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Abstract

Background: The prediction of protein complexes from high-throughput protein-protein interaction (PPI) data
remains an important challenge in bioinformatics. Three groups of complexes have been identified as problematic to
discover. First, many complexes are sparsely connected in the PPI network, and do not form dense clusters that can be
derived by clustering algorithms. Second, many complexes are embedded within highly-connected regions of the PPI
network, which makes it difficult to accurately delimit their boundaries. Third, many complexes are small (composed
of two or three distinct proteins), so that traditional topological markers such as density are ineffective.

Results: We have previously proposed three approaches to address these challenges. First, Supervised Weighting of
Composite Networks (SWC) integrates diverse data sources with supervised weighting, and successfully fills in missing
co-complex edges in sparse complexes to allow them to be predicted. Second, network decomposition (DECOMP)
splits the PPI network into spatially- and temporally-coherent subnetworks, allowing complexes embedded within
highly-connected regions to be more clearly demarcated. Finally, Size-Specific Supervised Weighting (SSS) integrates
diverse data sources with supervised learning to weight edges in a size-specific manner—of being in a small complex
versus a large complex—and improves the prediction of small complexes. Here we integrate these three approaches
into a single system. We test the integrated approach on the prediction of yeast and human complexes, and show
that it outperforms SWC, DECOMP, or SSS when run individually, achieving the highest precision and recall levels.

Conclusion: Three groups of protein complexes remain challenging to predict from PPI data: sparse complexes,
embedded complexes, and small complexes. Our previous approaches have addressed each of these challenges
individually, through data integration, PPI-network decomposition, and supervised learning. Here we integrate these
approaches into a single complex-discovery system, which improves the prediction of all three types of challenging
complexes. With our approach, protein complexes can be more accurately and comprehensively predicted, allowing
a clearer elucidation of the modular machinery of the cell.
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Background
Protein complexes, which are stoichiometrically-stable
structures consisting of multiple proteins that bind (inter-
act) together, participate in many cellular processes.
Determining the set of cellular complexes can help to
elucidate the organization of cellular processes and their
functional mechanisms.
Many approaches have been proposed to derive com-

plexes from high-throughput protein-protein interaction
(PPI) data, typically by searching for dense clusters in
the PPI network that correspond to groups of interact-
ing proteins. For example, Clique Finder (CFinder [1])
and Clustering by Maximal Cliques (CMC [2]) are based
on finding and merging cliques; Algorithm for Identifi-
cation of Protein Complexes (IPCA [3]) and ClusterONE
[4] expand seeded vertices into clusters; Markov Clus-
tering (MCL [5]) performs flow simulation to find dense
partitions; Restricted Neighbourhood Search Clustering
(RNSC [6]) modifies random clusterings to minimize a
cost function. Some recent approaches have also incorpo-
rated prior biological knowledge, such as Coach [7], which
models the core-attachment structure of many complexes.
In a previous paper [8] we described three challenges

in complex prediction that arise from, or are exacerbated
by, a static view of PPIs and protein complexes which
are in fact dynamic in nature. First, many complexes
are sparsely connected in the PPI network, and cannot
be picked out by clustering algorithms which search for
dense subgraphs. Second, many complexes are embed-
ded within highly-connected regions of the PPI network
with many extraneous edges connecting them to exter-
nal proteins, so that clustering algorithms cannot properly
delimit their boundaries. Third, many complexes are small
(that is, composed of two or three proteins), making mea-
sures of important topological features, such as density,
ineffectual.
We have proposed three approaches that can help

to address these problems. First, Supervised Weight-
ing of Composite Networks (SWC [9]) addresses the
problem of sparse complexes. SWC integrates PPI data
with two additional data sources, functional associations
and co-occurrence in literature, and uses a supervised
approach to weight edges with their posterior probabili-
ties of belonging to a complex. SWC fills in the missing
edges in many sparse complexes through data integra-
tion, and reduces the amount of spurious non-co-complex
edges through supervised weighting. Using this approach,
improvements are obtained in both precision and recall
for yeast and human complex discovery, especially among
the sparse complexes.
Second, decomposing PPI networks into spatially-

and temporally-coherent subnetworks (DECOMP [10])
addresses the problem of complexes embedded in
highly-connected regions with many extraneous edges.

