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Abstract

Genomic studies have greatly expanded our knowledge of structural non-coding RNAs (ncRNAs). These RNAs fold
into characteristic secondary structures and perform specific-structure dependent biological functions. Hence RNA
secondary structure prediction is one of the most well studied problems in computational RNA biology. Comparative
sequence analysis is one of the more reliable RNA structure prediction approaches as it exploits information of
multiple related sequences to infer the consensus secondary structure. This class of methods essentially learns a
global secondary structure from the input sequences. In this paper, we consider the more general problem of
unearthing common local secondary structure based patterns from a set of related sequences. The input sequences
for example could correspond to 3′ or 5′ untranslated regions of a set of orthologous genes and the unearthed local
patterns could correspond to regulatory motifs found in these regions. These sequences could also correspond to in
vitro selected RNA, genomic segments housing ncRNA genes from the same family and so on. Here, we give a
detailed review of the various computational techniques proposed in literature attempting to solve this general motif
discovery problem. We also give empirical comparisons of some of the current state of the art methods and point out
future directions of research.

Reviewers: This article was reviewed by Dr. Erez Levanon, Dr. Sebastian Maurer-Stroh and Dr. Weixiong Zhang.
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Background
Classically, RNA molecules are known to be messen-
gers from the genome for protein synthesis. Such RNA
have been referred to as mRNA in short. In the last
decade or so, a number of non-coding RNA (which do not
code for proteins) have been discovered and the explo-
ration for new non-coding RNA is still on [1, 2]. After
the earliest and well-known ncRNAs (namely the trans-
fer RNAs or tRNAs and ribosomal RNAs or rRNAs), a
wide spectrum of ncRNAs have been discovered. These
range from the short ones like microRNAs, small nucle-
olar RNAs and short interfering RNAs, to very long
ones [3]. This development has parallely propelled the
computational research in RNA bioinformatics. Compu-
tational methods have been used for a variety of tasks like
secondary and tertiary structure prediction, homology
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search, RNA/RNA interactions, folding process dynamics,
annotating ncRNA genes, microRNA identification and
target prediction and so on. For a nice overview on various
computational techniques in ncRNA research, refer to [4].
RNA secondary structure prediction is an old and well

studied problem in RNA bioinformatics. The initial meth-
ods predicted secondary structure from single sequences
and were based on approaches like thermodynamic fold-
ing [5, 6] and probabilistic modelling [7]. However these
methods suffer from prediction inaccuracies and the issue
can be partly resolved by comparative sequence analysis.
Here, given a set of related sequences (of similar function
for instance), one infers the consensus secondary struc-
ture. The idea is that these related sequences should also
possess identical or very similar secondary structure. In
general, RNA molecules sharing the same function typ-
ically share a combination of sequence and secondary
structure similarity. There have been a number of reviews
on RNA secondary structure prediction [8, 9].
The comparative sequence analysis approach for struc-

ture prediction essentially looks for a global secondary
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structure in a set of homologous sequences. In this paper,
we focus on a more general problem of discovering sec-
ondary structure based local patterns from a set of related
RNA sequences. We review the various computational
approaches which try to solve this general problem. The
task is of extracting one or more recurring patterns
or motifs that are shared by a majority of the input
sequences. The set of input sequences for example could
correspond to the 5′ or 3′ untranslated regions (UTR) of
a set of orthologous, co-expressed or co-ordinately regu-
lated genes. These UTRs of orthologous genes are known
to house a variety of regulatory motifs like Cobalamin,
Lysine, glmS, Iron Response Element and the Histone
3′ UTR stem loop. The first three examples are specifi-
cally referred to as riboswitches [10] as certain conditions,
such as interactions with small metabolites, alter their
structure and thereby directly influence the production
of proteins encoded by the mRNA on which they reside.
The sequences could also correspond to a set of in vitro
selected RNA, like the SELEX data [11]. The sequences are
basically randomly generated single-stranded RNA that
specifically bind to a target ligand locally owing to the
existence of a common motif among the sequences. The
sequences could also be a set of genomic segments con-
taining functional structures of ncRNAs coming from the
same family. The algorithms we discuss in this paper could
in general, aid in discovering local unknown motifs based
on secondary structure from a set of RNA sequences.
Some of the algorithms we discuss here have been used

for genomic screens of ncRNA genes. There have been
few reviews which survey the computational techniques
addressing this problem [12–14]. Among these methods,
there is a class of techniques [15–17] which takes as input
a sequence-based alignment of genomes and then runs a
sliding window on the alignment. In each window, every
method essentially tries to learn a consensus structure in
its own way. Some of these methods in principle, can be
placed in the scope of this paper. However, they are sen-
sitive to the input sequence alignments and have been
extensively touched upon in the above reviews. Due to
these reasons, we do not touch upon these methods in the
current review. Also, our problem is a de novo or ab ini-
tio discovery of local motifs, different from the homology
search problem [18]. The homology search involves look-
ing for newer instances of a known RNA family (learnt
through some known examples).
In this paper, we start off by reviewing the notion of

secondary structures in RNAs and discuss the various
graph-based representations of secondary structures in
Section ‘RNA secondary structure’. In the next section
(Section ‘Computational methods’), we describe the vari-
ous existing algorithms for RNAMotif Discovery, indicat-
ing their similarities and differences from a computational
perspective. In Section ‘Performance comparison’, we run

some of these algorithms on data sets from the Rfam
database and do a comparative experimental study of their
performances.We finally conclude in Section ‘Discussions
and conclusions’ summarizing the contributions of the
paper.

RNA secondary structure
RNA molecules are polymers consisting of the four
nucleotides Adenine (A), Guanine (G), Cytosine (C) and
Uracil (U) on a sugar-phosphate backbone. The RNA
linear chain of nucleotides in general folds into a three-
dimensional structure, both for the purpose of molecular
stability and to perform specific biological functions.
However, the RNA molecule can be viewed in terms

of what is called a “Secondary structure”. The single
stranded linear RNA molecule first folds onto itself and
forms double-stranded regions by additional hydrogen
bonds. These double stranded regions are complementary
regions as per mainly the Watson-Crick base pairings (A-
U and G-C) and possible G-U pairing. These complemen-
tary base pairings lend energic stability to the molecule.
RNA Secondary structure is basically a 2-D representation
of this self-folding.
Figure 1 shows the secondary structure of a yeast

tRNA. This particular tRNA is involved in the transfer
of the amino-acid phenyl-alanine to the translation site
by attaching it to its 3′-terminal end. Figure 2 illustrates
a hypothetical example of an RNA secondary structure
illustrating the various basic motifs that arise in the con-
text of RNA secondary structures. The double stranded
regions formed by the stacking of two or more (maxi-
mally) consecutive base-pairs are referred to as stems. The
single stranded regions of the secondary structure form a
variety of patterns or motifs, all of which are some kind
of loops. The hairpin loop is a single-stranded region that
a stem ends into. A bulge loop can be viewed as a sin-
gle stranded region which interrupts a stem on one side.
An interior loop on the other hand interrupts a stem on
either side. A single stranded region into which more
than two stems meet is called multijunction loop. Single
stranded regions in the secondary structure are in general
important because they could serve as potential sites for
protein/RNA binding and also be involved in additional
bonding in the final tertiary structure.
An RNA secondary structure is said to contain a pseudo-

knot if there exist two stems related as shown in Fig. 3. In a
pseudoknot, the 5′ segment of a stem S2 is between the 5′
and 3′ segments of S1, whereas its 3′ segment is not. Essen-
tially, pseudoknot indicates crossing-over of the base-pair
connection lines of two different stems, such that the RNA
structure can no longer be represented as a planar (2-
D) graph without edge crossings. An RNA structure can
be differentiated based on the presence and absence of
pseudoknots. In general, handling RNA structures with
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Fig. 1 tRNA secondary structure. The tRNA is a yeast phenylalanine tRNA; annotations indicate tRNA structural elements

