Mh3 + Kh3) = 100.81) slower than HMMER3. Alternatively, this translates to 7×, 13×, 18.5× and 36× faster than HMMER2
respectively. The best compromise is achieved via the top 1000 most sensitive HMMER2 domains with the remaining as HMMER3 models, to
attain a domain-sensitivity of 99.1% and a speed of 12× slower than HMMER3 but 18.5× faster than HMMER2
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difference of FPH2-FPH3 = ±4 (see vertical dotted lines) are
also considered since FP values are approximated to their
nearest values, the overall statistical concordance of the
HMMER pairs makes up about 98% (addition of another
766) of the data points. As such, FP quantification by
xHMMER3x2 offers an easy and quick way to check for gen-
eral concordance of the paired HMMER2/HMMER3 hits.
Unique to xHMMER3x2, its FPR quantification helps to

highlight an annotation inconsistency based on an ob-
served left-skewness in the histogram. More specifically, a
handful ([FPH2-FPH3 < −4] = 389) data pairs exhibited
higher HMMER3 FPR than that of HMMER2 despite
similar sequence-to-domain alignments. These 389 out-
liers, which span across 140 unique Pfam domain models
(see Additional file 3 from xHMMER3x2 website). Once
again, the problematic domain models belong to the
shorter ones; this set of 140 domains has a median length
of 166.5 alignment positions (IQR = 204).
To resolve the annotation discrepancies, the sequences

containing the 389 domain hits were subjected to a

dissectHMMER [13–15, 24] analysis where pairs of
HMMER E-values are dissected into their fold-critical
and remnant contributions. Briefly, it is the fold-critical
parts (the supposedly 3D structural part) of a sequence-
to-domain alignment that argues for a similar overall
fold, hence similar function whereas the remnant part
represents disordered, fibrillary or other non-globular
regions that might be not obligatory for the domain fold
[13, 14, 24]. As such, the E-values of the fold-critical
contributions has to be more significant than the
remnant parts to justify for annotation transfer.
Figure 7 shows the boxplots of the total, fold-critical

and remnant HMMER2 and HMMER3 E-values of the
389 dissected domain hits. As a baseline for significance,
the dotted horizontal line (at -1) denotes the HMMER2’s
recommended E-value of 0.1. The first two boxplots on
the left shows that the total HMMER2 E-values of the 389
unmatched cases displays higher significance than that of
HMMER3. Meanwhile, the fold-critical E-value boxplots
display higher significance than the remnant boxplots

Fig. 6 HMMER2/HMMER3 E-value (in log10 scale) plot and false-positive difference histogram of the UniProt/SwissProt human sequence domain hits. a
depicts 23622 pairs of HMMER2/HMMER3 E-values where the blue points denotes cases where the estimated FP values of the pair matched, while the red
points denote the unmatched cases. About 86.5% of the pairs show higher stringency of HMMER2 E-values over HMMER3, and vice versa for the remaining
pairs. b shows the histogram of the 23622 pairs of FP difference (i.e., FPH2-FPH3) values of the paired HMMER2/HMMER3 hits. Basically, 95% of the data
points converge to the singular point at FPH2 = FPH3 or 0 (see blue dot). If small estimates of FPH2-FPH3 = ±4 (see vertical dotted lines) are included, the overall
concordance of the HMMER pairs is about 98% of the data points. - The left skewness implies that a handful 389 data pairs exhibits higher HMMER3 FPR
than that of HMMER2. These pairs are highlighted for annotation inconsistency as a result of FPR quantification by xHMMER3x2
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whether for the case of HMMER2 or HMMER3.
Additionally, both the fold-critical boxplots were consid-
ered significant when compared to their corresponding
remnant counterparts. Taken together, the dissectHM-
MER analysis is strongly suggestive that these 389
HMMER2/HMMER3-based Pfam annotations were justi-
fiable by their fold-critical plots; the annotation discrep-
ancy is resolved.
Scrutiny of the remnant boxplots further revealed that

the remnant E-values of the HMMER3 were so heavily
penalized that they exceeded the recommended cutoff of
0.1 (−1 in log10 scale). Therefore, when the scores were
added up as part of the total HMMER3 E-values, the lat-
ter becomes much less significant than that of HMMER2
and hence their larger FPRs. It is likely that HMMER3
cannot justify any independent non-globular alignment
segments of the domain model without significant score
compensation from other alignment pieces. Unfortu-
nately, it is beyond the scope of this work to examine
why the remnant segments of these particular HMMER3
models appeared to be so heavily penalized though this
sheds some light on why certain HMMER3 models were
less sensitive than their HMMER2 counterparts.