DECOMP removes hub proteins with large numbers of
interaction partners, as they tend to correspond to date
hubs with non-simultaneous interactions. Next, it decom-
poses the PPI network into spatially-coherent subnet-
works using cellular-location Gene Ontology (GO) terms
[11]. By splitting dense regions of the PPI network into
less-dense but coherent subnetworks, complex-discovery
performance is improved, with the biggest improvements
among complexes embedded in highly-connected regions.
Third, Size-Specific Supervised Weighting (SSS [12])

addresses the problem of predicting small complexes.
SSS integrates PPI data with two additional data sources,
functional associations and co-occurrence in literature,
along with their topological features, and uses a super-
vised approach to weight edges with their posterior prob-
abilities of belonging to small complexes versus large
complexes. SSS then extracts small complexes from the
weighted network, and scores them using the probabilistic
weights of edges within, as well as surrounding, the com-
plexes. This approach achieves significant improvements
in precision and recall in discovering small complexes.
Although SWC and DECOMP both improve the predic-

tion of large complexes in general, they have been shown
to give the largest improvements among the complexes
that they are designed for: sparse complexes for SWC, and
complexes embedded in dense regions for DECOMP. The
third technique, SSS, targets another separate group of
complexes, the small complexes. Thus, here we combine
these three techniques into a single system that targets
all three groups of challenging complexes, as this is likely
to give a performance boost in complex discovery over
using any single one of these techniques. Figure 1 shows
a flowchart of our integrated system consisting of SWC,
DECOMP, and SSS. Each of these approaches is run inde-
pendently on the input data, and the resulting clusters are
combined at the end. Please refer to the Methods section
for more details.

Results and discussion
Experimental setup
We compare the performance of the following approaches:

1. SWC+DECOMP+SSS: integrated approach
consisting of SWC, DECOMP, and SSS

2. SWC: Supervised Weighting of Composite network,
using six clustering algorithms combined with
majority voting

3. DECOMP: decomposition of PPI network, using six
clustering algorithms combined with majority voting

4. SSS: Size-Specific Supervised Weighting
5. PPI+COMBINE: PPI network weighted by reliability,

using six clustering algorithms combined with
majority voting

6. PPI+clustering algorithm: PPI network weighted by
reliability, using a single clustering algorithm
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Fig. 1 Flowchart of our integrated system consisting of Supervised Weighting of Composite Networks (SWC), PPI decomposition (DECOMP), and
Size-Specific Supervised Weighting (SSS)

We perform random sub-sampling cross-validation,
repeated over ten rounds, using manually-curated com-
plexes as reference complexes for training and testing.
For yeast, we use the CYC2008 [13] set which consists
of 408 complexes. For human, we use the CORUM [14]
set which consists of 1829 complexes. Previously, we had
tested our approaches on only large complexes (for SWC
[9] and DECOMP [10]), or only small complexes (for SSS
[12]); here, we test our integrated approach on all com-
plexes, large and small. In each cross-validation round,
t% of the complexes are selected for testing, while all the
remaining complexes are used for training. Thus we use a
large percentage of test complexes t% = 90%, giving 41
training complexes in yeast, and 183 training complexes
in human. Each edge (u, v) in the network is given a class
label co-complex if u and v are in the same training com-
plex, otherwise its class label is non-co-complex. For SSS,
the edges labeled co-complex are further split into two
subclasses, small-co-complex and large-co-complex, for

edges in small complexes (composed of two or three dis-
tinct proteins) and large complexes (composed of at least
four distinct proteins), respectively. For the supervised
approaches, learning is performed using these labels, and
the edges of the entire network are then weighted using
the learned models. The top-weighted k edges from the
network are then used by the clustering algorithms to pre-
dict complexes. In our experiments we use k = 20000 for
SWC and DECOMP, and k = 10000 for SSS (as described
in their respective papers).
We use precision-recall graphs to evaluate how well the

predicted clusters match the test complexes. Each cluster
P is ranked by its score. To obtain a precision-recall graph,
we calculate and plot the precision and recall of the pre-
dicted clusters at various cluster-score thresholds. Given
a set of predicted clusters P = {P1,P2, . . .}, a set of test
reference complexes C = {C1,C2, . . .}, and a set of train-
ing reference complexes T = {T1,T2, . . .}, the recall and
precision at score threshold s are defined as follows:
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Recalls = |{Ci|Ci∈C∧∃Pj∈P, score(Pj)≥s,Pj matches Ci}|
|C|

Precisions = |{Pj|Pj∈P, score(Pj)≥s∧∃Ci∈C,Ci matches Pj}|
|{Pk |Pk∈P, score(Pk)≥s∧(�Ti∈T,Ti matches Pk∨∃Ci∈C,Ci matches Pk)}|

Cmatches P =
⎧⎨
⎩
true if size(C) > 3 ∧ size(P) > 3 ∧ Jaccard(P,C) ≥ lg_match

or size(C) ≤ 3 ∧ size(P) ≤ 3 ∧ Jaccard(P,C) ≥ sm_match
false otherwise

The precision of clusters is calculated only among those
clusters that do not match a training complex, to elimi-
nate the bias of the supervised approaches for predicting
training complexes well. We require small complexes to
be matched perfectly, as a mismatch of just one protein in
a small complex may render the prediction less useful; on
the other hand we allow a slight tolerance for mismatch
for large complexes. Thus we require that small complexes
must be matched by small clusters with a match thresh-
old of sm_match, and large complexes must be matched
by large clusters with a different threshold of lg_match.

