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Abstract

Background: Accurate estimation of the isoelectric point (pI) based on the amino acid sequence is useful for many
analytical biochemistry and proteomics techniques such as 2-D polyacrylamide gel electrophoresis, or capillary
isoelectric focusing used in combination with high-throughput mass spectrometry. Additionally, pI estimation can
be helpful during protein crystallization trials.

Results: Here, I present the Isoelectric Point Calculator (IPC), a web service and a standalone program for the
accurate estimation of protein and peptide pI using different sets of dissociation constant (pKa) values, including
two new computationally optimized pKa sets. According to the presented benchmarks, the newly developed IPC
pKa sets outperform previous algorithms by at least 14.9 % for proteins and 0.9 % for peptides (on average, 22.1 %
and 59.6 %, respectively), which corresponds to an average error of the pI estimation equal to 0.87 and 0.25 pH
units for proteins and peptides, respectively. Moreover, the prediction of pI using the IPC pKa’s leads to fewer
outliers, i.e., predictions affected by errors greater than a given threshold.

Conclusions: The IPC service is freely available at http://isoelectric.ovh.org Peptide and protein datasets used in the
study and the precalculated pI for the PDB and some of the most frequently used proteomes are available for
large-scale analysis and future development.

Reviewers: This article was reviewed by Frank Eisenhaber and Zoltán Gáspári

Keywords: Isoelectric point, Proteomics, pKa dissociation constant

Background
Analysis of proteins starts from the heterogeneous mix-
ture (lysate) from which protein fraction needs to be iso-
lated. Next, individual proteins are separated and finally
identified. The procedure relies on physicochemical
properties of amino acids such as a molecular mass or a
charge. Over the years, many techniques were intro-
duced to allow to accomplish the task. One of the oldest,
but still widely used technique is 2-D polyacrylamide gel
electrophoresis (2D-PAGE) [1, 2], where proteins are
separated in two dimensions on a gel and identified
using estimated molecular weight and isoelectric point
(pI is the pH value at which the net charge of a macro-
molecule is zero, and therefore its electrophoretic mobil-
ity is stopped). Unfortunately, 2D-PAGE suffers from
several intrinsic technical problems (e.g., performs
poorly for very large, very small, extremely acidic or
basic proteins). Therefore, 2D-PAGE has been today re-
placed in many cases by gel-free techniques such as

high-throughput mass spectrometry (MS) [3, 4]. Never-
theless, before the mass spectrometry is applied, the
sample is digested by trypsin into short peptides and
then fractionated by isoelectric focusing into so called
fractions which allows to reduce MS analysis complexity.
Although molecular techniques for protein analysis have
changed, the interpretation of the results from those
techniques in many cases rely on accurate estimations of
pI for reference polypeptides.
For polypeptides, pI depends mostly on the acid dis-

sociation constants (pKa) of the ionizable groups of
seven charged amino acids: glutamate (δ-carboxyl
group), aspartate (ß-carboxyl group), cysteine (thiol
group), tyrosine (phenol group), histidine (imidazole side
chains), lysine (ε-ammonium group) and arginine (gua-
nidinium group). Additionally, the charge of the amine
and carboxyl terminal groups contribute to pI and can
greatly affect pI of short peptides [5]. Overall, the net
charge of the protein or peptide is strongly related to the
solution (buffer) pH and can be approximated using the
Henderson-Hasselbalch equation [6]. It should be kept
in mind that the values of dissociation constants used in
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the calculations are usually derived empirically and can
vary substantially depending on the experimental setup
such as temperature or buffer ionic strength (herein pre-
sented method, Isoelectric Point Calculator, is compared
to 15 such pKa sets). On the other hand, pKa values or
pI can be derived computationally giving the large sets
of proteins or peptides for which pI information is
known. This is the approach, presented in this study.
The problem of computational prediction of pI was
already addressed by two other research groups using
artificial neural networks (ANN) [7] and support vector
machines (SVM) [8, 9]. Here, I present IPC program
which is based on the optimization using a basin-
hopping procedure [10]. Presented results shows that
IPC overperform all currently, available algorithms.

Results
Comparison to other algorithms
To compare the performance of Isoelectric Point Calcu-
lator 15, other pKa sets and two programs based on
SVM (pIR) and ANN (pIPredict) were tested. Isoelectric
point predictions were validated separately for peptides
and proteins as they differ substantially. Proteins are
relatively big molecules with a plethora of charged resi-
dues. Moreover, in the proteins pI is affected by many,
additional factors such as post translational modifica-
tions, solvent accessibility, etc. On the other hand, pep-
tides are short, possessing usually only a handful of
charged residues and therefore their pI is easier to pre-
dict. In the presented study two protein databases,
SWISS-2DPAGE and PIP-DB, were used. For peptides,
three datasets from separate high-throughput experi-
ments were used. At the beginning, two databases for
proteins were merged. As the content of the databases
overlapped and was redundant, additional post process-
ing and cleaning of the data was necessary. First of all,
not all records contained useful information, namely iso-
electric point and sequence or Uniprot ID. Moreover,
even separate databases were redundant (contained mul-
tiple records with the same sequence or Uniprot ID).
Therefore, the duplicates were merged into unique re-
cords and pI information was averaged if needed (mul-
tiple pI values coming from separate experiments). Next,
the worst outliers defined here as those proteins for
which the difference between the experimental pI and
the average predicted pI was greater than the threshold
of the mean standard error (MSE) of three were ex-
cluded as they represented possible annotation errors.
Finally, the resulting dataset consisting of over 2,000
proteins was divided into a training set (75 % randomly
chosen proteins) and a testing set. The training set was
used to obtain optimized pKa values and the test set was
used to evaluate IPC on proteins not used during train-
ing. A similar procedure was employed to peptide

datasets with the exception that then the threshold of
MSE of 0.25 was used (for more details see Methods).
The results of the benchmarks for pI prediction are pre-
sented in Tables 1, 2 and 3. Table 1 shows the results on
testing sets both for proteins and peptides. IPC pro-
duced best results (the lowest RMSD and the smallest
number of outliers). For comparison the results on the
training set are presented in Table 2. The performance
of the IPC_protein set is slightly better for the training
dataset (RMSD of 0.8376 for the 75 % training set versus
0.8731 for the 25 % test set), but this is expected (even
though optimization procedure was cross validated the
overfitting cannot be avoided fully, but results in Tables 1
and 2 show that this is not critical in this case). More-
over, the general performance of IPC does not depend
on the datasets used for training (Table 3). Furthermore,
the results for the training sets and the results for the
test sets are consistent (Tables 1 and 2, respectively). In
most cases the order of the method’s performance on
both training and testing datasets is similar; for instance
the change in the order on the protein dataset can be
seen for the Dawson and Bjellqvist pKa sets, which is
within the error margin. Similarly, there are some
changes in the method order depending on the peptide
dataset, but only for methods with a very similar per-
formance, e.g., Lehninger and Solomons on PIP-DB.
Again, in most cases, the change is within the margin of
error. The IPC sets, regardless of the dataset and the val-
idation procedures, performed the best. Similar results
are obtained when comparing the number of outliers
produced by the individual pKa sets. Outliers corres-
pond to cases of extremely poor prediction (the differ-
ence between the predicted and experimental pI is
greater than an arbitrarily chosen threshold; e.g., for pro-
teins, an MSE of 3 was used as the threshold). In all
cases, IPC produced the smallest number of outliers. It
should be stressed, that all algorithms, except IPC, pIR
and pIPredict, rely on experimentally derived pKa values
and therefore they were not optimized for particular
data sets. As IPC results were validated on test set not
used in training, the only remaining algorithms which
may be optimized towards a particular dataset are pIR
and pIPredict. pIR is a support vector machine method
which used PIP-DB proteins for training, thus it is inter-
esting to investigate how it performs on different protein
set. As one can see in Table 3, while pIR produce rea-
sonable results for the PIP-DB dataset, its predictive per-
formance decreases significantly on the SWISS-2DPAGE
dataset. This means that pIR method was most likely
overfitted towards PIP-DB proteins (move from the mid-
dle of the table – PIP-DB dataset, to the bottom –
SWISS-2DPAGE dataset). Moreover, it should be
stressed that all benchmarks from Audain et al. and pre-
sented here describing PIP-DB cannot be compared
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directly as they were done on different subsets of PIP-
DB (Audain et al. removed all records which have more
than one pI measurement for given protein, while here
average was used instead). Also, pIPredict performs
worse than most of the methods. Most likely it is due
the fact that pIPredict was trained only on peptide data-
set from Gauci et al., which is smaller than used in the
presented study. Moreover, it was not trained on any
protein dataset, thus pIPredict should rather be used
only for peptides.