Fig. 2 Basic Structural Motifs in RNA secondary structures. The RNA consists of five stems (S1-S5) connected by loops (color coded according to loop
type)
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Fig. 3 Pseudoknot definition. Circles indicate nucleotides in an RNA molecule; dotted lines show intra-molecule base-pairings. Pseudoknots involve
two stems (red and green) that are interlaced such that the 5′ end of one stem lies between the 5′ and 3′ ends of the other stem

pseudoknots is computationally much harder than han-
dling RNA 2-D structures without pseudoknots as in
Fig. 2. RNA secondary structures without pseudoknots
have interesting tree-based representations. An ordered
tree representation of an RNA secondary structure was
introduced in [19]. This representation has the distinct
advantage of nicely capturing the various basic secondary
structure motifs discussed in Fig. 2 by denoting them as
nodes and edges in the tree representation. The edges
in the tree exactly capture the various stems in the sec-
ondary structure. The nodes capture the various single
stranded regions like hairpin loops, bulges, interior loops
and junctions. Figure 4 shows the tree representation of
the secondary structure of Fig. 2. Notice that the chil-
dren of any given node are ordered based on the order
of their occurrence in the 5′ − 3′ direction of the linear
sugar-phosphate backbone. Figure 5 gives another exam-
ple of the tree representation. The tree represents the
tRNA secondary structure shown in Fig. 1.
The above tree representation is a coarse representa-

tion of the secondary structure. The information about
the size of the various basic motifs and so on are lost in
this representation. One could represent secondary struc-
tures without pseudoknots as trees, without losing any
information of the secondary structure [20]. In this repre-
sentation, each internal node corresponds to a base-pair
and each leaf node to an unpaired base. The root does not
correspond to anything but is introduced to prevent the
formation of a forest. The nesting created by the base pair
bonds is what determines the parent sibling relationships.
Figure 6 gives this tree representation for the hypothetical
RNA secondary structure of Fig. 2.
To represent structures with pseudoknots as well, Gan

et al. [21] introduce what is called the dual graph represen-
tation of an RNA secondary structure. It can be viewed as
a dual of the coarse tree representation discussed before,
which associates nodes with loops and edges with stems.
In the dual graph representation, the stems in the sec-
ondary structure are represented as nodes and the edges
in the graph come from the single stranded regions.
Figure 7a is another version of the two stem pseudoknot of
Fig. 3, where the stems and the various single strands are

distinctly indicated. Figure 7b gives the dual graph of the
two-stem (simplest) pseudoknot. Note that the dual graph
representation works for any general secondary structure.
Gan et al. [21] utilize the dual graph representation

to understand all the mathematically feasible RNA sec-
ondary structures possible in comparison with the already
known existing secondary structures. Within the dual
graph framework, Gan et al. [21] differentiate three types
of graphs based on edge connectivity properties called
trees, pseudo-knots and bridges.
Gan et al. [21] also make a thorough enumeration of

the above three structure spaces and exactly indicate the
structures that have been reported experimentally or in
existing literature in all the three cases. Among the struc-
tures that have not yet been reported, they try to provide
hints to real RNA secondary structures that could exist in
nature but have not yet been discovered.
As already mentioned in the introduction, obtaining

the minimum free energy (MFE) structure using efficient
dynamic programming (DP) algorithms has been the ear-
liest approach towards secondary structure prediction.
The energy model adopted is additive and hence the free
energy of a structure is assumed to be a sum of energies of
its constituent loops [22]. Its associated thermodynamic
parameters were first estimated in [23] and the estimates
continue to be refined [24].
A different take on RNA secondary structures is the

ensemble based approach introduced in [25]. As the word
ensemble indicates, this view point considers a proba-
bility distribution over the entire space of feasible sec-
ondary structures on the given sequence. The distribution
is essentially motivated from the Boltzmann distribu-
tion of statistical physics. The probability of a particular
secondary structure with free energy E is directly propor-
tional to e−E/RT , where R is the gas constant and T is the
temperature in kelvin. The normalizing constant which
makes this a distribution is referred to as the partition
function. The partition function calculation is amenable
to an efficient DP-based recursion.
A very interesting feature about the Boltzmann distri-

bution is that one can also efficiently calculate the prob-
ability of base pairing between any two positions in the
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Fig. 4 Ordered tree representation of the structure in Fig. 2. Circles
and ovals (nodes) correspond to loops; arrows correspond to stems.
Node colors and arrow labels correspond to the color codes and stem
labels in Fig. 2

Fig. 5 Ordered tree representation of the structure in Fig. 1. Node
colors correspond to the loop types in Fig. 2; node labels correspond
to loop annotations in Fig. 1

sequence. The pair probability matrix between every pair
of nucleotides can be nicely visualized as a 2-D plot called
the dot plot [26]. At each position (i, j) in the plot there
is a square whose area is proportional to the probability
of the base-pair (i, j). Figure 8 gives an example of a dot
plot as obtained by the RNAfold program of the Vien-
naRNA package [27]. The upper triangular region of the
figure displays the ensemble base-pair probabilities with
proportionate squares. The lower triangular region shows
all the base pairs belonging to theMFE structure. As is evi-
dent, two strong helices (which cannot occur together) are
clearly visible in the dot plot, while theMFE structure uses
only one of the helices. The structure returned by theMFE
approach is not very accurate in general. This is mainly
due to factors like errors in the thermodynamic parame-
ters and lack of knowledge of some thermodynamic rules.
The dot plot clearly brings out all the highly probable
stems that are feasible on folding of the sequence. Hence
it can aid in visualizing various alternative structures to
the MFE and exploring the correct structure among the
sub-optimal ones.
The base-pair probability magnitudes have been

demonstrated to be a measure of confidence for the
base-pairs as predicted by the MFE structure [24]. Also,
the base-pair probabilities have been found to be less
sensitive to the uncertainities in the energy parameters
than the MFE structure [28]. Ensemble characteristics
like mean and variance of the free energy under the
Boltzmann distribution have been found to be useful
in distinguishing biological sequences from random
sequences [29]. Given these various factors, the ensemble
notion of secondary structures is very useful in general
and is utilized by some of the algorithms we discuss next.

Computational methods
The methods for RNA motif discovery can be loosely
classified into four categories: (i) Stochastic (ii) Stem-
based (iii) Alignment-based, and (iv) Miscellaneous. We
discuss each of these classes of methods in detail in this
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Fig. 6 Tree representation of the structure in Fig. 2 at base and base-pair level. Node colors correspond to the color codes in Fig. 2

section. We start off with the description of the stochastic
methods. We wish to point out that this categorization is
neither hard nor the only way to view the entire landscape
of computational methods.

Stochastic algorithms
The stochastic algorithms are essentially methods which
pose motif discovery as a probabilistic learning problem.

We describe three discovery methods under the cate-
gory of stochastic algorithms. We start off this subsec-
tion with a brief review of the well-known DNA/Protein
motif discovery tool, the MEME (multiple EM [expecta-
tion maximization] for motif elicitation) algorithm [30].
This is because two of the stochastic learning based meth-
ods for RNAmotif finding are extensions of MEME. After
explaining MEME, we discuss the first discovery method
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Fig. 7 Two-Stem Pseudoknot (a) and its Dual Graph Representation
(b). Stems (S1 and S2) are color coded and represented by dotted
lines in (a) and nodes in (b). Single stranded regions (a, b, and c) are
color coded in (a) and represented by arrows in (b)

MEMERIS, which essentially looks for linearmotifs in sin-
gle stranded regions. Before moving to the next discovery
method, we briefly review covariancemodels (CMs; a very
popular tool to model secondary structure based motifs)
and COVE, a method for learning a global CM from a
set of unaligned sequences. Using MEME and COVE, we
explain our next method, CMfinder, a state of the art motif

Fig. 8 Dot plot illustration. a Dot plot. b Corresponding MFE structure
(from lower left triangle in (a))

discovery method. We end this subsection with the last
method namely, RNAPromo.