Conclusion
Protein domain function annotation for the experimentally-
unverified ones is at best a computational prediction that is

based on the statistical evaluation of the sequence hom-
ology concept. With every new revision of any domain
model library or the associated software tool, the corre-
sponding annotation update becomes a frequent and rou-
tine task; the task of ensuring annotation consistency with
every software or library migration is rarely cared for.
Simultaneously, as more new genomes are being churned
out, the need for a reliable and fast protein annotation
workflow, that takes into account of annotation
consistency, cannot be ignored.
In this work, the proposed xHMMER3x2 annotation

framework is squarely aimed at alleviating both annota-
tion discrepancies and speed issues that can arise from
practical large-scale protein annotations. Notably, its
scalability will allow for the future inclusion of newer
HMMER variant. It simply requires the calibration of
this new variant over a common domain library to allow
its E-values to be compared against the others for select-
ing the most sensitive variant-dependent domain model
amongst all. The remaining task is then to carefully
balanced for the annotation speed.

Methods
Calibration procedure for HMMER2 and HMMER3 domain
models towards comparable false-positive rates
The function annotation task via the HMMER algorithm
is innately coupled to the domain libraries. The calibration

Fig. 7 Boxplots of total, fold-critical and remnant E-values of the unmatched 389 domain hits from UniProt/SwissProt human sequences.
The baseline for significance is marked by the dotted horizontal line of -1. The first two boxplots from the left shows that the median HMMER2
E-values are more significant than that of HMMER3. But when the fold-critical E-values of the pair data are considered (see centre two boxplots),
the opposite is observed. In hindsight, the opposite trend is attributed to the heavily penalized remnant E-values of HMMER3 (last two from left)
which causes the total HMMER3 E-values to be lowered
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procedure used here is generally applicable to any domain
libraries to normalize between the two different model
builds. It aims to capture the search space of glocal-mode
HMMER2 via the local-mode HMMER3, therefore relat-
ing the different E-values generated by the two HMMER
variants. In a nutshell, we determined the true-positive
rate (i.e., sensitivity) and false-positive rate (i.e., 1-
specificity) for the two HMMER builds (i.e., HMMER2
and HMMER3) of any domain model.
The calibration workflow is schematically shown in Fig. 8.

In stage 1 of Fig. 8, the “hmmsearch” sequence-to-domain
alignments and corresponding E-values of the two
HMMER variants are first produced over a query set of α +
16294 sequences for every domain model. The query se-
quence set is specific to every domain model and it is com-
posed of a positive set of α protein sequences (from the
seed sequences of the Pfam domain model of interest, actu-
ally the potentially “true hits”) and the consensus sequences
of the remaining 16294 domain models (if these sequences

are hit, they are regarded as “false hits”). The query se-
quences are extracted from the Pfam domain library align-
ments and are downloaded from ftp://ftp.ebi.ac.uk/pub/
databases/Pfam/releases/Pfam29.0/Pfam-A.full.gz.
Aside applying the E-values cutoff of 1000 to capture as

many hits as possible, the E-values were also calculated for
the database size of 16295 (via the -z option) instead of α
+ 16294, so that the E-values will corroborate with
hmmpfam(HMMER2)/hmmscan(HMMER3) search re-
sults in the subsequent xHMMER3x2 workflow. At the
end of stage 1, two separate computations would have been
executed and produced β HMMER2 and γ HMMER3
sequence-to-domain alignments over the space of α +
16294 query sequences.
In stage 2 of Fig. 8, the β glocal HMMER2 and γ local

HMMER3 sequence-to-domain hits can be stratified into
paired HMMER2/HMMER3 hits, HMMER2-only hits and
HMMER3-only hits. More specifically, the paired hits are
HMMER2 and HMMER3 hits where the domain model