Auxiliary statistics
Figures 1 and 2 show the correlation plots between the
experimental and theoretical isoelectric points for pro-
teins and peptides on different datasets calculated using
different pKa sets. These plots are useful to assess the
quality of the datasets used. The Pearson correlations
(R2) between a pKa set, e.g., EMBOSS and the number
of outliers, which were defined here as those where the
MSE exceeded 3 for the average pI prediction (this cor-
responds to ~1.73 pH unit difference) give a good im-
pression of the quality of the dataset. Even if we assume

that the presented, nine-parameter model is highly sim-
plified e.g., it does not take posttranslational modifica-
tions into account, we can suspect that such a large
difference is more likely an annotation error in the data-
base than a true difference (this assumption was con-
firmed by randomly checking some outliers; data not
shown, available on request). Moreover, contrary to pre-
vious works, R2 was not used as a performance measure
because it should not be considered in this way. R2 mea-
sures how well the current model fits a linear model. It
is unlikely that the experimental isoelectric point can be
explained using a highly simplified nine-parameter
model that does not take into account multiple factors
(see Methods for more details). The R2 value is a useful
statistic for preliminary analysis but should not be used
for evaluating the performance. Similarly, scatter plots
between the experimental pI and those produced by dif-
ferent pKa sets (Fig. 2) can give a good impression of
the correctness of the model, but quantitative measure-
ment of the performance requires better measures, e.g.,
the root-mean-square deviation (RMSD), which presents
the sample standard deviation of the differences between

Table 1 Prediction of isoelectric point on the 25 % testing datasets

Method Protein dataset Method Peptide dataset

RMSD % Outliers RMSD % Outliers

IPC_protein 0.874 0 46 IPC_peptide 0.251 0 232

Toseland 0.934 14.9 52 Solomons 0.255 0.9 235

Bjellqvist 0.944 17.7 47 Lehninger 0.262 2.5 236

Dawson 0.945 17.8 56 EMBOSS 0.325 18.5 372

Wikipedia 0.955 20.5 55 Wikipedia 0.421 47.9 1467

Rodwell 0.963 22.8 58 Toseland 0.425 49.1 990

ProMoST 0.966 23.6 52 Sillero 0.428 50.3 1223

Grimsley 0.968 24.2 60 Dawson 0.435 52.9 1432

Solomons 0.970 24.8 58 Thurlkill 0.481 69.7 1361

Lehninger 0.970 25.0 59 Rodwell 0.502 78.4 1359

pIR 1.013 38.0 58 DTASelect 0.550 99.1 1714

Nozaki 1.024 41.3 56 Nozaki 0.602 124.3 1368

Thurlkill 1.030 43.4 61 Grimsley 0.616 131.4 1550

DTASelect 1.032 44.1 58 Bjellqvist 0.669 161.5 1583

pIPredict 1.048 49.4 56 pIPredict 1.024 493.6 2720

EMBOSS 1.056 52.3 69 ProMoST 1.239 873.4 2649

Sillero 1.059 53.2 63 pIR 1.881 4159.7 3358

Patrickios 2.392 3201.8 227 Patrickios 1.998 5479.1 2739

Avg_pIa 0.960 22.1 53 Avg_pI 0.454 59.6 1571
aAverage from all pKa sets without Patrickios (highly simplified pKa set) and IPC sets. Note, that the average pI is calculated on the level of individual protein or
peptide, thus it does not represent the average from values presented in the table for individual methods
% - Note that the pH scale is logarithmic with base 10; thus, the percent difference corresponds to pow(10, x), where x is equal to the delta of the RMSD of two
error estimates represented in pH units; for example, the % difference between Toseland and IPC_protein is pow(10, (0.934-0.874))
Protein dataset (IPC_protein was trained on 1,743 proteins with 10-fold cross-validation – data in Table 2, tested on 581 proteins not used for training – data in
the table above), peptide dataset (IPC trained on 12,662 peptides with 10-fold cross-validation – data in Table 2, tested on 4,220 peptides not used for training –
data in the table above). Outliers correspond to the number of predictions for which the difference between the experimental pI and predicted pI was greater
than the threshold of the mean standard error (MSE) of 3 for the protein dataset and MSE of 0.25 for the peptide dataset
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the predicted values and the observed values. An add-
itional advantage of the RMSD is that it is simple to ex-
plain and reflects the error of the prediction in pH units.
Another performance metric used here is the number of
outliers at a given threshold (for the protein dataset the
threshold was set to MSE > 3 between the experimental
pI and average prediction pI for removing outliers from
the datasets; in this way, none of the pKa sets was fa-
vored). For instance, the Patrickios pKa set is highly
simplified and generally should not be used. Thus, this
set was not included in the average calculation. In all
benchmarks, the Patrickios pKa set performed the worst.
As illustrated in Fig. 2 (top, right panel), this set cannot
correctly predict the pI for proteins with pI > 6, but it
performs relatively well in the 4–6 pI range.

Discussion
The distribution of the isoelectric points of proteins
in proteomes is universal for almost all organisms
[11], which can be demonstrated by plotting isoelec-
tric points of the proteins stored in the SwissProt
database. The distribution is bimodal with a low

fraction of proteins with a pI close to 7.4. This is be-
cause the proteins are mostly insoluble, less reactive
and unstable at pH close to their pI. The pH inside
of most cells is close to 7.4, therefore this property of
proteomes can be a result of evolutionary selection or
simply a result of the chemical properties of amino
acids [12]. Naturally, there are some exceptions. Some
halophilic Archaea organisms do not try to fight the
high concentration of salt in their environment; in-
stead, they change the physiological pH inside their
cells to be more similar to the environment (in this
way, they use less energy to maintain homeostasis)
[13]. This response has dramatic consequences for
the amino acid compositions and isoelectric points of
their proteins (Fig. 3).
It should be stressed that the relative difference be-

tween the performance of different pKa sets is often
small and statistically insignificant (e.g., pI calculated by
Bjellqvist vs. Dawson pKa sets on protein datasets), but
even general knowledge of which pKa sets are better
and which should be used for a particular type of data
(e.g., protein versus peptides) is not commonly used