MEME algorithm
The MEME algorithm simultaneously learns both the
motif and its location from a given set of sequences. The
motif is modeled as a position weight matrix (PWM),
where at each position of the motif there is a prob-
ability associated with each residue or nucleotide. For
instance, a motif, which is a deterministic string with
some allowed rare replacements can be easily captured by
this model by choosing high probabilities to the residues
in the string and assigning lower probabilities to the
other residues at various positions. In the DNA con-
text, a motif could correspond to a transcription factor
binding sites pattern and the sequences could be pro-
moter regions from co-expressed genes, promoter regions
from orthologous genes from different species, chromatin
immunoprecipitation (ChIP) sequence data and so on.
The algorithm assumes the sequences to be generated
by a probabilistic model and poses the motif discovery
problem as a maximum likelihood estimation problem
with hidden variables. The hidden variables are modeled
as binary random variables which indicate the start of
the motif location. Figure 9a illustrates a 3-length motif.
Figure 9b gives an example with three sequences and
an occurrence of the motif (from Fig. 9a) in each of
them. The ith sequence is denoted as Xi and its corre-
sponding hidden binary sequence (encoding the motif
location) by Zi. The set of positions where there are no
motifs (also referred to as background), is modeled as
an independent and identically distributed (i.i.d) random
process.
To start off, a simple model which assumes exactly

one motif occurrence per sequence (referred in short as
OOPS) is considered. MEME employs an EM algorithm
for learning, which in general is a popular approach when
the model has hidden or unobserved variables. The EM
algorithm is an iterative algorithm involving two steps at
each iteration. The first step called the E step involves cal-
culating the expected value of the hidden variables given
the current parameter values (PWM values in this case).
The second step in general involves calculating the new
set of parameters by maximizing a suitable function given
the expected value of the hidden variables. It turns out
that there exists a closed form solution to this maximum
in terms of the expected value of the hidden variables.
On convergence, the hidden variable whose expectation
is highest in a given sequence gives us an estimate of the
motif position. Two variants of this model are also con-
sidered. The first variant considers the number of motif
occurrences to be zero or one (referred in short as ZOOPS
model), whereas the second variant considers zero to a
finite number, n, of occurrences.
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Fig. 9MEME illustration. a Position weight matrix. b Example sequences with motif occurrences (in red)

MEMERIS algorithm
In the MEME algorithm, specifically for the OOPS model,
there is an important underlying assumption with regard
to the data likelihood calculation. This assumption is that
the unconditional (or prior) probability of a motif occur-
rence in any position of a given sequence is the same. In
other words, the probability of any of the hidden vari-
ables being one in any given sequence is the same. Hence,
mathematically, the likelihood for the OOPS model is

P(D/p) =
n∏

i=1
P(Xi/p)

=
∏

i

∑

j
P(Xi/Zij = 1)P(Zij = 1)

= (L − w + 1)−n
∏

i

∑

j
P(Xi/Zij = 1)

In the above equations, D is the entire set of sequences,
L is the length of each sequence (assumed same here for
convenience of illustration), n is the number of sequences,
w is the length of the motif and p is the PWM. Note that
P(Zij = 1) = 1/(L − w + 1) ∀j. For the ZOOPS model,
this translates to saying that if a motif occurs in a given
sequence it occurs with uniform probability in any of the
positions.
The first of the RNA motif finding algorithms we dis-

cuss here is referred to as MEMERIS (MEME in RNAs
including secondary structures), proposed in [31]. As the
name suggests, it basically uses an MEME like algorithm
by utilizing non-uniform prior probabilities (instead of
uniform) on the probable position of the motif occur-
rences. The algorithm tries to discover sequence specific
motifs which could correspond to binding sites for pro-
teins in mRNA. Such sites are often located in the 3′ or
5′ UTR of mRNAs and more specifically in the single-
stranded regions. The problem posed like this boils down
to sequence motif discovery localized to single stranded
regions of the RNA. Towards this, MEMERIS first cal-
culates the probabilities in the Boltzmann ensemble of
every sub-string (of some fixed length w) being single
stranded. For this calculation it utilizes the partition func-
tion version of RNAfold [27]. These probabilities for a
given sequence are then suitably normalized to obtain a

distribution over the possible motif positions. This is in
line with the intuition that one would want to weight the
probability of a motif occurring at a given position pro-
portional to the probability of the sub-string beginning at
that position being single stranded, as one is looking for
motifs in single stranded regions here. Hiller et al. [31]
demonstrate how the algorithm actually avoids identify-
ing patterns that exist in double-stranded regions of RNA
molecules both in real and synthetic data.

Review of covariancemodels and COVE algorithm
CMfinder [32], the next algorithm we intend to discuss,
extends MEME in a different and more involved way as
compared to MEMERIS. CMfinder essentially generalizes
the motif structure considered in MEME. In MEME, the
PWM motif is basically a string of characters which also
takes into account a few replacements. A PWM motif of
size w could be viewed as a hidden Markov model where
the underlying Markov chain has w states M1,M2 . . .Mw
as shown in Fig. 10a. There is a simple linear state transi-
tion structure fromM1 toMW withMi transiting toMi+1
with probability 1. The emission probabilities at a state
Mi would correspond to the ith column of the PWM. Pro-
file hiddenMarkovmodels (HMMs) generalize this simple
model to incorporate insertions and deletions by adding
insert and delete states suitably to this stochasticmodel. In
other words, Profile HMMs are stochastic models which
nicely capture salient features of a set of multiply aligned
sequences. Figure 10b gives an example of a profile HMM
with three match states.
Figure 10c is an example multiple alignment fromwhich

the profile HMM given in Fig. 10b could be learnt. Covari-
ance models generalize profile HMMs to cater to both
sequence and structure similarity. These are a class of
stochastic context-free grammars (SCFGs) [33] where the
underlying hidden process need not be a Markov chain.
Hence, unlike profile HMMs, the state transition structure
among the match states Mi need not be linear (in fact, it
is a tree structure in general) and these match states can
now even emit pairs of symbols in order to capture base
pairing in RNA secondary structures. Figure 11a gives an
example of a CM with a tree like state transition structure
of matched (or consensus) states without insert or delete
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Fig. 10 Profile HMMs. a A trivial HMM corresponding to a PWM of
length w. b A profile HMM with insert (Ii), delete (Di), and match (Mi)
states. cMultiple alignment that could correspond to the HMM in (b)

states. The states marked P emit a pair of bases and in gen-
eral can emit the 16 possible base-pairs. The statesmarked
L and R emit a single base and are similar to the match
states of the profile HMM. The L and R distinction dif-
ferentiates the leftwise and rightwise non-terminals from

a grammar perspective. The state marked B is a bifurca-
tion state which captures the splits in secondary structures
due to multi-junction loops or multiple stems. The state S
refers to the start of the process OR starts of substructures
that a bifurcation state divides into. There are no sym-
bols emitted from states S and B. The state E generates
ε with probability 1. Figure 11b gives the corresponding
secondary structure that is exactly captured by the tree of
Fig. 11a. The positions and the corresponding states cap-
turing them are marked in the same colour. A CM will
in general have additional insert and delete states like the
ones shown in Fig. 10b andmore in order to capture inser-
tion and deletion of base-pairs also. Covariance models
were introduced in [34] as a convenient stochastic model
to capture the common global secondary structural fea-
tures of a family of RNA sequences. The idea is that the
underlying tree of match states basically captures the con-
sensus secondary structure common to all sequences in
the family. They propose COVE, an interesting iterative
algorithm for learning a global CM from a set of unaligned
sequences based on comparative sequence analysis.
Each iteration in the algorithm involves two steps: (i)

Given the current alignment, build an optimal CM and
(ii) given the current CM model, find the optimal mul-
tiple alignment between the sequences. Essentially, the
algorithm is trying to learn the structure and the associ-
ated parameters simultaneously. The first step is achieved

Fig. 11 Covariance Models (CMs) without insertion and deletion states. a CM tree and its (b) secondary structure. Colored circles in (b) correspond
to the states from the root start state (S) to the left leaf end state (E) in (a)
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by a DP algorithm very similar to the Nussinov algo-
rithm [5] which for a given RNA sequence computes
a secondary structure (without pseudo-knots) with the
maximum number of base pairs. Under the cost function
used here, a position pair (i, j) has a cost of either 1 or 0
depending on whether the residues at the position i and j
are Watson and Crick base pairs. The COVE tool uses a
generalization of this 0 − 1 cost function, namely mutual
information between positions i and jwhich can be empir-
ically measured from the current multiple alignment. The
obtained consensus structure is then matched with every
aligned sequence to obtain separate parse trees. Empiri-
cal counts of various transitions and emissions are used in
estimating the probability parameters of the CM. Regard-
ing the second step, a Viterbi-like DP algorithm is applied
on each sequence to obtain the most likely set of states
in the CM. A multiple alignment is now obtained by the
individual alignments of the sequences to the common
CM.