We define lg_match = 0.75 for large yeast complexes,
lg_match = 0.5 for large human complexes (since they are
more challenging to predict), and sm_match = 1 for small
complexes in both yeast and human.

Complex prediction
Figure 2 shows the precision-recall graphs for com-
plex prediction in yeast. Figure 2a shows that SWC
and DECOMP both attain higher precision than
PPI+COMBINE, demonstrating the benefits of super-
vised weighting and PPI decomposition (note that all

a)

c)

b)

d)

Fig. 2 Precision-recall graphs for complex prediction in yeast. For clarity, a shows only the integrated approach (SWC+DECOMP+SSS), each of its
constituent approaches, and the PPI+COMBINE approach, while b includes the individual clustering algorithms. c and d show the performance
when the generated small clusters are removed, which lowers recall substantially but increases precision. In yeast we use a matching threshold of
lg_match = 0.75 for large complexes, and sm_match = 1 for small complexes
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three of these approaches use the COMBINE strategy).
As SSS’ predictions are limited to small complexes, which
is moreover a difficult challenge with a perfect matching
requirement, it has lower precision levels compared
to PPI+COMBINE. However, the integrated approach,
SWC+DECOMP+SSS, is able to predict both large and
small complexes, and achieves much higher recall as well
as precision. Figure 2b shows that individual clustering
algorithms (used with the PPI network) give lower preci-
sion and recall compared to PPI+COMBINE, showing the
utility of combining the clusters from multiple clustering
algorithms.
We noticed that the generated small clusters may

depress the precision, as many of them are false positives.
Figures 2c and d show the performance when these small
clusters are removed. As expected, recall drops substan-
tially, as the small complexes are now unable to be pre-
dicted: for example, for PPI+COMBINE, recall drops from
over 40% to about 20%. However, precision is improved,
as the many false-positive small clusters are removed.
For our integrated approach (SWC+DECOMP+SSS), the

removal of small clusters means removing those clus-
ters generated by SSS. We still achieve higher precision
and recall than the other approaches, showing that our
integrated approach still outperforms other approaches
when considering large complexes only. Moreover, with-
out removing small clusters, our integrated approach
maintains high precision as it uses a specialized approach,
SSS, to predict small complexes.
Figure 3 shows the corresponding precision-recall

graphs for complex prediction in human. Figure 3a shows
that SWC and DECOMP both attain higher precision
than PPI+COMBINE, showing the benefits of super-
vised weighting and PPI decomposition. SSS shows poor
performance as it is limited to predicting small com-
plexes, which is especially challenging in human. The
integrated approach, SWC+DECOMP+SSS, is able to pre-
dict both large and small complexes, and achieves higher
recall as well as precision. Figure 3b shows that most
of the individual clustering algorithms (used with the
PPI network) give lower precision or recall compared
to PPI+COMBINE, showing the utility of combining the

a)

c)

b)

d)

Fig. 3 Precision-recall graphs for complex prediction in human. For clarity, a shows only the integrated approach (SWC+DECOMP+SSS), each of its
constituent approaches, and the PPI+COMBINE approach, while b includes the individual clustering algorithms. c and d show the performance
when the generated small clusters are removed, which lowers recall but increases precision. For human we use a matching threshold of
lg_match = 0.5 for large complexes, and sm_match = 1 for small complexes
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clusters from multiple clustering algorithms. The excep-
tion is Coach, which attains high precision as it does not
generate small clusters by design, thereby cutting down on
its false-positive predictions.
Figures 3c and d show the performance when the gen-

erated small clusters are removed. Compared to yeast,
here the recall does not drop as much: for example, for
PPI+COMBINE, recall drops by about 5% only. However,
the improvement in precision is substantial: for exam-
ple, PPI+COMBINE sees more than fivefold increase in
precision atmany points in the graph. This reveals an issue
in complex prediction which is more obvious in human
but still apparent in yeast: predicting small complexes
alongside large ones means accepting a drop in preci-
sion due to large numbers of false-positive small clusters;
while improving precision by excluding small clusters
means that no small complexes can be predicted. On the
other hand, our integrated approach uses a specialized
approach, SSS, to generate the small clusters separately
from the large ones, which allows effective prediction of
the small complexes while still maintaining high precision
levels.
To investigate the performance of our integrated

approach with respect to the three challenges that we
highlighted, we stratify the reference complexes in terms
of their sizes, extraneous edges, and densities. First, to
quantify whether a complex is embedded within a highly-
connected region of the PPI network, we derive EXT, the
number of external proteins that are highly connected to