Table 2 Prediction of isoelectric point on the 75 % training datasets

Method Protein dataset Method Peptide dataset

RMSD % Outliers RMSD % Outliers

IPC_protein 0.838 0 114 IPC_peptide 0.247 0 635

Toseland 0.898 15.0 131 Solomons 0.251 0.8 638

Bjellqvist 0.922 21.5 149 Lehninger 0.256 2.4 643

Dawson 0.920 20.9 156 EMBOSS 0.322 18.8 1088

Wikipedia 0.930 23.8 157 Wikipedia 0.413 46.3 4280

Rodwell 0.938 26.1 159 Sillero 0.426 50.9 3025

ProMoST 0.938 26.1 140 Toseland 0.427 51.2 3618

Grimsley 0.939 26.2 147 Dawson 0.432 52.9 4192

Solomons 0.947 28.5 159 Thurlkill 0.480 70.8 4017

Lehninger 0.947 28.7 160 Rodwell 0.506 81.2 4061

pIR 1.026 54.2 180 DTASelect 0.541 96.8 4902

Nozaki 1.005 47.1 169 Nozaki 0.599 124.8 4013

Thurlkill 1.018 51.5 173 Grimsley 0.611 130.9 4609

DTASelect 1.017 51.1 167 Bjellqvist 0.661 159.2 4672

pIPredict 1.057 65.9 173 pIPredict 1.024 497.8 8051

EMBOSS 1.040 59.4 189 ProMOST 1.233 867.5 7999

Sillero 1.042 60.1 188 pIR 1.862 4020.9 9921

Patrickios 2.237 2405.1 645 Patrickios 1.977 5266.8 8131

Avg_pIa 0.940 26.6 151 Avg_pI 0.451 59.7 4600
aAverage from all pKa sets without the Patrickios (highly simplified pKa set) and IPC sets. Note, that the average pI is calculated on the level of individual protein
or peptide
Protein dataset (IPC_protein trained on 1,743 proteins with 10-fold cross-validation – data in the table above, tested on 581 proteins not used for training – data
in Table 1), peptide dataset (IPC trained on 12,662 peptides with 10-fold cross-validation – data in above table, tested on 4,220 peptides not used for training –
data in Table 1). Changes in method order in comparison to Table 1 are in bold
Outliers correspond to the number of predictions for which the difference between the experimental pI and the predicted pI exceeded the threshold of an MSE of
3 for the protein dataset and an MSE of 0.25 for the peptide dataset
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(Fig. 3, bottom two panels). Furthermore, presented re-
sults demonstrate that prediction of pI is easier for short
peptides than for proteins as the former contain less
charged and modified amino acids (e.g. compare RMSD
values between peptide and protein datasets). Similarly,
the dataset on which methods are trained and/or evalu-
ated can result in different estimations of RMSD error.
For example, Fig. 1 shows that PIP-DB contains multiple
outliers and duplicates in comparison to SWISS-
2DPAGE. This noise in the data leads to almost a doub-
ling of the RMSD (Table 3). Nevertheless, the method
order is usually preserved.
As mentioned earlier, one of the main limitations of

IPC is that it uses a nine-parameter model which is a
highly simplistic approximation, and does not take into
account many aspects of proteins such as post transla-
tional modification. It should be noted that posttransla-
tional modifications occur much more frequently in
Eukaryotic proteins than in Prokaryotic, thus it is inter-
esting to investigate how accurately pI can be predicted
in these two kingdoms separately. As illustrated in
Additional file 1: Table S1 all pI prediction methods

perform better on prokaryotic proteins. This suggests
that when working with Eukaryotic proteins one should
keep in mind that pI prediction accuracy can be de-
creased due possible posttranslational modifications. In
such cases other, more specialized programs such as
ProMoST can be used when researcher has detailed
knowledge about posttranslational modifications.
Additional source of bias may come from the fact

that some proteins can have more than one splicing
variant, while in herein study only first, major iso-
form of protein was used. Thus, there is possibility
that this may lead to dataset of proteins different
than those for which pI was measured. As illustrated
in Additional file 1: Table S2 most of analyzed pro-
teins possess only one isoform (2,106 out of 2,254 in
the protein dataset, 93.6 % of cases) and when re-
analyzing the data using only those proteins the re-
sults are virtually identical. It should be stressed that
even for proteins having more than one splicing iso-
form it is highly unlikely that the authors worked
with and then reported pI from less abundant, minor
isoforms.

Table 3 Prediction of isoelectric points for SWISS-2DPAGE and PIP-DB databases

Method SWISS-2DPAGE Method PIP-DB

RMSD % Outliers RMSD % Outliers

IPC_protein 0.476 0 10 IPC_protein 1.019 0 141

Toseland 0.521 10.9 18 Toseland 1.086 16.7 153

Bjellqvist 0.590 30.0 31 Bjellqvist 1.085 16.3 150

ProMoST 0.597 32.1 29 Dawson 1.081 15.3 161

Dawson 0.599 32.5 37 Wikipedia 1.087 16.9 163

Wikipedia 0.619 39.0 35 Rodwell 1.095 19.1 167

Rodwell 0.628 41.7 37 Grimsley 1.121 26.6 170

Grimsley 0.572 24.5 21 Solomons 1.103 21.4 159

Solomons 0.635 44.2 44 Lehninger 1.102 21.1 161

Lehninger 0.640 45.8 44 ProMOST 1.111 23.5 150

Nozaki 0.679 59.4 43 pIR 1.152 35.8 184

Thurlkill 0.691 63.9 39 Nozaki 1.165 39.9 170

DTASelect 0.677 58.8 35 Thurlkill 1.180 44.9 176

EMBOSS 0.724 76.9 49 DTASelect 1.186 47.1 173

Sillero 0.721 75.5 50 pIPredict 1.195 50.0 182

pIR 0.761 92.4 37 EMBOSS 1.198 51.2 191

pIPredict 0.768 95.9 33 Sillero 1.202 52.4 187

Patrickios 1.600 1227.9 243 Patrickios 2.623 3918 604

Avg_pIa 0.614 37.1 32 Avg_pIa 1.101 20.9 160
aAverage from all pKa sets without the Patrickios (highly simplified pKa set) and IPC sets. Note, that the average pI is calculated on the level of individual protein
or peptide
Both SWISS-2DPAGE and PIP-DB were cleaned of outliers (MSE > 3 between experimental pI and average predicted pI) and clustered by CD-HIT with 99 %
sequence identity threshold, as described in the Materials and Methods (982 and 1,307 proteins, respectively), but they were not divided into training and testing
datasets. Thus, the results for the IPC sets are slightly overestimated, but this is not relevant, as shown by the comparison of Tables 1 and 2
Outliers correspond to the number of predictions for which the difference between the experimental pI and the predicted pI exceeded the threshold of an MSE of
3 for the protein dataset
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Moreover, if is easy to notice that presented here new
pKa values are different from those which were derived
earlier experimentally. One should remember that even
experimental setup can have strong impact on the re-
sults. For instance pKa values obtained by Thurkill et al.
were measured using alanine pentapeptides with charged
residue in the center. This was done to minimalize the
contribution from neighboring residues, but this setup is
extremely far from the real situation in the proteins
(contribution from surrounding side groups of residues
which are not alanine, post translational modifications,
etc.). Thus, optimized pKa’s can be seen as more precise
as they indirectly take into account such complexity. In
the Additional file 1: Table S3 one can find average pKa
values from previously used scales compared to IPC
values. On peptide dataset most of differences is due ter-
minal residues, which could be expected as in the pep-
tides terminal charge can constitute big proportion of
overall charge, thus N-terminus pKa value in previous
studies was underestimated, while C-terminus pKa was
overestimated in comparison to IPC values. On the
other hand, for proteins one can notice that the main
differences are observed for cysteines reflecting possible
contribution from disulfide bridges and for lysine, histi-
dine, and tyrosine which are frequently posttranslation-
ally modified. Moreover, this effect is less abundant for
arginine (also frequently modified), but it should be
noted that arginine is bigger and contains more charged
groups thus most likely modification effect (if exists) is
less profound.