CMfinder
CMfinder [32] combines MEME and COVE with some
heuristics incorporated. The procedure starts off by con-
structing an initial alignment exploiting the sequence
information in a heuristic manner. Towards this, it first
selects a set of potential candidates. It achieves this by
computing theminimal free energy of all sub-sequences in
a given sequence using RNAfold of the ViennaRNA pack-
age [27]. The sub-sequences whose length is in the range
30 to 100, which have 1−2 stem-loops and are locally opti-
mal (in the sense of no lower-energy states by deleting or
extending 2 bases at the end) are chosen.
The goal of the algorithm is to find local patterns which

occur in a sufficient majority of the sequences. In line
with this, the next step tries to group together similar
potential candidates from different sequences and form
a set of alignments. For this, it first computes a pairwise
distance matrix for all candidates. This distance matrix
is calculated by comparing two sequence trees at the
base/base-pair level (as in Fig. 6) by using a modified ver-
sion of the tree-edit algorithm implemented in RNAdist
of the ViennaRNA package. Using this distance function
for every candidate it computes the closest candidate to
it in every other sequence and assigns a score equal to
the sum of each of these distances. A candidate with the
least score is chosen as a consensus candidate. This is used
as a seed to group in candidates from other sequences
similar to this in an iterative fashion. Given the current
candidates in the expanding group, it finds a candidate
from the remaining sequences whose average distance to
the sequences in the current group is minimum. If this
minimum is less than a certain threshold, then it adds
this candidate to the group. Otherwise, the process ter-
minates. The thresholding allows for the possibility of the

motif being absent from some sequences. The initial align-
ment is constructed based on a pairwise tree-alignment
between each chosen candidate and the consensus can-
didate. One can now choose the next “consensus candi-
date” from the unchosen candidates and build subsequent
alignments.
Given the initial alignment one can estimate a CM

as explained before to start the EM iteration. The EM
algorithm is applied with ZOOPS as the underlying gen-
erative model. In a given RNA sequence, the probable
motif occurrence positions are assumed to be uniformly
distributed only over the start positions of all the poten-
tial candidates extracted from the sequence instead of all
positions as before. The E-step involves estimating the
probability of a motif occurrence at these candidate start
position (the expected value of hidden variables explained
before), which is similar to MEME. The new aspect in this
step is the computation of an alignment of each candidate
sequence to the current model. The alignment of a can-
didate sequence to the current CM is achieved by a DP
algorithm [34] similar to the Viterbi algorithm. The prob-
ability of a motif occurring at a given candidate position
given the current CM is carried out approximately but
more efficiently using the optimal alignments computed
just before. The M-step involves updating the model and
γ , the probability of motif occurring in a sequence. The γ

update is very similar to MEME. The model update step
is not straightforward as in MEME and utilizes the ideas
of COVE to the fullest. The first step would be to infer
the new consensus secondary structure from the updated
alignment of all candidate sequences in the E-step. In the
cost function formulation, CMfinder utilizes a combina-
tion of the mutual information (as in COVE) and partition
function [25]. The partition function based Pij, which cap-
tures the probability of the ith residue pairing up with the
jth residue in any given sequence is used to capture an
informative prior on the structures. The informative pri-
ors are calculated essentially by averaged values of the
partition function across the candidate sequences. Both
the mutual information and informative prior calculation
involves averaging across the candidate sequences. This
averaging of the candidate sequences is further weighted
based on the probability of these being motif instances, a
quantity calculated in the E step.

RNApromo
The last stochastic algorithm we discuss here, referred
to as RNApromo was proposed in [35]. This algorithm
assumes that one has information about the RNA sec-
ondary structure. The motif used here is based on an
SCFG similar (but slightly different) to the CMs con-
sidered by CMfinder. The local motif finding problem
is posed as an SCFG learning problem. Dynamic pro-
gramming based algorithms for learning SCFGs like the
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inside-outside algorithm [33] exist and are analogous to
the forward-backward algorithms of HMMs.
RNApromo assumes that there is secondary structure

information available of all the input RNA sequences.
The learning involves an initialization step similar to
CMfinder. It exploits the secondary structure information
in coming up with short candidate structures that occur
in the majority of the input RNA structures. Each of these
structures are used to initialize a separate model. The
model being similar to the CM discussed earlier has a tree
structure of states (similar to Fig. 11) and some additional
delete and insert states around each of the tree states.
The short candidate structures initialize the tree part of
the model. The remaining parameters which include the
various emission and transition probabilities are learnt by
a modified version of a DP-based algorithm proposed in
[36] for learning SCGF parameters (similar to the inside-
outside algorithm). Each RNA input here contains both
the sequence and structure information. This makes the
likelihood computation more efficient as the number of
relevant productions that generate an input now is lesser
than with an input containing a sequence alone. As shown
in [35], this restriction also reduces the running time of
the model estimation algorithm from O(L3) to O(L2),
where L is the length of the RNA sequence.

Stem-based algorithms
The two methods we discuss in this category use the most
likely stems of the input RNA sequences for motif dis-
covery. The methods unearth stable stems using methods
like dot matrix analysis or the partition function approach
[25]. The extracted stems turn out as the common starting
step of thesemethods. Note that the extracted stems could

overlap. The RNA motifs (or patterns) here are viewed as
a graph of stems, where edges are directed and can have
three kinds of labels. The three labels come from the three
ways in which any two stems could be related: (i) parallel –
the 5′ and the 3′ strands of one of the stems is to the left
of the 5′ strand of the other in the sequence (Fig. 12a), (ii)
nested – the 5′ and the 3′ strands of one of the stems lies
within the strand connecting the 5′ and 3′ strand of the
other stem (Fig. 12b), and (iii) pseudo-knotted (see Fig. 3,
Section ‘RNA secondary structure’). The pattern graph is
a completely connected directed graph. Figure 13b gives
an example. Any two stems in the pattern must be related
in one of the above 3 ways. The direction of an edge would
be from the stem whose 5′ strand is more upstream in the
sequence. The common goal of both the methods is to
extract stem graphs which occur frequently enough in the
input RNA sequences. Each node in the stem graph would
actually represent a group of similar stems (each stem in
the group coming from a different sequence). This similar-
ity between stems is captured based on features like stem
length, sequence, stem stability, loop sequence closed by
the stem and so on. Another advantage about these algo-
rithms is that they can unearth motifs with pseudo-knots.
We now explain the two algorithms in detail.

comRNA algorithm
The first method we discuss is comRNA, proposed in
[37]. As a first step, comRNA extracts groups of simi-
lar stems (each from a different sequence). Towards this,
it extracts pairs of similar stems based on features like
helix length and so on discussed above. It forms a graph
with all stems as nodes and two stems connected if they
were found similar. Maximal cliques from this graph are

Fig. 12 Stem relations. a Parallel and (b) nested stems. Circles indicate nucleotides; dotted lines show intra-molecule base-pairings
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Fig. 13 Secondary structure (a) and its associated stem graph (b).
Nodes in (b) represent the corresponding labelled stems in (a). Edge
labels in (b) indicate whether the stems are parallel (P) or nested (N)

extracted which would now form the groups of similar
stems that the first step extracts. A group of similar stems
which is conserved across multiple sequences is referred
to as a stem block. As explained earlier, each stem block
here corresponds to possible occurrences of an individual
node of the stem graph pattern discussed above. Finding
an assembly of these stem blocks from various sequences
is the final objective. The next step would be to build
a directed graph where each node of the graph corre-
sponds to a stem block. An edge is drawn from a stem
block b1 to a stem block b2 if stems from b1 are before
that of b2 and form one of the three previously described
consistent patterns with the stems of b2 in a sufficient
number of sequences. The last step is to extract maxi-
mal paths in this directed graph in a recursive depth-first
fashion. Each such maximal path would correspond to a
stem graph patterns. While recursively growing the paths
of stem blocks, one must also make sure that all currently
included stem blocks must occur together in at least a
user-defined number of sequences.

RNAmine algorithm
As opposed to comRNA which uses several ad-hoc
steps, RNAmine proposed in [38] uses a more systematic
approach using graph mining ideas to extract stem pat-
terns. The subarea of graph mining [39] is pretty mature
within the area of frequent pattern mining. In RNAmine,
each input sequence [38] is viewed as a directed graph

of stems (extracted from the sequence). The edges in
this graph are based on the three cases discussed above
and have a label associated with them depending on the
type of association. Note that since the stems obtained
in a sequence can overlap in general, the stem graph of
an input sequence is not a connected graph in general.
The algorithm considers a slightly different distance mea-
sure between stems compared to comRNA, which again
is some weighted combination of different features. Based
on this distance measure, the grouping of stems is per-
formed by clustering in a hierarchical fashion. A label is
assigned to each cluster at each layer and these labels can
be arranged as a tree as shown in Fig. 14. The nodes of
the stem pattern here are taken from arbitrary levels of
this tree. A stem pattern P matches a directed graph G if
both have the same topology and edge labels, and every
node label in P is an ancestor of the label of the corre-
sponding node in G as per the label tree. The problem of
extracting meaningful patterns is solved as a constrained
graph mining problem. One obvious constraint is that the
extracted graphs cannot be general graph patterns, but
must be cliques as any two stems in our pattern must be
related. The other constraint pertains to the generality of
the pattern from the labels perspective. A pattern having
too many labels from the top of the label tree is undesir-
able as such patterns do not convey much information.
Hence, to direct the search to use labels from the lower
layers, a cost which is an increasing function of the layer
height is defined as indicated at each layer in Fig. 14. The
cost of a pattern is defined as an average cost of the labels
of all its nodes. Given this, the third constraint is an upper
bound on this cost. The interesting thing to note is that in
addition to the frequency of the pattern (common in any
frequent pattern mining algorithm), the new cost of the

Fig. 14 RNAmine label tree. Dashed boxes indicate layers; red boxes
represent layer costs
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pattern could also be utilized in pruning the exponential
search space during actual mining process.