it, defined as being connected to at least half of the pro-
teins in the complex. Second, to quantify how sparse a
complex is, we derive DENS, the density of each complex,
defined as the number of PPI edges in the complex divided
by the total number of possible edges in the complex. In
our analysis, we stratify the complexes into large and small
complexes, and further stratify the large complexes into
low, medium, and high DENS (corresponding to DENS
of [0, .35], (.35, .7], and (.7, 1] respectively), and low and
high EXT (corresponding to EXT ≤ 3 and > 3 respec-
tively), to give seven total strata (one for small complexes,
and six for large complexes). Figures 4 and 5 show the
size distribution, and the DENS and EXT analysis strata of
the large complexes, of the yeast and human complexes.
Note that the less-challenging complexes to predict are
the large complexes with high DENS and low EXT, and
these correspond to around only 15% and 5% of com-
plexes in yeast and human respectively; the remaining
complexes are challenging in some way, with the majority
of them falling into the small-complex category.
We take the top 1000 clusters generated by each

approach, and determine how well the reference com-
plexes in the different strata are matched by these clus-
ters. Figures 6 and 7 show the average improvements in
matching scores among the stratified complexes for our
approaches versus PPI+COMBINE, in yeast and human
respectively.
Among yeast and human large complexes, SWC gives

the biggest improvements among complexes with low

a)

b)

Fig. 4 Statistics of yeast reference complexes
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a)

b)

Fig. 5 Statistics of human reference complexes

to medium density: it uses data integration and super-
vised learning to fill in missing edges of sparse complexes
to allow them to be predicted. Among sparse com-
plexes, even those with high EXT see an improvement,
showing that SWC’s supervised weighting can effectively
reduce the number of spurious edges in the PPI network.
DECOMP gives the biggest improvements among com-
plexes with high EXT, within each density stratum. This is

because it decomposes the PPI network into spatially- and
temporally-coherent subnetworks, in which complexes
may become disconnected from their original densely-
connected neighbourhoods, allowing their borders to be
better delimited by clustering algorithms. As expected,
SSS improves the performance among small complexes.
Our integrated approach (SWC+DECOMP+SSS) spreads
out the improvements among the complexes in the

Fig. 6Match-score improvements among stratified yeast complexes
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Fig. 7Match-score improvements among stratified human complexes

different strata, showing that the different approaches
complement each other to predict different types of
challenging complexes.

Novel complexes
Here we investigate the number and quality of novel com-
plexes predicted by our approaches. For the supervised
approaches, we use the entire sets of reference complexes
for training. We keep only predicted complexes that are
novel, unique, and high-confidence. First, predicted com-
plexes that are similar to each other are filtered to keep
only the highest-scoring one. Next, we keep only the
top-scoring predictions such that the precision of these
predictions (i.e. proportion of predictions that match a
reference complex) is greater than 0.4. Finally, we keep
only novel predictions by removing those that match a ref-
erence complex. We use a Jaccard similarity threshold of
0.5 in the above procedure for matching.
We measure the quality of these novel predictions by

their semantic coherence in each of the three GO classes,
biological process (BP), cellular compartment (CC), and
molecular function (MF). First, we use the most informa-
tive common ancestor method to calculate the semantic
similarity between two GO terms [15]. Then we define
the semantic coherence between two proteins as the high-
est semantic similarity between their two sets of anno-
tated GO terms, for each GO class. Finally the semantic
coherence of a set of proteins is their averaged pairwise
semantic similarity, for each GO class.
Figure 8a shows the number and quality of novel pre-

dictions in yeast. Each of our individual approaches
(SWC, DECOMP, and SSS) predicts more novel com-
plexes compared to the baseline (PPI+COMBINE), while
the integrated approach generates the highest number

of novel complexes. The novel complexes from our
individual approaches attain higher semantic coherence
in one or more of the GO classes, compared to the
baseline. The novel predictions from the integrated
approach attain semantic coherence that is averaged out
between its three constituent approaches, which gives
it higher coherence than the baseline across all three
GO classes.
Figure 8b shows the number and quality of novel pre-

dictions in human. As described above, PPI+COMBINE
generates a great number of small clusters in human,
most of which are false-positives; this gives it a greater
number of novel predictions compared to each of
our individual approaches. Nonetheless, our integrated
approach still generates the greatest number of novel
complexes. As in yeast, our individual approaches gen-
erate novel complexes with greater semantic coherence
compared to PPI+COMBINE; the integrated approach
achieves greater semantic coherence, in all three GO
classes, in its predictions compared to the base-
line. Thus, in both yeast and human, our integrated
approach generates the greatest number of novel pre-
dictions, with higher quality compared to the base-
line approach of combined clustering with a PPI
network.
An example novel human complex discovered by our

integrated approach consists of proteins PELP1, SENP3,
TEX10, and LASIL1. This complex is not part of our
reference complexes, but is validated as four out of five
members of a recently-characterized 5FMC complex [16].
This complex is also predicted by SWC and DECOMP
at low scores (ranked 103 and 12 respectively); through
voting, our integrated approach re-scores it much higher
(second-highest rank).
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a)

b)