Conclusions
New, herein presented pKa sets, optimized computa-
tionally, can be considered as important improvement in

isoelectric point estimation based only on sequence in-
formation. IPC had been compared to numerous
methods, including 15 other pKa sets, two machine
learning approaches and the consensus. Datasets used in
the study were crossvalidated during training and add-
itionally performance was measured on 25 % subsets not
used during training. In all cases, IPC produced superior
results. For instance, the isoelectric point prediction al-
gorithm performance measured on proteins derived
from different databases (Table 3) differ in absolute
value (measurements done on different proteins), but
the overall order of methods in the benchmark stays al-
most the same with IPC leading in all cases. The same is
true if we divide datasets according to organism (for de-
tails see Additional file 1: Figure S1) from which proteins
come. As expected, for all methods the prediction accur-
acy is decreased for Eukaryotic proteins as they can be
frequently posttranslationally modified in contrast to
Prokaryotic proteins in which posttranslational modifica-
tions are less abundant (Additional file 1: Table S1). As
there is no information about posttranslational modifica-
tions in used databases (SWISS-2DPAGE and PIP-DB) it
was not possible to investigate this issue in more detail.
Yet, both separation of proteins into Eukaryotic vs.
Prokaryotic and detailed analysis of new pKa values
shows that the potential bias coming from posttransla-
tionally modification was partially incorporated during
optimization procedure which changed pKa values
mostly for amino acids frequently modified.
To Authors’ knowledge IPC web server is the only

website on which protein isoelectric point can be pre-
dicted using so many different pKa values sets including
two, new ones presented here. Accurate estimation of
isoelectric point is frequently used for identification of

Fig. 1 Correlation of the experimental versus the theoretical isoelectric points for two protein datasets. Data for SWISS-2DPAGE (left panel) and
PIP-DB (right panel) are calculated using the EMBOSS pKa set. Outliers are defined as MSE > 3 and are marked in red. Plots correspond to datasets
as presented by the authors before cleaning and the removal of duplicates (duplicates are defined as records that have the same sequence but
are referred to as separate records in the database). In both databases, the authors reported multiple pI values from different experiments for the
same sequences in separate records. In such cases for the current analysis, the average pI was used. The solid line represents the linear regression
after removal of the outliers
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proteins during 2D-PAGE and mass spectrometry.
Moreover, the knowledge of isoelectric point can be use-
ful during crystallization trials [14].

Methods
Isoelectric point, Henderson–Hasselbalch equation, pKa
values for the ionizable groups of proteins
The isoelectric point (pI) is the pH at which the net
charge of a protein is zero. For polypeptides, the iso-
electric point depends primarily on the dissociation
constants (pKa) for the ionizable groups of seven
charged amino acids: glutamate (δ-carboxyl group),

aspartate (ß-carboxyl group), cysteine (thiol group),
tyrosine (phenol group), histidine (imidazole side
chains), lysine (ε-ammonium group) and arginine
(guanidinium group). Moreover, the charge of the ter-
minal groups (NH2 and COOH) can greatly affect the
pI of short peptides. Generally, the Glu, Asp, Cys,
and Tyr ionizable groups are uncharged below their
pKa and negatively charged above their pKa. Simi-
larly, the His, Lys, and Arg ionizable groups are posi-
tively charged below their pKa and uncharged above
their pKa [5]. This has certain implications. For ex-
ample, during electrophoresis, the direction of protein

Fig. 2 Correlation of the experimental versus theoretical isoelectric points calculated using different pKa sets. Data for the main protein dataset
(merged dataset created from SWISS-2DPAGE and PIP-DB). R2 – Pearson correlation before the removal of outliers. R2corr – Pearson correlation
after the removal of outliers. Additionally, the linear regression models fitted to predictions with outliers (magenta line) and without outliers (blue
line) are shown. Outliers (marked in magenta) are defined as pI predictions with MSE > 3 in comparison to the experimental pI. Other predictions
are represented as heat maps according to the density of points. The numbers of outliers for both the training and testing set are shown together. For
brevity, only six pKa sets are shown
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migration on the gel depends on the charge. If the
buffer pH (and as a result, the gel pH) is higher than
the protein isoelectric point, the particles will migrate
to the anode (negative electrode), and if the buffer
pH is lower than the isoelectric point, they will mi-
grate to the cathode. When the gel pH and the pro-
tein isoelectric point are equal, the proteins stop to
migrate.
Overall, the net charge of the protein or peptide is re-

lated to the solution (buffer) pH. We can use the

Henderson-Hasselbalch equation [6] to calculate the
charge at a certain pH:
- for negatively charged residues:

Xn

i¼1

−1
1þ 10pKn−pH ð1Þ

where pKn is the acid dissociation constant of the nega-
tively charged amino acid
- for positively charged residues:

Fig. 3 Histograms of the isoelectric points of proteins. Top and middle panels are calculated using the IPC_protein pKa set (in 0.25 pH unit
intervals) and represents pI distribution in the SwissProt database, human proteome, Escherichia coli and extreme halophilic archaeon Natrialba
magadii. Bottom two panels presents the isoelectric points of the yeast proteome (6,721 proteins) calculated using the EMBOSS pKa set
(as presented in the Saccharomyces Genome Database [40]) and the IPC_protein pKa set for comparison
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Xn

i¼1

1

1þ 10pH−pKp ð2Þ

where pKp is the acid dissociation constant of the posi-
tively charged amino acid

The charge of a macromolecule at a given pH is the
sum of the positive and negative charges of the individ-
ual amino acids given by Eqs. 1 and 2. When the pKa
values are set, the only variable in the equations is the
pH of the buffer, and by iteratively changing the pH, we
can easily calculate the isoelectric point. The result will
be almost certainly different than the real isoelectric
point because many proteins are chemically modified
(e.g., amino acids can be phosphorylated, methylated,
acetylated), which can change their charge. The occur-
rence of cysteines (negative charge), which may oxidize
and lose charge when they form disulfide bonds in the
protein, is also problematic. Moreover, one must con-
sider the charged residue exposure to solvent, dehydra-
tion (Born effect), charge-dipole interactions (hydrogen
bonds), and charge-charge interactions [5].
Nevertheless, the most critical consideration for accur-

ate isoelectric point determination is the use of appro-
priate pKa values. Unfortunately, pKa estimates differ
depending on the experimental setup in which they were
measured. More than 600 different pKa values have been

reported for the ionizable groups [15]. Table 4 shows the
most commonly used values, including two new pKa
sets (IPC_protein and IPC_peptide) proposed in this
study. Most of the algorithms use nine-parameter model
(seven pKa values corresponding to charged amino acids
and two for the terminal groups), but more advanced al-
gorithms also exist, e.g., Bjellqvist [16] (17 parameters)
and ProMoST [17] (72 parameters), which take advan-
tage of specifying additional pKa values for charges of
particular amino acids, especially those located on the
polypeptide termini. Additionally, some models were not
complete, for instance Grimsley et al. [15] did not pro-
vide pKa value for arginine. Similarly, Dawson model
did not include the charge of terminal groups. There-
fore, the missing values were introduced (by taking aver-
age from other pKa values or similar sets) in order to
improve the results (the models with less than nine pa-
rameters always performed worse than those having at
least all nine parameters, see for instance the results for
Patrickios, six-parameter model).