Alignment-based methods
The search for a common local pattern among a set of
RNA sequences can be cast as a multiple local align-
ment problem, where the alignment takes into account
both sequence similarity and base-pair correlation. There
have been many methods based on local alignment of
RNA sequences. The methods under this category can be
loosely classified into two categories: (i) secondary struc-
ture independent and (ii) secondary structure dependent.
The secondary structure independent methods just need
the sequence information of the input sequences. Sec-
ondary structure dependent methods additionally need
the secondary structure information of the input RNA
sequences.We now discuss both these classes of methods.

Secondary structure independentmethods
FOLDALIGN, proposed in [40], is the first algorithm we
discuss in this category. This was also one of the earliest
algorithms trying to discover secondary structure based
local patterns from RNA sequences. The algorithm basi-
cally uses a 4-dimensional recursion to obtain the local
alignment of a set of sequences. The Sankoff algorithm
[41] is the first DP algorithm which tries to simultane-
ously align and predict the structures of two or more RNA
sequences in a global way. For a pair of sequences of length
L, it uses a 4-dimensional recursion with a time complex-
ity of O(L6) and a space complexity of O(L4). The DP
recursion in [40] is motivated from this. The Sankoff algo-
rithm tries to minimize the sum of alignment distance and
free energy of the involved RNA molecules. In contrast to
this, Gorodkin et al. [40] maximize a score which is a com-
bination of sequence similarity (local) and the number of
base pairs. It essentially combines the two dimensional
Smith-Watermann (local alignment) and the Nussinov
algorithm. For efficiency purposes, they skip the branch-
ing part of Nussinov recursion to achieve a O(L4) time
complexity. But this leads to the algorithm being restric-
tive in the sense that it only searches for stem-loop motifs.
Given a set of N sequences, FOLDALIGN tries to come
up with a subset of sequences which contain the most sig-
nificant common motif. The idea is to be able to exclude
a set of sequences which do not belong to the same struc-
tural class. Since the number of such subsets of sequences
can be exponential in the number of sequences, a greedy
algorithm which constructs an r-sequence alignment by
aligning a single sequence with an (r − 1) sequence align-
ment is proposed. To achieve this, the aligned columns
within an existing alignment are viewed as a single entity
and the score between two columns is essentially the sum
of all pairwise scores. An improvement on their greedy
strategy to make the discovery faster was proposed in

[42]. An improvement in the discovered secondary struc-
ture by combining it with COVE (described earlier in
Section ‘Review of covariance models and COVE algo-
rithm’), is achieved in [43]. The local alignment learnt by
FOLDALIGN is used as a seed alignment to be improved
upon by COVE. A pairwise local alignment algorithm
which can discover any branched but non-pseudoknotted
structure was introduced in [44]. The scoring function in
this new version of FOLDALIGN uses a context depen-
dent (like the different loops and stems) free energy
instead of just base pairs of the earlier version. An upper
bound on the length of the pattern and a maximum length
difference between subsequences compared leads to a
very efficient algorithm.
Another approach for multiple local alignment has been

to use the pair probability matrices of sequences which
capture the probability of base pairing between any two
nucleotides in a particular RNA sequence. These pair
probabilities are computed based on a full energy model
usingMcCaskill’s algorithm [25]. The algorithm computes
the alignment and secondary structure simultaneously.
The score function to be minimized captures the base-
pair scores (which are now a function of pair probabili-
ties), similarity score for matches, mismatches and gaps.
The DP recursions are similar to the Sankoff algorithm
[41]. LocARNA assumes a cut-off below which the pair-
ing probabilities are ignored. The number of significant
entries (above the cut-off ) for a particular base remain
constant as the length of the sequence increases. This
lower bound results in both timewise and spacewise effi-
ciencies (for eg: time complexity reduces from O(L6) to
O(L4)). A progressive multiple alignment method is now
constructed based on the pairwise alignment algorithm
LocARNA. Towards this, one would need a consensus
base-pairing probability matrix for the combined align-
ment of two subalignments. This is suitably defined using
roughly the geometric mean of the corresponding proba-
bilities of the constituent subalignments.
Tabei and Asai [45] propose an approach SCARNA_LM

where they model alignments using a conditional ran-
dom field (CRF). The underlying model structure used
for pairwise local alignments is quite intuitive. The local
alignment is modelled using three states. A state M mod-
els the matched nucleotides of the alignment, whereas
the remaining two states capture the inserts into the two
sequences respectively. Then there are states which cap-
ture the flanking regions of the alignment. The CRF here
models the conditional probability of the alignment given
the pair of sequences to be aligned. This modelling is
based on certain local features (as in any CRF) which
capture secondary structure information in the form of
base-pairing probabilities. They basically condense the
probability of a particular base pairing to any other
nucleotide into three probabilities, namely, probability of
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pairing to some nucleotide to its left, right, or remaining
unpaired. These three probabilities are suitably used to
define local feature values. The final alignment algorithm
tries to find the local alignment which maximizes a suit-
able cost function based on a γ -centroid estimator. The
cost function contains terms involving probability of two
bases (one from each sequence) being aligned in the align-
ment. These probabilities are pre-calculated based on the
described CRF using a forward-backward algorithm. This
cost function is maximized and an alignment computed
using a Smith-Watermann recursion. Note that this align-
ment doesn’t explicitly yield any base-pairing information
in the locally aligned subsequences, even though the base-
pairing probability information is utilized in arriving at
the alignment. Using this pairwise alignment algorithm,
SCARNA_LM computes pairwise local alignments for
each pair of sequences. Next, it generates blocks of pos-
sibly alignable regions from the pairwise local alignments
similar to an approach in [46]. The sequences in each
block are aligned using MXSCARNA [47], a secondary
structure based global alignment algorithm which yields
the final multiple alignment.

Secondary structure dependentmethods
A pairwise alignment method and its extension tackling
multiple alignments is considered in [48]. The pairwise
alignment algorithm takes as input two RNA sequences
along with the secondary structure information. The sec-
ondary structure is essentially viewed as a sequence of
what are called structure components. These can be either
single bases or base pairs. So an alignment is basically
viewed as between two structure component sequences.
While looking for an optimal alignment, the algorithm
looks for certain constrained alignments based on what
they call a hierarchical constraint. The hierarchy is based
on a tree of circles for each sequence. Each structure com-
ponent is roughly mapped to a unique circle. The tree
of circles is quite similar to the tree representation dis-
cussed earlier in Figs. 4 and 5 of Section ‘RNA secondary
structure’. Each of the single-stranded motifs like loops
and bulges which are nodes of the ordered tree repre-
sentation correspond to a circle in the tree discussed in
[48]. However there are circles which capture base pairs
of the secondary structure, which were otherwise lumped
as edges in the ordered tree representation of Figs. 4
and 5. Based on the tree of circles for a sequence, any
two structure components are hierarchically related to
each other in three possible ways: (i) ancestor/descendent
(ii) common ancestor (iii) identical circle. Hence, in an
alignment if (Ai,Bi) and (Aj,Bj) are matched component
pairs, then the hierarchical constraint between Ai and Aj
must be the same as that between Bi and Bj. The DP
algorithm intelligently incorporates this constraint in the
recursion.