Fig. 8 Calibration procedure between HMMER2 and HMMER3 domain model builds. Stage 1: The “hmmsearch” results for the two HMMER
variants are first produced on a positive set of α seed sequences of the model with the rest of the 16294 models as consensus sequences. Stage
2: A total of β glocal HMMER2 and γ local HMMER3 sequence-to-domain alignments are paired HMMER2/HMMER3 hits or orphaned accordingly.
For the paired hits, the HMMER2 hit is reconstructed to mimic the local alignment of its HMMER3 counterpart to derived a new HMMER2 E-value.
Stage 3: the orphaned and reconstructed E-values of the HMMER2 are partitioned into their positive and negative sets (see red histograms). The
same is done for the HMMER3 (see blue histograms). For a particular E-value cutoff, the respective false-positive rates (FPR) and true-positive (TPR)
rates can be quantified from the two sets of histograms
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sequences overlap (see dissectHMMER for details [13, 14]).
The orphaned HMMER2 and HMMER3 hits are those that
are found only by the HMMER variant itself. For the paired
HMMER2/HMMER3 hits, each glocal-mode HMMER2 hit
is reconstructed to reproduce the local alignment made by
its HMMER3 counterpart. As a result, a new E-value for
this reconstructed local-mode HMMER2 alignment is also
derived following published procedures [9, 13, 14].
In stage 3 of Fig. 8, the orphaned glocal-mode and recon-

structed local-mode E-values of HMMER2 are partitioned
into their positive and negative sets (see red histograms). The
same is done for the paired and orphaned HMMER3 E-
values (see blue histograms). For each designated E-value cut-
off, the respective false-positive rates (FPR) and true-positive
rates (TPR) can be quantified from the two sets of histo-
grams. Consequently, the ROC (receiver operator curves) of
HMMER2 (in red) and HMMER3 (in blue) can be overlaid
on each other and made comparable at any FPR value. As an
example, HMMER2 and HMMER3 require E-value cutoffs
of 0.1 and 0.01 respectively to achieve a false-positive rate of
0.2 for the particular domain model used for this diagram.
Also, the resulting AUC (area under curve) for HMMER3 is
larger than that for HMMER2 at FPR= 0.2 based on the cri-
teria (see blue box) and, hence, indicates better sensitivity.
It is important to note that marginally large FPRs or

certain higher E-values can nevertheless suggest correct
yet distant hits rather than totally wrong ones. Thus, our
computed FPRs reflect the worst case thresholds. For a
domain library like Pfam with clan classification of fam-
ilies of related domains, this is especially true.

Criteria for domain model build selection
The base criteria for isolating a higher HMMER2 sensitiv-
ity at a particular FPR can be written into the conditional
statement:

AUCdiff FP¼x ¼ AUCH2−AUCH3

x=16295
> 0

����
����FP¼x ð1Þ

where AUCdiff is the difference between the area under
curves (AUC) of HMMER2 and HMMER3, x is a fixed
false positive rate. Here, the AUC value is normalized to
total area under evaluation where 16294 is the total num-
ber of negative domains for any Pfam domain (release 29)
model. Furthermore, to ensure that the sensitivity of an
evaluated domain model does not fluctuate at different
absolute numbers of false-positives (FPs), a counting
mechanism is enforced to ensure that Eq. (1) holds over a
set A which comprises of numbers of FPs or correspond-
ing FPRs given as :

A ¼ x1; x2;…; xnf g ð2Þ
while, the equation for the count based on (1) for domain

model y, can be written as follows:

county ¼
XAj j

A¼ x1;x2;…;xnf g
AUCdiff ð3Þ

where |A| is the cardinality of the set A of selected
FPs of Eq. (2). As an example, a HMMER2 domain
model is considered better than its HMMER3 alter-
nate counterpart only when the following condition is
satisfied :

county ¼ Aj j ð4Þ
Conversely, a zero count or count = 0 describes the op-

posite case where the sensitivity of the HMMER3 model
is better than that of HMMER2 at all FP sets.
In our study, the set of selected cases of false-positive

hits (FP) corresponding to respective FPRs (in paren-
theses) are: x1 = 1 (6.14e-5), x2 = 5 (3.07e-4), x3 = 10
(6.14e-4), x4 = 20 (1.20e-3), x5 = 30 (1.80e-3), x6 = 40
(2.50e-3), x7 = 50 (3.10e-3), x8 = 60 (3.70e-3), x9 = 70
(4.30e-3), x10 = 80 (4.90e-3), x11 = 90 (5.50e-3) and x12 =
100 (6.14e-3).
Finally, the total number of selected HMMER2/HMMER3

and undetermined domain models for the set A of selected
FP value, are as follows :

totalHMMER2 ¼
X16295
y¼1

county ¼ Aj j 1
else 0

�
ð5Þ

totalHMMER3 ¼
X16295
y¼1

0 < county < Aj j 1
else 0

�
ð6Þ

totalundetermined ¼
X16295
y¼1

county ¼ 0 1
else 0

�
ð7Þ

Theoretical speed improvement of xHMMER3x2 over
glocal-mode HMMER2
Theoretically, the speed improvement of xHMMER3x2
over the glocal-mode HMMER2 algorithm can be quan-
tified in the following manner. First, let the total run
time of xHMMER3x2 for one sequence be defined as:

XM
i¼1

th3;i þ
XK⊂M

k¼1

th2;k þ
XMþN

i¼Mþ1

th2;i ð8Þ

Also, let the run time of HMMER2 be defined as:

XM
i¼1

th2;i þ
XMþN

i¼Mþ1

th2;i ð9Þ

where M,N is the number of HMMER3 and HMMER2
models being used for a given FPR setting, K is the num-
ber of HMMER2 models used to re-align the HMMER3-
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derived sequence-to-domain alignments (i.e., K ⊂M), th3,i
and th2,i refer to the HMMER3 and HMMER2 computa-
tional time required for domain model i.
Against HMMER2, the speed improvement (expressed

by a factor f ) is attributed to the set of M models. There-
fore, let the relevant terms in xHMMER3x2 (see Eq. 8)
and HMMER2 (see Eq. 9) be related by the factor f via
the following:

f
XM
i¼1

th3;i þ
XK⊂M

k¼1

th2;k

" #
¼

XM
i¼1

th2;i ð10Þ

Furthermore, let
XM
i¼1

th3;i ¼ Mh3 ,
XK⊂M

k¼1

th2;k ¼ Kh2 and

XM
i¼1

th2;i ¼ Mh2 where th3,i and th2,i are a unit of time in

HMMER2 and HMMER3 respectively, then Eq. (10) can
be simplified as f[Mh3 + Kh2] =Mh2 and rearranged as
follows :

f ¼ Mh2

Mh3 þ Kh2
ð11Þ

where random variables Mh3 and Mh2 describe the total
time taken for a sequence to perform hmmscan
(HMMER3) and hmmpfam (HMMER2) searches respect-
ively, against a database of M domain models (Stage 1 of
Fig. 4). Similarly, random variable Kh2 is the total time
taken for a sequence to complete hmmpfam search
against a set of K domain models (Stage 2 of Fig. 4).
Finally, the theoretical upper limit of xHMMER3x2’s

speed improvement over HMMER2 is bounded by Mh2
Mh3

(i.e., HMMER2 versus HMMER3) as follows:

Mh2

Mh3
>

Mh2

Mh3 þ Kh3
ð12Þ

Reviewers’ comments
Reviewer’s report 1: Thomas Dandekar, Department of
Bioinformatics, University of Wuerzburg, Germany
Choon-Kong Yap et al. make a good case that HMMER3
speed and HMMER2’s sensitivity and specificity can be well
combined for improved large-scale protein annotation. All
is made available for the interested reader, xHMMER3x2 is
ready for use by the community.
There is not much to correct: the method is well explained

and detailed, and, most of all, made fully available. Already
the abstract explains that now the user has the choice from
the script to go for faster annotation or higher accuracy
(highest was 99.8%), fastest is HMMER3 glocal mode, but
only 95.7% detection sensitivity. And again, all is well ex-
plained and as far as I can judge technically sound and well
prepared I think what would now help to add, is a bit more

practical experience (so simply explain in the discussion,
what you already did do, did you for instance always take the
“fast but sloppy” mode, so in essence HMMER3, or is there
maybe a magical mix (such as BLOSUM62 with 62%) of
HMMER2 optimal in your hands and in your experience?
Finally, also comment how maybe future advances or other
methods would influence this annotation procedure.
Authors’ response: We thank the reviewer for his com-

ments. We have added in the discussion to advise users to
run xHMMER3x2 configured with the top 1000 HMMER2
domains as the recommended mode since this has the best
balance in terms of sensitivity and speed. Also, the webser-
ver now flags this configuration as the recommended mode
under the mode selection list. The discussion on how
xHMMER3x2 will be influenced by future advances or
other methods is included in the conclusion.