Datasets
The aim of the present study was to derive computation-
ally more accurate pKa sets using currently available
data. For training and validation, the following datasets
were used:

Table 4 Most commonly used pKa values for the ionizable groups of proteins. Note that Bjellqvist and ProMoST use different
amounts of additional pKa values (not shown), which take into account the relative position of the ionized group (whether it is
located on the N- or C- terminus or in the middle). For more details, see References 4 and 5 and the “Theory” section on the IPC
web site

Amino acid NH2 COOH C D E H K R Y

EMBOSS [29] 8.6 3.6 8.5 3.9 4.1 6.5 10.8 12.5 10.1

DTASelect [30] 8 3.1 8.5 4.4 4.4 6.5 10 12 10

Solomons [31] 9.6 2.4 8.3 3.9 4.3 6 10.5 12.5 10.1

Sillero [32] 8.2 3.2 9 4 4.5 6.4 10.4 12 10

Rodwell [33] 8 3.1 8.33 3.68 4.25 6 11.5 11.5 10.07

Patrickios [34] 11.2 4.2 - 4.2 4.2 - 11.2 11.2 -

Wikipedia 8.2 3.65 8.18 3.9 4.07 6.04 10.54 12.48 10.46

Lehninger [35] 9.69 2.34 8.33 3.86 4.25 6 10.5 12.4 10

Grimsley [15] 7.7 3.3 6.8 3.5 4.2 6.6 10.5 12.04a 10.3

Toseland [36] 8.71 3.19 6.87 3.6 4.29 6.33 10.45 12 9.61

Thurlkill [37] 8 3.67 8.55 3.67 4.25 6.54 10.4 12 9.84

Nozaki [38] 7.5 3.8 9.5 4 4.4 6.3 10.4 12 9.6

Dawson [39] 8.2b 3.2b 8.3 3.9 4.3 6 10.5 12 10.1

Bjellqvist [16] 7.5 3.55 9 4.05 4.45 5.98 10 12 10

ProMoST [17] 7.26 3.57 8.28 4.07 4.45 6.08 9.8 12.5 9.84

IPC_protein 9.094 2.869 7.555 3.872 4.412 5.637 9.052 11.84 10.85

IPC_peptide 9.564 2.383 8.297 3.887 4.317 6.018 10.517 12.503 10.071
aArg was not included in the study, and the average pKa from all other pKa sets was taken
bNH2 and COOH were not included in the study, and they were arbitrary taken from Sillero set
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– The IPC peptide pKa set was optimized using
peptides from three, high-throughput experiments:
a) unmodified 5,758 peptides from Gauci et al. [18]

– peptides from zebrafish lysate fractionated
using isoelectric focusing

b) PHENYX dataset (7,582 peptides) [4] – peptides
from Drosophila Kc167 cell line fractionated
using isoelectric focusing on off-gel electrophor-
esis device

c) SEQUEST dataset (7,629 peptides) [4] – peptides
from Drosophila Kc167 cell line fractionated
using isoelectric focusing on off-gel electrophor-
esis device

– The IPC protein pKa set was optimized using
proteins from two databases:
a) SWISS-2DPAGE, release 19.2 (2,530 proteins)

[19] – based on the literature data about pI
linked to UNIPROT accession numbers

b) PIP-DB (4,947 entries) [20] – based on literature
data, provide pI and sequence information for
about half of the records (for details see Table 5).

First, the raw data from the individual datasets was
parsed to the unified fasta format with information
about the isoelectric point stored in the headers. Next,
datasets consisting of proteins and datasets consisting of
peptides were merged into two datasets (IPC_protein
and IPC_peptide, respectively). The data was carefully
validated, e.g., if multiple experimental pI values were re-
ported, the average was used. The first, major splicing
form of the protein (most widely expressed) taken from
UniProt [21] was used for SWISS-2DPAGE. None infor-
mation about experimental methods used for obtaining
isoelectric points or their specificity was used implicitly
during this study. Similarly, as the information about
post translational modifications (PTMs) was not in-
cluded directly in SWISS-2DPAGE and PIP-DB, it was
not possible to investigate in detail PTMs contribution
to pI and they were assumed to be absent. Outliers
representing possible annotation errors in databases

were removed (proteins with mean standard error
(MSE) > 3 between the experimental isoelectric point
and the average predicted pI; note that under this cutoff,
no peptides were removed; it should be stressed that re-
moved outliers do not differ from other proteins with
the respect of amino acid content, predicted protein dis-
order [22] and secondary structure [23], for details see
Additional file 1: Table S4). Next, redundant data was re-
moved using CD-HIT [24] (0.99 sequence identity
threshold was used; in this case, it was adequate to use
such a high sequence identity because even single muta-
tions in the charged residues can lead to dramatic
changes in pI; moreover other sequence identity thresh-
olds gave similar results; data not shown). This step also
removed duplicates (multiple entries assigned to the
same sequence coming from two different databases).
Finally, 25 % of the randomly chosen proteins and pep-
tides were excluded for final testing, and the remaining
75 % were used for 10-fold cross-validated training.
Detailed statistics for the datasets can be found in

Table 5. The main dataset files are available as
Additional files 2 and 3 and/or online in the “Datasets”
section of the IPC web site.

Calculation of the isoelectric point
As noted before, the isoelectric point is determined by
iteratively calculating the sum of Eqs. 1 and 2 for the in-
dividual charged groups for a given pH. The calculation
can be performed exhaustively, but this would not be
practical. Instead, the bisection algorithm [25] is used,
which in each iteration halves the search space (initially,
the pH is set to 7) and then moves higher or lower by
3.5 (half of 7) depending on the charge. In the next iter-
ation, the pH is changed by 1.75 (half of 3.5), and so on.
This process is repeated until the algorithm reaches the
desired precision. Bisection improves the speed by 3–4
orders of magnitude, and after approximately a dozen of
iterations, the algorithm converges with 0.001 precision.
Next, the speed improvement can be obtained by start-
ing the search from a rough approximation of the

Table 5 Detailed statistics for the available datasets

Dataset Initial no. entries No. entries with sequence and pI No. entries after removing outliers No. entries after removing duplicates

Gauci et al. 5,758 5,758 NA NA

PHENYX 7,582 7,582 NA NA

SEQUEST 7,629 7,629 NA NA

IPC_peptide - 20,969 20,969 16,882 [25] [75]

SWISS-2DPAGE 2,530 1,054 1,029 982

PIP-DB 4,947 2,427 2,254 1,307

IPC_protein - 3.481 3,283 2,324 [25] [75]

NA not available refers to the situation where the given dataset was not created because a merged version was used
Note: all datasets presented in the table are available as hyperlinks; the final datasets were divided randomly into 75 % training and 25 % testing subsets
(denoted as [75] and [25], respectively)
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solution rather than 7 (in this case, a pH of 6.68 was
used, which is the average isoelectric point for approxi-
mately 318,000 proteins taken from the SwissProt data-
base [26], 90 % sequence identity threshold was used).

Performance measures
To measure the performance, two metrics were used i.e.,
the root-mean-square deviation (RMSD) and the num-
ber of outliers, defined as pI predictions with a mean
standard error (MSE) larger than the given threshold in
comparison with the experimental pI. To remove poten-
tial outliers, for the protein datasets, an MSE of three
was used, and for peptide datasets, an MSE of 0.25 was
used. Moreover, for the preliminary analysis, the Pearson
correlation was used.