Höchsmann et al. [49] consider a local alignment based
method to discover common local motifs from a pair of
RNA sequences. They consider the forest representation
of secondary structures at the base/base-pair levels as dis-
cussed in Fig. 6 without the root nodes. In fact, their
forest representation is a slight extension over this. They
consider this fine representation over the coarser one
(containing stems and different kinds of loops), as defining
score functions at the base/base-pair level is more natu-
ral than between the features like stems and loops. They
build on the dynamic-programming based pairwise global
tree alignment algorithm proposed in [50]. It is interest-
ing to note that unlike sequences, in the case of trees,
the edit distance and alignment problems are not equiva-
lent. For an excellent review on edit distance of trees, tree
alignment and related problems, refer to [51]. The idea
of a local alignment between two input structures is to
look for two substructures with maximal similarity. In the
case of strings, typically we look for two maximally simi-
lar substrings. However, one could also look for maximally
similar suffixes in strings. Höchsmann et al. [49] consider
the analogue of suffixes in forests, what are called closed
subforests as the substructures of interest. They basically
pose the local alignment problem as a local closed subfor-
est similarity problem. Extension of these tree alignment
based ideas to a multiple alignment setting was consid-
ered in [52], but this unfortunately cannot handle local
alignments.
The local closed subforest similarity considered in [52]

restrict the aligned region to consist of a contiguous
subsequence (substring) from each of the two input
sequences. This is in fact a restriction and there exist bio-
logicallymeaningful motifs which violate this. An example
is the mRNA element SECIS (selenocysteine insertion
sequence) which binds to the protein Se1B. Backofen and
Will [53] consider a local alignment which captures such
non-contiguous motifs. As they describe, the local pat-
terns that they tackle should form a connected subgraph
of the input sequence-structure graph. The sequence-
structure graph is a graph that has edges between two
adjacent elements of the sugar-phosphate backbone and
also between nucleotides involved in basepairing. They
propose a DP algorithm to compute (more general) opti-
mal local alignments between a pair of RNA sequences
with known structures.
In [54], an algorithm to extract a certain kind of local

matching patterns all along the input pair of sequences is
proposed. They specifically consider alignments without
explicit capture of insertions or deletions. The patterns
they define are called matchings which are essentially
a pair of aligned subsequences from the two input
sequences. The matching that are considered have to be
additionally connected and bond-preserving. This means,
the respective subsequences of a matching have to be a
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connected subgraph (in terms of the backbone or base-
pair edges) as in the previous method and for any two
nucleotides that bond in a sequence (either via the back-
bone OR base-pairing), the associated nucleotides (as per
the matching) in the other sequence must bond accord-
ingly. The pattern discovery task is posed as a problem of
extracting all (possibly more than one) non-overlapping,
maximally extended, bond-preserving matchings.

Miscellaneous
The next method we discuss is based on a pattern mining
approach. As mentioned earlier, the data mining litera-
ture has seen a vast development in the subarea of graph
mining [39]. In particular, there have been algorithms
which mine for graph patterns as specific as trees. If
one exactly knows the secondary structures of an RNA
molecule (either experimentally or computationally), then
the problem of finding consensus patterns among a set
of RNA sequences can be cast as a problem of min-
ing frequent tree patterns from a set of trees (secondary
structures of RNA molecules). Zaki [55] proposes an effi-
cient algorithm for mining frequent trees and considers
mining RNA motifs from tree-structured RNA secondary
structures as an example application. This is a very nat-
ural application for tree mining. A pattern tree can be
matched with a data tree at different levels of generality.
An occurrence could mean that the pattern tree occurs as
a connected sub-graph of the data tree. More generally, an
occurrence could mean the pattern tree occurs as a sub-
graph of the data tree in the sense that if node b is a child
of node a in the pattern tree, then the node in the data tree
associated with node b need to only be a descendant of a.
RNAProfile [56] is a relatively simple method with a

heuristic approach. The approach in principle is very simi-
lar to the initialization step of CMfinder to build the initial
alignments. It also takes as input the number of hairpins
contained in the motif of interest. It is a two step pro-
cess. The first step involves extracting a set of candidate
regions from each input sequence (satisfying the number
of hairpins constraint) by folding the regions optimally
using some prediction tool. The second step tries to group
together similar candidate regions from each sequence.
Since there are an exponentially number of such possibil-
ities, it uses a greedy heuristic algorithm which starts by
comparing regions between two sequences. It only retains
and uses pairs of regions with high similarity for fur-
ther consideration with regions of the third sequence and
so on.

Genetic programming-basedmethods
The literature has also seen algorithms based on genetic
programming, a methodology motivated by biological
evolution. We discuss two methods GPRM [57, 58] and
GeRNAMo [59] under this approach. The general style

of genetic programming algorithms is as follows. They
start off with a population of individuals or candidate
solutions. The algorithms involve a very careful design of
what is called a fitness function which assigns a score to
each individual. Genetic programming essentially tries to
stochastically optimize this fitness function over the space
of all solutions. The strategy at each step involves using
the current generation of individuals to suitably generate
the next generation. Inspired by natural selection, individ-
uals with a high fitness are more likely to be chosen from
a given generation than are individuals with a low fitness.
Being evolutionarily motivated, these selected individu-
als are subjected to genetic operations like cross over and
mutation.
Each individual or candidate here corresponds to a puta-

tive motif. The motif structure is essentially same in both
GeRNAMo and GPRM; specifically, an RNA motif is rep-
resented as a sequence of segments. Each segment is
either single stranded or a Watson-Crick complementary
segment. Each segment also bears information about the
upper and lower bound on its length. For instance, h5(3 :
4)ss(4 : 6)h3(3 : 4) represents a stem-loop motif with a
stem length of 3 to 4 base-pairs and a loop of size between
4 and 6. If one is looking at only non-pseudo knotted
structures as in GeRNAMo, then this representation is
unambiguous. GPRM considers structures with pseudo-
knots as well and hence needs an added index informa-
tion on every complementary segment about its pairing
segment. In GeRNAMo, the above described motif is rep-
resented as a tree (different from everything we have
discussed so far) basically for the purpose of increased
sensitivity and diversity on application of the genetic oper-
ators. For instance, the minimum and maximum length of
each segment is not represented using a single number,
but distributed into a tree containing the numerals ′0′, ′1′,
′2′ and ′3′. The sum of all these numerals in this subtree
would capture the bound of the segment.
In the given set of input sequences, GPRM addition-

ally expects information about the presence or absence of
a motif. This labelling information is crucial in defining
its fitness function. The idea is that motifs which occur
mainly in the positive sequences and hardly in the nega-
tive ones are assigned high fitness. Fitness in GeRNAMo
is chosen such that motifs which occur in a majority of the
sequences and has the most segments have a higher fit-
ness score. Themutation operator for GPRM first chooses
a random segment from the motif. If the segment is sin-
gle stranded, then its length range is randomly changed.
If the segment is a complementary segment, then not
only its length range but also the position of its pair-
ing segment is randomly changed. This can be done as
GPRM admits pseudoknots. In GeRNAMo, the mutation
is carried out by randomly choosing a node from the tree
representation of the motif described above, deleting the
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subtree rooted at it and growing a new one. In GPRM,
the cross over operation as the name suggests involves
a crossover of two randomly chosen segments between
two relatively fit individuals. For a meaningful output,
the paired complementary segments are viewed as a sin-
gle unit. For cross over in GeRNAMo, the operation is
similar. But given the tree representation, one needs to
take additional care to exchange compatible parts only.
While checking for occurrences of a pattern, GeRNAMo
adopts the following strategy. From each sequence, it first
chooses subsequences of lengths varying between the
user-given minimum and maximum lengths. On each of
these segments, RNAsubopt [60] is applied to obtain a set
of suboptimal secondary structures. A motif ’s occurrence
is checked by comparing its segment based representation
with each subsequence’s suboptimal secondary structures.
On the other hand in GPRM, stems in each sequence
are first unearthed. The occurrence of a motif is checked
by essentially comparing the motif ’s complementary seg-
ments with the stems in the sequence.