Fig. 8 Number and quality of novel predictions in a yeast, b human

Conclusion
Three open problems remain within protein-complex pre-
diction. First, many complexes are sparsely connected
in the PPI network, and so do not form dense clusters
that can be derived by clustering algorithms. Second,
many complexes are embedded within highly-connected
regions of the PPI network, which makes it difficult for
clustering algorithms to accurately delimit their bound-
aries. Third, many complexes are small (composed of two
or three distinct proteins), so that traditional topological
markers such as density or sparse boundaries are
ineffective.
Previously, we proposed three approaches for address-

ing each of these challenges. First, Supervised Weighting
of Composite Networks (SWC) integrates diverse data
sources with supervised learning to weight edges with
their posterior probabilities of being co-complex. SWC
was shown to improve the prediction of sparse complexes.
Next, PPI network decomposition using GO terms and
hub removal (DECOMP) was shown to improve the pre-
diction of complexes embedded within highly-connected
regions. Finally, Size-Specific Supervised Weighting (SSS)
integrates diverse data sources and topological features
with supervised weighting to weight edges with their

posterior probabilities of belonging to small complexes.
SSS was shown to improve the prediction of small
complexes.
Here we integrate these three approaches into a single

system. SWC, DECOMP, and SSS are run independently
on the input PPI data and other data sources, and the
resulting clusters are scaled to standardize their scores,
then combined using majority voting. We test the inte-
grated approach on the prediction of yeast and human
complexes, and show that it outperforms SWC, DECOMP,
or SSS when run individually, achieving the highest recall,
and the highest precision at all recall levels.
We also investigate which complexes benefit most from

our individual approaches and the integrated approach,
compared to a baseline of running a set of clustering
algorithms on a reliability-weighted PPI network. In both
yeast and human, we find that SWC improves the pre-
diction of sparse complexes, DECOMP improves the pre-
diction of embedded complexes, and SSS improves the
prediction of small complexes. The integrated approach
combines these improvements and distributes them
among the different types of challenging complexes.
Although we have taken great strides in tackling the

three challenges we highlight within complex prediction,
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and have obtained substantial improvements in prediction
accuracy and recall as a result, there remains room for
further improvement. Moreover, as increasing amounts
of PPI data become available for other organisms, the
techniques that we propose will be useful in enabling the
discovery of novel complexes in those organisms.
The integrated complex-prediction software package

and data files are available at http://compbio.ddns.comp.
nus.edu.sg/~cherny/IntegratedComplexPrediction/.

Methods
In this section we describe how we integrate our three
techniques, SWC, DECOMP, and SSS, into a single sys-
tem. We first describe the data sources and clustering
algorithms used, then describe the integrated system.

Data sources and features
Our three approaches use different sets of data features
(although SSS uses of all of them). These features are
derived from three different data sources—PPI, functional
association, and literature co-occurrence—and their topo-
logical characteristics. Each data source provides a list of
scored protein pairs: for each pair of proteins (a, b) with
score s, a is related to b with score s, according to that
data source. For both yeast and human, the following data
sources are used:

• PPI : We take the union of physical PPIs from three
databases: BioGRID [17], IntAct [18] and MINT [19]
(data from all three repositories downloaded in
January 2014). In yeast we additionally incorporate
the Consolidated PPI dataset [20]. The PPIs are
scored using a simple reliability metric. First, we
estimate the reliability of each experimental detection
method e as the fraction of its detected PPIs where
both interaction partners share at least one high-level
cellular-component Gene Ontology term. Then the
reliability of an interaction (a, b) is estimated as:

reliability(a, b) = 1 −
∏

e∈Ea,b
(1 − rele)ne,a,b

where rele is the estimated reliability of experimental
method e, Ea,b is the set of experimental methods that
detected interaction (a, b), and ne,a,b is the number of
times that experimental method e detected
interaction (a, b). The scores from the Consolidated
dataset are discretized into ten equally-spaced bins
(0−0.1, 0.1−0.2, . . .), each of which is considered as a
separate experimental method in our scoring scheme.
We avoid duplicate counting of evidences across the
datasets by using their publication IDs (in particular,
PPIs from the Consolidated dataset are removed
from the BioGRID, IntAct, and MINT datasets).

• STRING: STRING predicts functional associations
between proteins using various evidence types,
including genetic context and experimental data [21]
(data downloaded in January 2014). Each evidence
type is given a confidence score based on
co-occurrence in KEGG pathways, and the scores
from various evidence types are combined to give a
final functional-association score for each protein
pair. Only pairs with scores greater than 0.5 are kept.