Optimization
The optimization procedure was designed to obtain
nine optimal pKa values (corresponding to the N-
and C-termini and the C, D, E, H, K, R, and Y
charges). The cost function was defined as the root-
mean-square deviation (RMSD) between the true iso-
electric points from the available datasets and those
calculated using the new pKa set(s). Optimization was
performed using a basin-hopping procedure [10]
which uses a standard Monte Carlo algorithm with
Metropolis criterion to decide whether to accept a
new solution. The previously published pKa values
were used as the initial seeds. To limit the search
space, a truncated Newton algorithm [27] was used,
with 2 pH unit bounds for the pKa variables (e.g., if
the starting point for Cys pKa was 8.5, the solution
was allowed in the interval [6.5, 10.5]). The
optimization was run iteratively multiple times using
intermediate pKa sets until the algorithm converged
and no better solutions could be found. To avoid
overfitting, both the IPC_protein and IPC_peptide
datasets were randomly divided into 75 % training
datasets (used for pKa optimization) and 25 % testing
datasets (not used during optimization). During train-
ing, nested 10-fold cross-validation was used [28].
Thus, the IPC was optimized separately on k-1 parti-
tions and tested on the remaining partition. The
training was repeated ten times in all combinations.
The resulting pKa sets were averaged. In general, this
process resulted in slower convergence of the algo-
rithm and a longer training time but prevented over-
fitting. Apart from the nine-parameter model (nine
pKa values for charged residues) also more advanced
models similar to Bjellqvist and ProMoST were also
tested. Their performance was on a similar level thus
the simpler, nine-parameter model was used in the
final version of IPC.

Implementation
The IPC, Isoelectric Point Calculator is available as a
web server (Fig. 4) implemented in PHP server-side
scripting language. Additionally, HTML5 JavaScript
charting library CanvasJS (http://canvasjs.com) and
bootstrap (http://getbootstrap.com) were used. More-
over, IPC can be used on any operating system as a stan-
dalone program written in Python language (Additional
file 4).

Reviewers’ comments
Reviewer’s report 1
Frank Eisenhaber, Bioinformatics, A*STAR’s Biomedical
Sciences Institute

Reviewer comments
Reviewer summary
The author reviews the state of the art in the pI compu-
tation from protein sequence, provides an improved
software tool and presents a WWW site with lots of re-
lated information, a WWW server and the software
download.

Reviewer recommendations to authors
This is a very carefully prepared MS that can be pub-
lished as is.
Minor issues
n/a
Authors’ response: I thank the reviewer for highlighting

the general interest of presented tool and his positive
reaction to the manuscript

Reviewer’s report 2
Zoltán Gáspári, Pazmany University, Budapest

Reviewer comments
Reviewer summary
The manuscript describes a novel set of pKa values for
peptides and proteins. The set can be used to estimate
the isoelectric point of these macromolecules. The prob-
lem is of importance in protein/peptide studies and im-
provements in the pKa data sets used can be useful.
Authors’ response: I thank the reviewer for his support-

ive comments of the study and for highlighting the gen-
eral interest of presented findings. I have made a
concerted effort to address all of his concerns.
Reviewer recommendations to authors
Major recommendations:

– It is really interesting that the prediction works
better for prokaryotic than for eukaryotic proteins.
Can the author perform a bit more detailed analysis
on this topic besides pointing out the role of PTMs?
Do the worst outliers exhibit characteristic amino
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Fig. 4 Exemplary output of the IPC calculator for the Mycoplasma genitalium G37 proteome (476 proteins). The scatter plot with the predicted
isoelectric points versus molecular weight for all proteins is presented at the top. Then, for individual proteins, pI predictions based on different
pKa sets are presented alongside the molecular weight and amino acid composition
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acid distributions? for example, eukaryotic
proteomes are abundant in intrinsically disordered
proteins for which the peptide data set might yield
better results in some cases.

Authors’ response: I am most grateful to the Reviewer
for bringing this point to my attention. To address Re-
viewer’s comment I performed additional analysis (in-
cluded in the supplement as Additional file 1: Table S4).
There are 195 outliers (sequences for which pI delta of
MSE > 3) vs 2,324 non-outliers (protein sequences which
are used for testing and training). Additionally, I have
chosen 195 randomly selected sequences from non-
outliers, to be sure that sample size does not matter.
Conclusions: the outliers are usually shorter and slightly
more disordered, but this is not statistically significant.
Similarly secondary structure composition and charged
amino acid frequencies are very similar. As the result of
this analysis does not introduce any new, unexpected in-
formation, I added it only to the supplement and men-
tioned briefly in methods section, where I defined
outliers (lines 311–313).

– It could be interesting if the author could give any
further insights into the variations of the pKa values
in the sets and especially the divergence of the
newly suggested values relative to those in the
literature. There is already a discussion of this in the
manuscript just before the Conclusions section but
as it is both an important and an interesting aspect,
the manuscript might benefit from a more detailed
analysis of this question.

Authors’ response: I decided that longer discussion
about this topic would be too technical and too specula-
tive, and after all it would not change the results and I
doubt that this will be interesting for broad readership.
Additionally, it would not improve the flow of the manu-
script (this is rather off topic). Nevertheless, I also think
that it is interesting aspect, thus I added this information
to Additional file 1: Table S3 underscoring the most di-
vergent values and briefly discussing it possible source.
A short description of the origin of the data sets used

could also be helpful for the reader.
Authors’ response: The asked information can be

found in lines 288–299 in which the Reviewer can read
about the organism and technique used for the gener-
ation of peptide sets, and references to original studies
from which data had been taken. Moreover, all original
files for datasets are available as hyperlinks from first
column of the Table 5 and also from http://isoelectric.ov
h.org/datasets.html – in case if they would be not avail-
able in the future from their source urls. For proteins, the
information about the experimental technique and the

organism is available only partially (see e.g. http://iso
electric.ovh.org/datasets/ch2d19_2.dat). In any case,
those data were not used directly during the datasets
construction or optimization not to favor any technique
or an organism. For instance, for protein dataset most
proteins comes from eukaryotic organisms, 1455 se-
quences versus 837 sequences coming from Prokaryotes.
More detailed data about organism distribution can be
seen on the pie plots in the supplement (Additional file 1:
Figure S1). In the nutshell, most of the protein sequences
come from human, E. coli, S. aureus, R. norvegicus,
M. musculus and yeast. Moreover, PIP-DB in this
respect is more diverse having data from multiple
organisms. Unfortunately, similar analysis for the
methods tag is not possible as this tag is not very
informative (for SWISS-2DPAGE 2124/2186 entries are
tagged as “MAPPING ON GEL” and for PIP-DB
2007/2427 entries are tagged as different versions of
isoelectric focusing).
I think that current, brief description the Reviewer can

find in lines 288–299 is sufficient and more detailed de-
scriptions of the methods from the original studies is out
of the scope of presented manuscript and would extend
the manuscript unnecessarily with minor benefit for the
Readers.
Minor recommendations:

– The author states that when multiple data were
available for the isoelectric point, the average was
taken. It would be nice to know how divergent these
data were and whether the author has any hints on
whether this affects the performance in any
detectable way.

Authors’ response: The information about the diver-
gence is available in the headers of the fasta files e.g.
http://ipc.netmark.pl/datasets/pip_ch2d19_2_1st_isofor
m_outliers_3units_cleaned_0.99.fasta contains:
>P04807-1|[′5.17/55102′, ′5.27/54793′]
MVHLGPKKPQARKGSMADVPKELMQQIENFEKI

FT....
This record comes from SWISS-2DPAGE database

and the header means that two pI measurements are
known: 5.17 and 5.27. Moreover, it can be noticed
that reported molecular weights (55.1 and 54.8 kDa)
differ from predicted 53.9 kDa which could indicate
that this sequence contains post translational modifi-
cations which may or may not influence the isoelectric
point (neither SWISS-2DPAGE or PIP-DB database
contains information about the modifications), but in-
directly it can be seen by molecular weight increase,
other possible bias may come from the technique used
to measuring pI and molecular weight or any random
factors between measurements.
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My attempt to deal with the possible noise in the data
was as follows:

– include as many measurements as possible preferably
coming from different databases

– use the average of the measurements
– as even after averaging the pI for some of sequences

deviates highly from the average predicted pI (Fig. 1)
I decided to investigate how much this could be
explained by possible annotation errors in the
databases. I re-checked randomly selected records
with the biggest deviation between experimental and
theoretical pI and their source publications until I
stop to find obvious annotation errors (in this way I
set a threshold on MSE > 3 for removing outliers).