Performance comparison
In order to compare some of the main algorithms, we
consider four families from Rfam [61] (release 11.0). The
families were chosen with a varied motif length (about
70 to 175) and a variation in depth and branching of the
motif tree (tree representation with nodes being basic sec-
ondary structure motifs as in Fig. 4 discussed earlier). All
the chosen (four) families are regulatory motifs housed
either in the 3′ or 5′ UTR regions of mRNA.We work with
seed sequences in each family and use a maximum of 20
sequences per family.
In our benchmarks, we embed each motif occurrence

in a sequence with varying flanking sequence lengths.
The flanking sequences were unrelated to the motif fam-
ilies. Given a set of such sequences, the goal was for
the algorithms to correctly recover the family secondary
structure motifs. We also consider an alternate version
of the benchmark where we introduced entirely random
unrelated sequences into the sequence set. Together, the
two benchmarks approximate the setting where users are
interested in identifying local RNA secondary structure
motifs embedded in longer RNAs (such as mRNAs), in
spite of the presence of a few entirely spurious, unrelated
RNAs among the input sequences.
Of the stochastic algorithms discussed, MEMERIS can

only infer linear motifs in single stranded regions and
cannot discover secondary structures explicitly. Hence we
consider CMfinder and RNApromo for benchmarking in
this category. Yao et al. [32] demonstrate that CMfinder
significantly outperforms comRNA on a variety of fami-
lies fromRfam database. Hence, among the stemmethods,
we only consider RNAmine for comparisons. Among the
alignment based methods, FOLDALIGN and its variants

cannot tackle sufficiently general secondary structures on
more than two input sequences. The LocARNA in prin-
ciple can compute structure-based multiple local align-
ments, but the current implementation of LocARNA
doesn’t support the output of such multiple local align-
ments. Hence among secondary structure independent
alignment algorithms, we look at SCARNA_LM only. The
secondary structure dependent alignment algorithms we
have discussed so far need information about the com-
plete secondary structure of the input sequences. This
information on the one hand can be inaccurate if compu-
tational methods are used and on the other hand can be
quite expensive with experimental methods. Also, given
that we use extraneous flanking regions around the motif
occurrences in input sequences, folding such sequences
may not make realistic sense in some cases. Hence we
do not consider any of these methods. Among the mis-
cellaneous methods, the tree mining approach of [55]
concentrates on the design of a general frequent tree
algorithm and uses RNA based data as a minor applica-
tion. This approach would be reasonable if one knows
the true secondary structures of the input sequences and
a method to score the output patterns. The genetic pro-
gramming approach GPRM needs information about the
presence or absence of the motif in every input sequence
which can be an unreasonable requirement. Shahar et al.
[59] demonstrate the superior performance of the GeR-
NAMo over the ad hoc RNAProfile. GeRNAMo would
be the algorithm to compare with but there is no online
implementation of GeRNAMo available. For the above
mentioned reasons, we do not consider any of the mis-
cellaneous methods for benchmarking. To summarize, we
consider four methods, namely CMfinder, RNAPromo,
ScarnaLM and RNAmine for benchmarking and perfor-
mance comparisons.
To study the performance, we use a single measure

based on the standard sensitivity and positive predictive
value (PPV) measures of structure prediction. Given a
reference (true) structure and a predicted structure, sen-
sitivity is defined as the fraction of the base pairs in the
reference structure which are predicted correctly. PPV
refers to the fraction of the predicted base pairs which are
also present in the true structure. To be a bit more pre-
cise, we introduce true positives (TP), false positives (FP)
and false negatives (FN) in this context. TP refers to those
base pairs in the reference structure which are also pre-
dicted correctly. FP refers to those base pairs which are
predicted but absent in the reference structure. FN repre-
sents the number of base pairs in the reference structure
that are not predicted. With these quantities, sensitivity
can be defined as TP

TP+FN and PPV as TP
TP+FP . The best

case scenario happens when both sensitivity and PPV are
close to 1. Given this, one natural measure is to con-
sider the geometric mean of sensitivity and PPV, also
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referred to as prediction accuracy. In such a case, predic-
tion accuracy is also close to 1. Unlike structure prediction
(from a single sequence), in our context we have multiple
sequences. Hence while calculating sensitivity and PPV
for the sequence set, we use the total number of true pos-
itives, false positives and false negatives calculated across
all the sequences.
In this section, we basically study the effect of noise

on performance of the different algorithms. In the first
experiment, we study the effect of increasing the length of
extraneous flanking segments on either side of the motif
locations. The alignments in Rfam are on genome seg-
ments which exactly correspond to the motif locations.
To obtain sequences with extraneous flanking regions, we
had to separately download genome segments (around
the motifs in Rfam) from GenBank with appropriate
additional flanking. We progressively vary the length of
the extraneous flanking region (Lf �), which refers to the
combined length of the left and right flanking segments
around the motif location. The length of the left flanking
segment is randomly chosen between 0 and Lf � for each
sequence.
Figure 15 gives the performance comparison of the four

algorithms. Each subfigure represents the performance

comparison on a particular pattern. As can be seen from
all the figures, CMfinder has better performance uni-
formly over the other methods. RNAPromo and Scar-
naLM perform reasonably well on the shorter patterns
let-7 and Purine but exhibit poor performance on the
longer patterns RFN and glmS. RNAmine performs
well with little or no flanking region, but surprisingly
exhibits a poor performance with increase in the flanking
length.
In the second experiment, in addition to flanking

we introduce entire separate sequences with no related
motifs. We study the effect of adding entirely unrelated
noisy sequences to the set of related sequences from a par-
ticular family. Each such noise sequence was a segment
of DNA from GenBank containing a different (randomly
chosen) motif ’s occurrence.We study the effect on predic-
tion accuracy of increasing the number of such unrelated
noisy sequences. The flanking lengths were fixed at about
200 among the sequences containing the motif. Figure 16
displays the performance variation with increase in noise
sequences (expressed as a percentage of motif-containing
sequences). We didn’t include RNAmine in this experi-
ment as its performance was pretty poor in the previous
experiment with increase in length of flanking regions.

Fig. 15 Performance as function of flanking length. Four Rfam motifs were embedded in sequences with increasing flanking length (x-axis,
nucleotides). The y-axis gives the methods’ performance at correctly identifying the embedded motif. Rfam motifs: (a) let-7, (b) Purine, (c) RFN,
(d) glmS
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Fig. 16 Performance as function of noise level. Two Rfam motifs were embedded in 200 nucleotide long flanking sequences and increasing
percentages of unrelated sequences were added to the collection (x-axis). The y-axis gives the methods’ performance at correctly identifying the
embedded motif. Rfam motifs: (a) let-7, (b) Purine

The experiment indicates that CMfinder and ScarnaLM in
particular are very robust to addition of noise sequences.

Discussions and conclusions
In this paper, we have focused on the problem of dis-
covering secondary structure based local patterns from a
set of related RNA sequences. We reviewed the various
computational approaches proposed in literature to tackle
this generic problem. The landscape of methods was quite
diverse with approaches based on stochastic learning, pat-
tern mining, genetic programming, DP and so on. In
addition to the diversity in computation, one can also
see substantial variety in the manner in which motifs are
defined. MEMERIS looks for stochastic sequence based
motifs in preferably single stranded regions. CMfinder
and RNAPromo discover motifs (SCFG-based stochastic
models) which are both sequence and secondary structure
based. The stem based methods look at motifs as a certain
(one of three) combination of stems with a purely sec-
ondary structure based focus. The genetic programming-
basedmethods we discussed discovermotifs as a sequence
of segments which are either single stranded or comple-
mentary, with a bound (upper and lower) constraint on
their lengths. Thesemotifs are also solely secondary struc-
ture based. Motifs as per the tree mining approach of
[55] would be a tree composed of nodes corresponding
to basic secondary structure motifs like stems and the
various types of loops. Most of the alignment based meth-
ods we discussed discover motifs based on both sequence
and structure similarity. Most methods we discussed here
searched for motifs whose occurrences were contiguous
subsequences of the input sequences. We discussed two
pairwise alignment methods (based on both sequence
and structure as input), which discover sequence struc-
ture based motifs whose occurrences may not translate to
contiguous subsequences in the input sequences.

Predicting RNA secondary structure from RNA pri-
mary sequence is a classic and important problem in RNA
analyses, as this has been the only viable approach for
high throughput analyses and inference of RNA struc-
ture. Recently, several groups have developed experimen-
tal techniques that allow high throughput analyses of RNA
structures, both in vitro and in vivo (see [62] for a review).
Although the exact details of these techniques vary, the
methods have the following three main steps in com-
mon: (i) treat RNA such that either base-paired or single
stranded nucleotides are tagged, (ii) use high-throughput
sequencing of treated RNA to identify tagged nucleotides,
and (iii) process sequencing data to identify regions in
the input RNA that are enriched for base-paired or single
stranded nucleotides. In the first step, current methods
either use chemical or enzymatic treatment for tagging.
The chemical-based methods give single-nucleotide data
on structure, but currently only allow tagging of single-
stranded regions of RNA. In contrast, the enzymatic
methods use ribonucleases that either cleave double- or
single-stranded regions of RNA and thereby allow tagging
of both structure types. But as the enzymes are bulky and
can be too large to interact with and cleave all the double-
or single-stranded regions in RNA, enzymatic methods
give lower-resolution data than do chemical-based meth-
ods. Currently, only chemical-basedmethods are available
for in vivo analyses.
Irrespective of the experimental details, the output from