• LIT: We calculate the co-occurrence of proteins or
genes in PubMed literature (data downloaded in June
2012), using the Jaccard similarity of the sets of
papers that a pair (a, b) appears in:

s = |Aa ∩ Ab|
|Aa ∪ Ab|

where Ax is the set of PubMed papers that contain
protein x. For yeast, that would be the papers that
contain the gene name or open reading frame (ORF)
ID of x as well as the word “cerevisiae”; for human
that would be the papers that contain the gene name
or Uniprot ID of x as well as the words “human” or
“sapiens”.

For each protein pair in each data source, we derive
three topological features: degree (DEG), shared neigh-
bors (SHARED), and neighborhood connectivity (NBC).
For each data source, the edge weight used to calculate
these topological features is the data source score of the
edge.

• DEG: The degree of the protein pair (a, b), or the
sum of the scores of the outgoing edges from the pair:

DEG(a, b) =
∑

x∈Na\{b}
w(a, x) +

∑
x∈Nb\{a}

w(b, x)

where w(x, y) is the data source score of edge (x, y),
Na is the set of all neighbours of a, excluding a.

• NBC: The neighborhood connectivity of the protein
pair (a, b), defined as the weighted density of all
neighbors of the protein pair excluding the pair
themselves:

NBC(a, b) =

∑
x,y∈Na,b

w(x, y)

min
(∣∣Na,b

∣∣ , λ) (
min(

∣∣Na,b
∣∣ , λ) − 1

)

where w(x, y) is the data source score of edge (x, y);
Na,b is the set of all neighbours of a and b, excluding
a and b themselves; λ is a dampening factor.

• SHARED: The extent of shared neighbors between
the protein pair, derived using the Iterative AdjustCD
function (with two iterations) [2].

A final topological feature, isolatedness (ISO(a,b)), rep-
resents the probability that the protein pair (a, b) is in a
size-2 or size-3 clique which is isolated from the rest of

http://compbio.ddns.comp.nus.edu.sg/~cherny/IntegratedComplexPrediction/
http://compbio.ddns.comp.nus.edu.sg/~cherny/IntegratedComplexPrediction/
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the network. It is derived from an initial calculation of
the small-co-complex posterior probabilities (see [12] for
details).
Table 1 lists the features used in each of the three

approaches. DECOMP makes use of only the PPI fea-
ture, as the incorporation of additional edges from addi-
tional features may exacerbate the problem of embedded
complexes which it addresses. SWC further incorporates
additional edges from STRING and LIT, as well as a topo-
logical PPI feature, to help fill out the edges within sparse
complexes, while the other features are unnecessary for
this purpose. Finally, SSS further includes all the remain-
ing topological features, as they help to distinguish true
small complexes from false positives.

Clustering algorithms
We use the following clustering algorithms in our
approach:

Markov Cluster Algorithm (MCL) [5] simulates flow
through a network to find regions with high flow bounded
by regions with lower flow. It converges to a partition
of highly-connected regions (the clusters) separated by
sparse boundaries.

Restricted Neighborhood Search Clustering (RNSC)
[6] starts from an initial random clustering, and moves
nodes between clusters to minimize a cost function based
on the number of intra- and inter-cluster edges.

IPCA [3] starts from seeded vertices and expands them
into clusters by incorporating new vertices, based on the
connectivity between the vertices and clusters, as well as
the diameters of the resultant clusters.

Table 1 Data used for our three approaches

Feature Description SWC DECOMP SSS

PPI PPI reliability � � �
STRING Functional association � �
LIT Literature co-occurrence � �
DEGPPI PPI topological degree �
DEGSTRING STRING topological degree �
DEGLIT LIT topological degree �
SHAREDPPI PPI shared neighbours � �
SHAREDSTRING STRING shared neighbours �
SHAREDLIT LIT shared neighbours �
NBCPPI PPI neighbourhood connectivity �
NBCSTRING STRING neighbourhood connectivity �
NBCLIT LIT neighbourhood connectivity �
ISO Isolatedness �

Clustering by Maximal Cliques (CMC) [2] first gener-
ates maximal cliques from a network. Cliques that overlap
highly are merged if they are highly inter-connected, oth-
erwise the clique with lower weighted density is removed.

Clustering with Overlapping Neighborhood Expansion
(ClusterONE) [4] starts from seeded vertices, and
expands them to maximize a cohesiveness function based
on the edge weights both within and surrounding a cluster.
Highly-overlapping clusters are merged.