To sum up this part of the comment, the primary
databases used for the construction of protein and
peptide datasets have different quality. They may con-
tain multiple annotation errors, but the only possible
thing I could do in high-throughput and automatic
way is to minimize the effect of this noise (see for in-
stance Table 3) by averaging the multiple measure-
ments and removing the obvious errors identified by
comparison of experimental and theoretical pI. In
other words, it was not possible in reasonable time, to
verify correctness of > 2,000 entries (available in
already published and widely used databases) refer-
enced in many times by multiple publications one by
one. Table 3 shows that the datasets used have strong in-
fluence on the accuracy of the method (per value), but in
most cases the order of the methods stay the same or is very
similar which indicates that even in the noisy data the
methods are capable to detect signal.

– In the 10-fold cross-validation process, how diver-
gent were the resulting pKa sets that were averaged?
What is the relation of this divergence to the diver-
sity in the other data sets?

Authors’ response: From the observed divergence I
would rather speculate that the landscape of the search
space is quite flat with multiple local minima. There are
many possible 9 sets of pKa values which produce only
slightly worse results. Therefore, the optimization was
run 2,000 times to allow for exploring the search space in
the different places and the local minimum was refined
by bashing-hopping.

– Please provide a short explanation (in the Methods
section) of the asterisked comments for Table 4 and
Additional file 1: Table S3 (e.g. why the Sillero
terminal pKa values were chosen to complete for
the Dawson data set).

Authors’ response: done as suggested, in both cases
adding extra pKa values not included in original
studies improved the results. Having the initial results
from Patrickios, six-parameter model it was obvious
that skipping Arg or terminal charges will have detri-
mental effect on the performance thus I decided to
add them ad hoc, these values were taken as the
average from few scales or most similar scale I know
at the time of doing that (initially there were only 6–
7 scales used, but over the years I implemented more
and more scales).

Minor issues

– The language of the manuscript needs careful
revision. Most of the concepts can be deduced from
the present version but the phrasing should be done
with more care. So, although I think that the paper
can be understood in its present form, I strongly
recommend extensive language editing before final
publication. Some examples: - “nine parametric
model” for me would mean nine distinct models
which are all parametric. Maybe the term “nine-
parameter model” would be more appropriate
(meaning a single model with 9 parameters). -
“Basin-Hopping”: as this does not refer to names,
simply “basin-hopping” can be written. - page 8,
lines 203 and 233: instead of positively and
negatively charged macromolecules, the author
means residues here?

Authors’ response: I apologize for the problematic
phrasing of some of the sentences. I hope that the cor-
rected version of the manuscript is better.

– For the additional FASTA files some explanation of
the information in the headers would be welcome.

Authors’ response: As requested I added in all FASTA
files more information at the beginning about the content
of the headers and how they should be interpreted (avail-
able as hyperlinks from three, right columns in the Table
5 and also from http://isoelectric.ovh.org/datasets.html
19 files in total). Although, the headers could be simpli-
fied and in current version they may have different form
depending from which source they come from I decided
to leave them as they are (even if sometimes they seems
to be hard to understand immediately) as it is easy to
check the correctness of the parsing in comparison to ori-
ginal files.
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Additional files

Additional file 1: Table S1. Performance of isoelectric point prediction
algorithms on prokaryotic (837 proteins) and eukaryotic (1,455 proteins)
datasets derived from SWISS-2DPAGE and PIP-DB. Table S2. Performance
of isoelectric point prediction algorithms on proteins having only one
splicing isoform. Table S3. Statistical comparison of previous pKa values
to IPC_protein and IPC_peptide sets. Table S4. Statistical comparison of
outliers in protein dataset. Figure S1. Organism distribution of sequences
from SWISS-2DPAGE and PIP-DB. (PDF 409 kb)

Additional file 2: IPC peptide dataset (16,882 peptides, derived from
Gauci et al. PHENYX and SEQUEST after 99 % redundancy removal) –
fasta formatted. (FASTA 999 kb)

Additional file 3: IPC protein dataset (2,324 proteins, derived from
SWISS-2DPAGE and PIP-DB after 99 % redundancy removal) – fasta
formatted. (FASTA 969 kb)

Additional file 4: IPC Isoelectric Point Calculator source code (python,
any OS). (TXT 39 bytes)

Abbreviations
2D-PAGE: 2-D polyacrylamide gel electrophoresis; ANN: Artificial neural
networks; IPC: Isoelectric point calculator; MS: Mass spectrometry; MSE: Mean
standard error; PDB: Protein data bank; pI: Isoelectric point; pKa: Dissociation
constant; PTM: Posttranslational modification(s); R2: Pearson correlation;
RMSD: Root-mean-square deviation; SVM: Support vector machines

Acknowledgements
LPK acknowledges all authors of previous works related to different pKa sets
and datasets, especially developers of SWISS-2DPAGE database. The author
thanks also Yasset Perez-Riverol for assistance with pIR package and Vladlen
Skvortsov for assistance with pIPredict program. Additionally, LPK would like
to thank all members of the Soeding lab for fruitful discussions.

Funding
None.

Availability of data and materials
Supporting tables S1-S4, figure S1, the main datasets used in the study and
source program of IPC are included within the article and its Additional files
1, 2, 3 and 4.

Authors’ contributions
LPK conceived and developed the study, analyzed and interpreted the
experiments, and wrote the article.

Authors’ information
Not applicable.

Competing interests
IPC usage is limited to academic and non-profit users as described in http://
isoelectric.ovh.org/license.txt.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 13 August 2016 Accepted: 10 October 2016

References
1. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins.

J Biol Chem. 1975;250(10):4007–21.
2. Klose J. Protein mapping by combined isoelectric focusing and

electrophoresis of mouse tissues. Humangenetik. 1975;26(3):231–43.
3. Righetti PG, Castagna A, Herbert B, Reymond F, Rossier JS. Prefractionation

techniques in proteome analysis. Proteomics. 2003;3(8):1397–407.

4. Heller M, Ye M, Michel PE, Morier P, Stalder D, Jünger MA, Aebersold R,
Reymond F, Rossier JS. Added value for tandem mass spectrometry
shotgun proteomics data validation through isoelectric focusing of
peptides. J Proteome Res. 2005;4(6):2273–82.

5. Pace CN, Grimsley GR, Scholtz JM. Protein ionizable groups: pK values and
their contribution to protein stability and solubility. J Biol Chem.
2009;284(20):13285–9.

6. Po HN, Senozan NM. The Henderson-Hasselbalch Equation: Its History and
Limitations. J Chem Educ. 2001;78(11):1499.

7. Skvortsov VS, Alekseytchuk NN, Khudyakov DV, Romero Reyes IV. pIPredict:
a computer tool for prediction of isoelectric points of peptides and
proteins. Biochem (Mosc) Suppl Series B: Biomed Chem. 2015;9(3):296–303.

8. Perez-Riverol Y, Audain E, Millan A, Ramos Y, Sanchez A, Vizcaino JA, Wang
R, Muller M, Machado YJ, Betancourt LH, et al. Isoelectric point optimization
using peptide descriptors and support vector machines. J Proteome.
2012;75(7):2269–74.