these methods are essentially RNA stability profiles that
for each RNA present in the input sample, identify regions
that are more or less likely to contain base pairs. Notably,
although these stability profiles identify nucleotides that
participate in base-pairing, the profiles do not directly
reveal the identity of these base pairs. Instead, RNA
structure prediction programs use the stability profiles
as additional constraints to identify the structure that is
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most likely to correspond to the observed stability profile.
The simplest approach is to interpret the stability profile
as hard constraints in a standard MFE structure predic-
tion algorithm; that is, nucleotides that according to the
profile are single- and double-stranded are forced to be
single- and double-stranded, respectively, in the structure
prediction algorithm. This is the approach taken in for
example the SAVoR web tool [63]. The better approach,
however, is to use the stability profile as soft constraints;
for example, as an additional pseudo-free energy change
term in the MFE structure prediction algorithm [64].
Using this approach, Deigan et al. achieved much better
predictions than when using stability profiles as hard con-
straints or when using MFE structure prediction alone
[64]. We expect that incorporating such experimentally
determined stability profiles as input to RNA motif dis-
covery algorithms will lead to similar improvements. The
most straightforward approach would be to do motif dis-
covery on sets of stability profiles – for example, by
running MEME on discretized stability profiles. Simi-
larly, stability-profiles can easily replace the base-pairing
probabilities fromBoltzmann ensembles in theMEMERIS
algorithm. However, extending, for example, CMfinder
to include stability profiles as an additional pseudo-free
energy change term, similar to [64], would likely give the
best results.
Among the various kinds of motifs considered in lit-

erature, one would ideally want patterns to capture a
combination of sequence and structure similarity which in
a sense is captured by stochastic methods like CMfinder
and RNAPromo and most of the alignment methods.
However these methods fail to capture structure simi-
larity involving pseudoknots, which are otherwise cap-
turable by the stem-based methods like comRNA and
RNAmine, and also by GPRM, the genetic programming-
based method. But these latter methods do not capture
any sequence based similarity. All the other methods we
discussed can only discover nonpseudo-knotted motifs.
Accordingly, there are currently no methods which can
unearth pseudoknot based local patterns involving both
sequence and structure similarity. This is a very important
direction for future research that needs to be pursued. In
the previous section, RNAmine showed reasonable per-
formance with only little or no flanking regions around
the motif occurrences. It was also demonstrated in [38]
that RNAmine ran much faster than CMfinder, a state-
of-art method with the best prediction accuracies for
this problem. Given RNAmine’s ability to handle pseudo-
knots and superior runtimes, improving upon RNAmine
to handle larger flanking regions would be a noteable
enhancement. All the methods which can handle multiple
sequences without any structure input can only capture
motifs whose occurrences are necessarily contiguous sub-
sequences. This requirement can be a restriction [54]

and designing methods to tackle this is another useful
direction for future research.

Reviewers’ comments
Reviewer 1, first report: Dr. Sebastian Maurer-Stroh,
Bioinformatics Institute, A*STAR, Singapore
This manuscript aims to review and partially test compu-
tational tools for RNA motif discovery. Overall language
editing may make the text more accessible although it is
possible to follow also as it is.
A dedicated section gives an introduction to RNA sec-

ondary structures including typical graphical represen-
tations. However, not covered here are for example the
mountain plot as well as the dot plot. Especially the latter
allows to visualize ensemble base pair probabilities which
are also relevant in this context as some of the described
methods utilize partition functions in the folding algo-
rithms. Please consider adding/discussing this, including
a simple description of what RNA secondary structure
ensembles are.

Authors’ response:We fully agree with the reviewer on
this point. We have now added material on dot plot and
RNA secondary structure ensembles towards the end of
the RNA Secondary Structure section.

The next section tries to roughly classify existing com-
putational approaches and then introduce the underlying
ideas and algorithms. Although there will always be more
methods that one could consider and the full intricacies
of a method cannot be summarized in a few sentences,
the authors nevertheless provide a relatively reasonable
overview without too much complicated details which is
rare to find in style of a side by side comparison ofmultiple
methods. I consider this section useful.

Authors’ response:We thank the reviewer for the
positive comments on this section.

Finally, a short benchmark is presented over 4 selected
RNA motifs from Rfam. Testing influence of the natural
or artificial flanking regions of the motifs with varying
length is a good idea. However, I would like to make some
remarks here. A common scenario of trying to discover
RNA motifs will have as input an unaligned set of can-
didate sequences of varying length (or same length but
different positions of motifs along the sequence). Pro-
viding a test motif with symmetric flanking regions of
same length on either side, makes it easy to align the
motif in the middle (more challenging would be randomly
differing flanking lengths or motifs located in different
regions of the input sequences). Another typical scenario
would be an alignment of closely related homologous
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sequences which will necessarily show sequence and
structural conservation over a longer region than just the
typical single RNA motif length. If the flanking regions
of the test motif are not directly related to each other
as in this benchmark it will be much easier to find the
motif. As analogy, the benchmark setup can be com-
pared to finding a tree on a plain field while the homol-
ogous alignment scenario would be more like finding
the right tree in a forest. It is not clear, if both more
challenging scenarios can be emulated for this review
but it would be good if some thought could be given
to it.

Authors’ response: The two scenarios pointed out by the
reviewer make a lot of sense. However, the first scenario
pointed out above, where flanking regions need not be
symmetric on either side of the motif, is precisely what
has been incorporated in the paper. Paragraph number
5 in the Performance Comparison section conveys this
point. So, even though the sum of the flanking lengths
(denoted as Lf �) on either side are the same in all
sequences, the motif position in each of the input
sequences is randomly chosen and hence different in
each input sequence. Regarding the second scenario, we
have not addressed this directly. However, our flanking
regions are not artificial (or randomly generated), but
the true genomic flanking regions around the motif
location. It is intuitive to expect that having natural
flanking regions can be more challenging than having
totally random flanking regions. Given this, we feel the
benchmark setup in this paper is sufficiently non-trivial.

Minor comments/typos:

• p.1 Abstract: “This class of methods essentially learn”
should be “This class of methods essentially learns”

• p.2 first line: “from from”
• p.2 last paragraph: the point of a “riboswitch” is that

it changes/switches the structure under specific
conditions (binding, temperature,...) which is not at
all clear in this sentence.

• p.7 second paragraph: “each of this class” should be
“each of this classes”

• p.12: the CMfinder reference appears late instead of
at the beginning of the respective method description

• p. 27 third paragraph: “GeneBank” should be
“Genbank”

Authors’ response:We have made the necessary
corrections and clarifications.

Reviewer 1, second report: Dr. Sebastian Maurer-Stroh,
Bioinformatics Institute, A*STAR, Singapore
I am ok with the replies to my comments.

Reviewer 2, first report: Dr. Erez Levanon, Faculty of Life
Sciences, Bar-Ilan University, Ramat-Gan, Israel
The review “RNA motif discovery: a computational
overview” by Achar and Satrom deals with the various
approached to detect RNA motif. The review is a thor-
ough, detailed comparison of the current computational
approaches in this field. For people like me, that lack the
relevant background in algorithms of RNA structure pred-
ication, it can serve as a reference and a good summary.
Especially useful is the benchmark part at the end of the
review.

Authors’ response:We thank the reviewer for the kind
words.

The review is almost entirely algorithmic, and I would
suggest, in order to make it more relevant for biologist,
to add some biological insight, for example: How the dif-
ferent approaches deal with various types of RNA motifs?
Moreover, the field of RNA structure predication is in
the process of revolution due to the developing of new
sequencing-based methods. It is important to discuss the
impact of the new technologies on the landscape of RNA
motif discovery.

Authors’ response:We have explained in relative detail
in the first paragraph of the Discussions and
conclusions section about what kind of motifs are
extracted by the various approaches discussed in this
paper. Also, the third paragraph of the Performance
Comparison section touches upon this point. We have
added a short discussion in the Discussions and
conclusions section on the possible impact of new
sequencing technologies on RNA motif discovery.

In addition, there are several minor issues that should be
fixed in the next version. For example:

• The last paragraph of section 2 is not clear- who is
“they”? (page 7)

• Page 10 “The paper demonstrate” not clear which
paper

• Page 17: first sentence of section 3.3.1 is not clear

Authors’ response:We have made the necessary
corrections.

Reviewer 2, second report: Dr. Erez Levanon, Faculty of Life
Sciences, Bar-Ilan University, Ramat-Gan, Israel
The authors address the issues raised regarding the previ-
ous version of the manuscript (although I would consider
elaborating more about sequencing based methods due to
their impact on the field).

Authors’ response: As suggested, we have further
elaborated on the sequencing-based methods.
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Reviewer 3, first report: Dr. Weixiong Zhang, Department
of Computer Science and Engineering, Washington
University, St. Louis, Missouri, USA
This reviewer provided no comments for publication.
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