Coach [7] adopts the core-attachment model of com-
plexes to detect complexes in two stages: core detection,
and complex formation. First, cores are found as ver-
tices that have higher-than-average local degree in their
neighbourhood subgraphs, and whose induced neigh-
bourhoods are dense. Next, proteins that are connected
to at least some proportion of each core’s vertices are
recruited as attachments to the core.
SWC and DECOMP both use a simple voting-based

aggregative strategy, called COMBINE, to take the union
of the clusters produced bymultiple clustering algorithms.
If two or more clusters are found to be similar to each
other, then only the cluster with the highest weighted den-
sity is kept, and its score is its weighted density multiplied
by the number of algorithms that produced the group of
similar clusters; otherwise its score is its weighted den-
sity as usual. The cluster scores are then normalized to
a maximum of 1 by dividing by the number of cluster-
ing algorithms used. We define two clusters C and D to
be similar if Jaccard(C,D) ≥ 0.75, where Jaccard(C,D) is
the Jaccard similarity between the proteins contained in C
and D:

Jaccard(C,D) = |VC ∩ VD|
|VC ∪ VD|

where VX is the set of proteins contained in X.

Integrated complex-prediction system
Figure 1 shows a flowchart of our integrated system. SWC,
DECOMP, and SSS are run independently on the input
data, and the resulting clusters are combined. Here we
give only a brief description of each approach, and leave
the reader to refer to the original publications for the
details; where there are any differences with the originally-
described approaches, we also mention them here.
First, SWC [9] integrates its four input data (see Table 1),

using supervised learning with a maximum-likelihood
naive-Bayes model to weight each edge with its posterior
probability of being a co-complex edge. Then it runs the
various clustering algorithms, and combines the result-
ing cluster sets with majority voting to produce its set
of clusters. Each final cluster is scored by its weighted
density (weights being the SWC posterior probabilities),
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multiplied by the number of clustering algorithms that
produced it, and normalized to 1.We keep only clusters of
size four or larger. Note that the original SWC approach
(as described in [9]) used only three features (SHAREDPPI ,
STRING, and LIT); here we incorporate the PPI feature,
as the reliability of a PPI is an effective indicator of a
co-complex relationship.
Next, DECOMP [10] performs hub removal on its input

PPI data, by removing proteins with more thanNhub inter-
action partners (where Nhub = 50 for yeast, Nhub = 150
for human; these parameters, and others in DECOMP, are
derived experimentally as described in [10]). Then it per-
forms GO decomposition to split the PPI network into
spatially-coherent subnetworks, where each subnetwork
is the induced PPI subnetwork of proteins annotated to
a cellular-component GO term. The GO terms used for
decomposition are chosen as those terms annotated to at
leastNGO proteins, while none of their descendents (in the
GO ontology) are annotated to more than NGO proteins
(where NGO = 300 for yeast, NGO = 1000 for human).
For each of the clustering algorithms, the algorithm is run
on the subnetworks, the clusters from the subnetworks
are re-combined, and hubs are re-added to those clusters
they are highly-connected to. Finally, the resulting clusters
from the various clustering algorithms are combined with
majority voting to produce a set of clusters. Each cluster
is scored by its weighted density (weights being the PPI
reliabilities), multiplied by the number of clustering algo-
rithms that produced it, and normalized to 1. We keep
only clusters of size four or larger. Note that the original
PPI decomposition approach (as described in [10]) did not
aggregate clusters from multiple clustering algorithms,
but used individual clustering algorithms instead; here we
incorporate the COMBINE strategy for DECOMP as it
was found to improve complex-discovery performance in
[9]. The original approach also used only the BioGRID PPI
dataset, whereas here we further integrate the IntAct and
MINT PPI datasets.
Next, SSS [12] integrates its thirteen input data (see

Table 1), using supervised learning with a maximum-
likelihood naive-Bayes model to weight each edge in a
size-specific manner: each edge is weighted with its small-
co-complex, large-co-complex, and non-complex poste-
rior probabilities. Then the small complexes (size-2 and -3
complexes) are extracted, and scored by cohesiveness-
weighted density, which takes into account the weights of
both internal and surrounding edges.
Finally, the clusters produced by the three approaches

are combined, also using the voting-based aggregative
strategy. However, since each approach scores its clusters
in a different manner, we first scale their scores to make
them comparable. The clusters generated by DECOMP
are scaled by a factor d, while those generated by SSS
are scaled by a factor s (clusters generated by SWC are

implicitly scaled by a factor of 1.0). In our experiments we
used d = 0.6, s = 1.0 for yeast, and d = 0.6, s = 0.3
for human. These factors were obtained by observing the
relationship between scores and precision levels in the
cross-validation results for each approach (e.g. a clus-
ter predicted by DECOMP with a score of 0.6 obtained
roughly the same precision as a cluster predicted by SWC
with a score of 1.0). Then we take the union of the clus-
ters produced by the three approaches. If a cluster from
two or more approaches are found to be similar to each
other (Jaccard similarity ≥ 0.75), we sum its scores from
the different approaches.