9. Audain E, Ramos Y, Hermjakob H, Flower DR, Perez-Riverol Y. Accurate
estimation of isoelectric point of protein and peptide based on amino acid
sequences. Bioinformatics. 2016;32(6):821–7.

10. Wales DJ, Doye JP. Global optimization by basin-hopping and the lowest
energy structures of Lennard-Jones clusters containing up to 110 atoms.
J Phys Chem A. 1997;101(28):5111–6.

11. Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N,
Smolarczyk K, Dudek MR, Cebrat S. The relationships between the isoelectric
point and: length of proteins, taxonomy and ecology of organisms.
BMC Genomics. 2007;8(1):163.

12. Weiller GF, Caraux G, Sylvester N. The modal distribution of protein
isoelectric points reflects amino acid properties rather than sequence
evolution. Proteomics. 2004;4(4):943–9.

13. Oren A. Microbial life at high salt concentrations: phylogenetic and
metabolic diversity. Saline Syst. 2008;4(1):1–13.

14. Kirkwood J, Hargreaves D, O’Keefe S, Wilson J. Using isoelectric point to
determine the pH for initial protein crystallization trials. Bioinformatics.
2015;31(9):1444–51.

15. Grimsley GR, Scholtz JM, Pace CN. A summary of the measured pK values of
the ionizable groups in folded proteins. Protein Sci. 2009;18(1):247–51.

16. Bjellqvist B, Basse B, Olsen E, Celis JE. Reference points for comparisons of
two‐dimensional maps of proteins from different human cell types defined
in a pH scale where isoelectric points correlate with polypeptide
compositions. Electrophoresis. 1994;15(1):529–39.

17. Halligan BD, Ruotti V, Jin W, Laffoon S, Twigger SN, Dratz EA. ProMoST
(Protein Modification Screening Tool): a web-based tool for mapping
protein modifications on two-dimensional gels. Nucleic Acids Res.
2004;32 suppl 2:W638–44.

18. Gauci S, van Breukelen B, Lemeer SM, Krijgsveld J, Heck AJ. A versatile
peptide pI calculator for phosphorylated and N-terminal acetylated peptides
experimentally tested using peptide isoelectric focusing. Proteomics.
2008;8(23-24):4898–906.

19. Hoogland C, Mostaguir K, Sanchez JC, Hochstrasser DF, Appel RD. SWISS‐
2DPAGE, ten years later. Proteomics. 2004;4(8):2352–6.

20. Bunkute E, Cummins C, Crofts FJ, Bunce G, Nabney IT, Flower DR. PIP-DB:
the protein isoelectric point database. Bioinformatics. 2015;31(2):295–6.

21. The UniProt Consortium. UniProt: a hub for protein information. Nucleic
Acids Res. 2015;43(D1):D204–12.

22. Yang ZR, Thomson R, McNeil P, Esnouf RM. RONN: the bio-basis function
neural network technique applied to the detection of natively disordered
regions in proteins. Bioinformatics. 2005;21(16):3369–76.

23. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction
server. Bioinformatics. 2000;16(4):404–5.

24. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics. 2006;
22(13):1658–9.

25. Chapra SC, Canale RP. Numerical methods for engineering. New York:
McGraw-Hill Companies, Inc; 2007. http://www.mheducation.com/highered/
product/numerical-methods-engineers-chapra-canale/M007339792X.html.

26. The UniProt Consortium. The universal protein resource (UniProt) in 2010.
Nucleic Acids Res. 2010;38 suppl 1:D142–8.

27. Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound
constrained optimization. SIAM J Sci Comput. 1995;16(5):1190–208.

28. Bengio Y, Grandvalet Y. No unbiased estimator of the variance of K-Fold
cross-validation. J Mach Learn Res. 2004;5:1089–105.

Kozlowski Biology Direct  (2016) 11:55 Page 15 of 16

dx.doi.org/10.1186/s13062-016-0159-9
dx.doi.org/10.1186/s13062-016-0159-9
dx.doi.org/10.1186/s13062-016-0159-9
dx.doi.org/10.1186/s13062-016-0159-9
http://isoelectric.ovh.org/license.txt
http://isoelectric.ovh.org/license.txt
http://www.mheducation.com/highered/product/numerical-methods-engineers-chapra-canale/M007339792X.html
http://www.mheducation.com/highered/product/numerical-methods-engineers-chapra-canale/M007339792X.html


29. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet. 2000;16(6):276–7.

30. Tabb DL, McDonald WH, Yates JR. DTASelect and contrast: tools for
assembling and comparing protein identifications from shotgun
proteomics. J Proteome Res. 2002;1(1):21–6.

31. Solomons TG. Organic chemistry. USA: John Wiley & Sons; 1992. http://eu.
wiley.com/WileyCDA/WileyTitle/productCd-EHEP003468.html.

32. Sillero A, Ribeiro JM. Isoelectric points of proteins: theoretical determination.
Anal Biochem. 1989;179(2):319–25.

33. Rodwell JD. Heterogeneity of component bands in isoelectric focusing
patterns. Anal Biochem. 1982;119(2):440–9.

34. Patrickios CS, Yamasaki EN. Polypeptide amino acid composition and
isoelectric point. II. Comparison between experiment and theory. Anal
Biochem. 1995;231(1):82–91.

35. Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry.
New York: Macmillan learning; 2008. http://www.macmillanlearning.com/
Catalog/product/lehningerprinciplesofbiochemistry-sixthedition-nelson#tab.

36. Toseland CP, McSparron H, Davies MN, Flower DR. PPD v1.0—an integrated,
web-accessible database of experimentally determined protein pK(a) values.
Nucleic Acids Res. 2006;34(Database issue):D199–203.

37. Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN. pK values of the ionizable
groups of proteins. Protein Sci. 2006;15(5):1214–8.

38. Nozaki Y, Tanford C. The solubility of amino acids and two glycine peptides
in aqueous ethanol and dioxane solutions: establishment of a
hydrophobicity scale. J Biol Chem. 1971;246(7):2211–7.

39. Dawson RMC. Data for biochemical research. Oxford: Clarendon Press; 1989.
https://global.oup.com/academic/product/data-for-biochemical-research-
9780198552994?cc=de&lang=en&.

40. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET,
Christie KR, Costanzo MC, Dwight SS, Engel SR, et al. Saccharomyces
genome database: the genomics resource of budding yeast. Nucleic Acids
Res. 2012;40(D1):D700–5.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Kozlowski Biology Direct  (2016) 11:55 Page 16 of 16

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP003468.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP003468.html
http://www.macmillanlearning.com/Catalog/product/lehningerprinciplesofbiochemistry-sixthedition-nelson#tab
http://www.macmillanlearning.com/Catalog/product/lehningerprinciplesofbiochemistry-sixthedition-nelson#tab
https://global.oup.com/academic/product/data-for-biochemical-research-9780198552994?cc=de&lang=en&
https://global.oup.com/academic/product/data-for-biochemical-research-9780198552994?cc=de&lang=en&

	Abstract
	Background
	Results
	Conclusions
	Reviewers

	Background
	Results
	Comparison to other algorithms
	Auxiliary statistics

	Discussion
	Conclusions
	Methods
	Isoelectric point, Henderson–Hasselbalch equation, pKa values for the ionizable groups of proteins
	Datasets
	Calculation of the isoelectric point
	Performance measures
	Optimization
	Implementation

	Reviewers’ comments
	Reviewer’s report 1

	Reviewer comments
	Reviewer summary
	Reviewer recommendations to authors
	Reviewer’s report 2

	Reviewer comments
	Reviewer summary
	Minor issues

	Additional files
	show [a]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