Reviewer’s report 2: L Aravind, Protein and Genome
Evolution Research Group, Computational Biology Branch,
NCBI/NLM/NIH
HMMER3 has revolutionized HMM based search ap-
proaches by speeding up the searches greatly. However, this
has come at the cost of preciseness of domain annotation
that HMMER2’s glocal mode allowed. The authors attempt
to remedy this compromise by combining the initial search
with HMMER3 for detecting the domain followed by a
HMMER2-like alignment procedure for the detected hits.
Overall the glocal search procedure of HMMER2 does
seem to provide more complete alignments which are often
useful to ascertain domain boundaries. I have not compiled
the program to run locally but testing on the server shows
that it runs at comparable speed to a Pfam scan of single
sequence with HMMER3.
I have no particular issues with the overall methodology.

But I have some practical comments as a user who pays
close attention to the quality of alignments: 1) Even though
the technically the alignments produced by the web-server
should be similar to a local HMMER2 Pfam scan, the ex-
amples I used produced “aesthetically” poorer alignments
in that they were more gap-ridden. Is this arising from the
attempt to cover the entire length of the Pfam model? 2)
On trying a sequence where the match genuinely should
not cover the entire Pfam model the alignments appear to
be artificially stretched out to cover the entire length. While
these issues might not greatly negatively affect an annota-
tion pipeline for domains on a large-scale they might still
affect the use of this search for in depth domain analysis in
particular cases.
Authors’ response: We thank the reviewer for his com-

ments. For this work, all positions in the domain models’
seed multiple sequence alignments were considered during
HMMER model building. On a large-scale basis, it helps to
simplify the HMMER2 versus HMMER3 sequence-to-
domain hit comparisons, especially for cases where
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missing domain model positions can vary between
HMMER2 and HMMER3 due to their parameterization
differences.
At the same time, the quality of the sequence-to-domain

alignment is also highly dependent on the curated seed
alignments of the domain libraries. The visually poorer
alignments as observed by the reviewer for the sequence
example XP_002989768.1 was generated with Pfam release
29 for a pair of SBDS (PF01172) HMMER2/HMMER3 hits
and a single SBDS_C (PF09377) HMMER2 hit. When the
same example was tested on Pfam release 27, a stark
improvement in alignment quality was made. Also, an
additional SBDS_C (PF09377.5) HMMER3 domain hit,
which covers about 2/3 of the model’s length, was also recov-
ered. On closer examination of these alignments, we noted
that the full model lengths of the SBDS and SBDS_C do-
mains in Pfam releases 27 and 29 vary by 38 (132 versus
170) and 365 (234 versus 599) positions respectively.
Mainly, the artificially stretched sequence-to-domain
HMMER2 SBDS_C hit as observed with Pfam release 29,
was due to a much longer domain model which includes
more non-globular regions.
On a separate note, we wish to highlight that the seed

alignments from Pfam release 28 and upwards were con-
structed from the reference proteome instead of the UniProt
sequences. Given the same Pfam model, any differences in
the seed sequences between releases will have a major im-
pact on the final sequence-to-domain alignment quality.
The implication of this sequence database change, in terms
of search sensitivity/specificity, alignment quality, etc. will
require a separate scrutiny.
The search server could simplify the delivery of results

by having the results directly presented rather than
needing an additional click on the xHMMER3x2 query
status page that is presented first.
Authors’ response: The search server has now simpli-

fied the delivery of results by having the results directly
presented rather than needing an additional click on the
xHMMER3x2 query status page.

Reviewer’s report 3: Oliviero Carugo, Chemistry
Department, University of Pavia
The manuscript submitted by Eisenhaber and Wong
describes a novel computational approach for protein
function annotation on the basis of sequence similarity. A
web-server is also presented, to allow biologists to use this
computational methodology. The basic idea is to couple
two methods. One, HMMER2, is slow and the other,
HMMER3, is fast. However, HMMER2’s glocal more
alignments cannot be performed by HMMER3. Moreover,
HMMER2 is probably more reliable than HMMER3,
especially in the E-value-based domain assignments. The sci-
entists lead by Eisenhaber and Wong designed an empirical

interface, xHMMER3x2, which seems to be reliable and fast.
Empirical parameters have been adapted based on PFAM-29.
The manuscript is very technical and sometime not easy

to read. Most of the users of the server will probably never
read the manuscript, which is too complex for the average
biologist. However, it is important to publish a detailed
description of this computational method, to allow bioin-
formaticians to understand it and, possibly, to improve it.
On the contrary I warmly suggest the Authors to prepare a
more colloquial description of this methods and to make it
available in the web pages at http://xhmmer3x2.bii.a-star.e-
du.sg. This would greatly help biologists to try to under-
stand the basics features of this method. About the
computational procedure. Large use is made of the ROC
curves. I have nothing again it. However, it is a better idea,
in my opinion, to couple the ROC with the precision-recall
curves (see for example a simple description published by
[25]). Eventually, the Authors are required to read carefully
the manuscript, which contains some minor mistakes. For
example, in the Introduction (lines 13 and 14) one can read
“A pair of sequences is considered homologues …” while it
should be “homologous” (adjective). Another example, in
reference 4 is written “Edited by Edited by”. In fine, the
resolution of the figures seem insufficient to me.
Authors’ response: We thank the reviewer for his com-