Reviewers’ comments
Reviewer’s report 1
Prof. Masanori Arita, National Institute of Genetics, Japan
The manuscript describes the summarizing work of the

authors’ previous three published results. The current
work is an integration or meta-tool approach by dissect-
ing the given PPI dataset by complex sizes and other
characters.

1. BMC Syst Biol. 2014, 8(Suppl 5):S3
2. BMC Syst Biol. 2012;6 Suppl 2:S13
3. Proteome Sci. 2011 Oct 14;9 Suppl 1:S15.

Overall, the approach taken is sound and the results
are well justified. The flow of the manuscript is, however,
extremely similar to their 2nd work in 2012. There is no
paragraph copied or identical but essentially, methods and
assessments are the same. This in part inevitable because
the approach taken is similar. Still, to emphasize novelty,
I would like to encourage authors to add more insights
obtained by this meta approach. In fact, their paper in
2012 introduces more detailed analysis on each complex
identified. Along this line, suggested idea is focusing on
some human or yeast specific protein complexes com-
pares their function with the previous work in 2012. what I
could not fully understand was the slightly different use of
STRING database. STRING is in itself a meta-tool for PPI,
and was used in the previous approach too (2012 paper).
Is its usage different this time? Then what is the reason?

Authors’ response:
Indeed, the main contribution of this paper is to integrate
our previously-presented complex-prediction methods
into a single tool, rather than to propose an entirely new
complex-prediction method. Since this work integrates
the 3 previousmethods, it does not predict any novel com-
plexes that were not predicted by any of the 3 methods.
Instead, we show that the power and accuracy of the inte-
grated approach is much improved, especially for human
complexes. Nevertheless we have revised the paper to add
an example validated complex (5FMC) which was low-
scoring using the individual approaches, but now become
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higher-scoring after integrating the 3 approaches together
(due to the voting-based scoring).
The STRING database is used in the same way in SWC

in the 2012 paper and in SWC in the current paper: as
a datasource for functional associations, not necessarily
PPIs (this is the consequence of how STRING scores its
associations). So we consider the STRING data as func-
tional associations to be quite orthogonal to our PPI data.
The SSS method further includes additional topological
features derived from STRING: the degree, neighbour-
hood connectivity, and shared neighbours, in the STRING
network. This is because these features are useful in dis-
tinguishing true small complexes from false positives:
while many size-2 and size-3 groups of proteins form iso-
lated clusters in the PPI network by chance, it is less likely
that they also form isolated clusters in the STRING net-
work and the LIT network. We have revised the paper to
describe the use of features in the different methods.

Reviewer’s report 2
Dr. Yang Liu (nominated by Prof. Charles DeLisi), Boston
University, USA
This paper integrates three approaches that they iden-

tified before into a single system to predict problematic
complexes. They apply the system to both yeast and
human PPI networks and can achieve higher accuracy
andmore comprehensive prediction, compared with three
individual methods.

Major:

1. In Background, instead of only introducing their own
work, the authors may also consider talking about
other similar studies to predict complexes, especially
for recent years.

2. It seems that methods proposed in this paper are not
parameter-free, not only for three individual ones,
but also for the integrated approach. There are too
many parameters to fix, like N_hub, d, s etc. Without
any explanation, it makes readers confused about
how to choose these parameters to get the best
performance. Are they based on experimental tests,
or some statistical calculation? The authors may
need to demonstrate how they make the selection.

3. The authors claim that integrated method
outperforms three individual methods, which seems
obvious because those three methods try to address
three different challenges, and an integrated version
could no doubt work better. Have the authors tried
to compare their method to other independent
complexes prediction approach?

Authors’ response:
1. We have revised the Background section to include a

brief mention of some popular complex-discovery

algorithms. Some of these are further described in
the Clustering algorithms subsection of the Methods
section, as these are the algorithms that we make use
of and which we compare our performance against.

2. Parameters specific to the individual approaches, like
N_hub and N_go, were determined experimentally in
their original papers; we have modified our paper to
clarify this. The parameters specific to the
integration approach are d and s: these are scaling
parameters to calibrate the scores of DECOMP and
SSS, and their recommended values have been found
through cross-validation experiments.

3. Indeed, Figure 2b show the precision-recall graphs
for yeast complex prediction, using our approaches
(integrated approach and the three individual
approaches), as well as six popular
complex-prediction algorithms: CMC, ClusterOne,
IPCA, Coach, and MCL. Figure 3b show the
corresponding graphs for human complex prediction.
Our approaches outperform these other approaches.
Figures 2d and 3d also show that these approaches
are hampered by trying to predict small complexes:
when their predicted small clusters are removed,
their precisions increase substantially; nonetheless
even here our approaches still outperform them.
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