ments. As suggested by the reviewer, a simplified description
of our method is now available online and accessible via the
“introduction” link right after the main title of the
xHMMER3x2 webserver page. Alternatively, the link is given
as http://xhmmer3x2.bii.a-star.edu.sg/introduction.html.
With regard to the use of ROC in our work, it is

squarely aimed at calibrating between two different
builds of the same domain mode to select for the more
sensitivity one to be executed in xHMMER3x2. In fact,
ROC was not used for performance measure. Rather,
xHMMER3x2 was evaluated simultaneously for both
speed and sensitivity. Nevertheless, the precision-recall
(PR) curve helps to reveal any large class imbalance
problem after the domain model calibration step. As
such, the xHMMER3x2 webserver now presents a link to
both the ROC and precision-recall (PR) curves of every
domain model in the returned results.
In hindsight, we are mindful of the limitations of any ratio

measures (true-positive rates/recall rates, false-positive rates,
precision rates) that may mask the true characteristics of
the underlying data. Therefore, xHMMER3x2 reports the
absolute number of false-positives (in discrete steps of FP =
1,5,10,15, …) that is associated to every sequence-to-domain
alignment hit, much like how the E-values were intended
for. Generally speaking, the FP range of 1 to 5 is relatively
reliable for annotation purpose while any value beyond is
considered for discovery purpose. As an example, Fig. 9
depicts the ROC and PR curves (HMMER3 in blue;
HMMER2 in red) for the domain model PF03915 AIP3.
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From the figure, trusted AIP3 domain hits have the preci-
sion value of about 1.0 (see PR curve) with the true-
positive/recall rate of about 0.4 (see ROC) as marked by
FP = 1 and 5. Beyond that, the precision rate deteriorates
with a synchronized increase in false-positive rate.

Reviewer’s report 4: Shamil Sunyaev, Division of Genetics,
Dept. of Medicine, Brigham & Women’s Hospital and
Harvard Medical School
The authors try to find a balance between two versions of
HMMER (the more recent version offering a much greater
speed at the price of slightly reduced sensitivity). They offer
an umbrella approach combining both versions and adding
estimation of false-positive rate. Although addressing a
technical point, this work provides a potentially useful pro-
tein domain annotation software.
I find that the analysis of FPR should be clarified. The ana-

lysis suggests that E-values for both versions of HMMER
are not perfectly tuned. Is this due to specific assumptions
in the statistical model of HMMER, or this is a result of the
choice of the negative dataset?

Authors’ response: We thank the reviewer for his com-
ments. Indeed, the reviewer’s first intuition is correct. The fun-
damental difference stems from the statistical models which
gives rise to the different sets of HMMER2 and HMMER3
scoring parameters (i.e., the emission and transition prob-
abilities). As such, even comparable sequence-to-domain
alignments can give quite different E-values. In addition,
when comparing alignments between partial HMMER3
and full HMMER2 hits, only the overlapping segments
were considered for re-deriving the HMMER2 scores. Des-
pite so, these E-values are still not comparable.

Additional files

Additional file 1: List of top 1500/1000/500 better HMMER2 Pfam29
domain models. (TXT 76 kb)

Additional file 2: List of original vs re-computed Pfam domain annotations
for the human UniProt/SwissProt sequences. (TXT 12216 kb)

Additional file 3: List of 140 Pfam domains with annotation
inconsistencies. (TXT 10 kb)

Fig. 9 Receiver Operating Characteristics (ROC) and Precision-Recall (PR) curves of PF03915 AIP3 domain model. Depicts the ROC and PR curves
(HMMER3 in blue; HMMER2 in red) for the domain model PF03915 AIP3. Based on the plot, at a FP of 1 and 5, the trusted AIP3 domain hits score a
precision value of approximately 1.0 based on the PR curve and a true-positive/recall rate of about 0.4 based on the ROC curve. Beyond FP = 5,
the precision rate and false-positive rate deteriorates quickly
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