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Abstract

Background: CD4+ T cells are key regulators of the adaptive immune system and can be divided into T helper (Th)
cells and regulatory T (Treg) cells. During an immune response Th cells mature from a naive state into one of
several effector subtypes that exhibit distinct functions. The transcriptional mechanisms that underlie the specific
functional identity of CD4+ T cells are not fully understood.

Results: To assist investigations into the transcriptional identity and regulatory processes of these cells we
performed mRNA-sequencing on three murine T helper subtypes (Th1, Th2 and Th17) as well as on splenic Treg
cells and induced Treg (iTreg) cells. Our integrated analysis of this dataset revealed the gene expression changes
associated with these related but distinct cellular identities. Each cell subtype differentially expresses a wealth of
‘subtype upregulated’ genes, some of which are well known whilst others promise new insights into signalling
processes and transcriptional regulation. We show that hundreds of genes are regulated purely by alternative
splicing to extend our knowledge of the role of post-transcriptional regulation in cell differentiation.

Conclusions: This CD4+ transcriptome atlas provides a valuable resource for the study of CD4+ T cell populations.
To facilitate its use by others, we have made the data available in an easily accessible online resource at
www.th-express.org.

Reviewers: This article was reviewed by Wayne Hancock, Christine Wells and Erik van Nimwegen.

Keywords: T helper cell, CD4+ T cell, Treg, RNA-seq, Transcriptomics
Background
CD4+ T cells are critical orchestrators of the adaptive
immune system and can be divided into two main
groups, T helper (Th) cells and regulatory T (Treg) cells.
Most Th cells exist in a naive state and only differentiate
into mature, cytokine-secreting effector cells upon acti-
vation of the T cell receptor (TCR) by antigen in the
presence of cytokines [1]. Each Th cell subtype exhibits
distinct functions reflected by the expression of charac-
teristic sets of cytokines. Several Th effector subtypes
have been identified. The best characterised are Th1,
Th2 and Th17 cells. The Th1 signature cytokine is IFN-
γ), while Th2 cells mainly secrete IL-4, IL-5 and IL-13.
Th17 cells produce IL- 17A, IL-17 F and IL-22 [1].
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Regulatory T (Treg) cells are functionally distinct from
the other Th subsets as they suppress and possibly re-
direct immune responses. Depending on their in vivo
provenance they are referred to as thymus-derived tTreg
cells or peripherally-derived pTreg cells [2]. The former
commit to the Treg lineage during development in the
thymus, whereas the latter differentiate from naive CD4+

T cells in the periphery [3].
The Th differentiation process is orchestrated by tran-

scription factors (TFs). The first layer of transcriptional
regulation is provided by STAT family factors [4] whilst
the maintenance of cell identity appears to be controlled
by a second layer of TFs, often referred to as master reg-
ulators. Each Th cell subtype is associated with a domin-
ant master regulator whose ectopic expression is
sufficient to induce the respective effector cell pheno-
type. TBX21 (also known as T-bet) is responsible for the
Th1 subtype [5], GATA-3 determines the Th2 subtype
[6,7], RORγt (encoded by a splice isoform of the Rorc
gene) drives Th17 differentiation [8], and Foxp3 is
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responsible for Treg commitment [9,10]. The master
regulators collaborate in combination with other
lineage-restricted TFs, such as HLX [11], c-MAF [12]
and AHR [13,14], which promote Th1, Th2, and Th17/
Treg fates respectively. However, these factors alone are
not sufficient to drive differentiation towards a specific
Th fate.
We sought to create a resource to aid investigation of

the transcriptional mechanisms underlying Th cell iden-
tity. To this end we profiled the transcriptomes of murine
naive, Th1, Th2, Th17, splenic Treg, and in vitro-induced
Treg (iTreg) cells by RNA-sequencing. We used multiple
computational analysis tools to quantify gene and tran-
script isoform expression levels and to analyse differential
expression between CD4+ T cell subtypes. We anticipate
that the datasets presented here will be a valuable resource
for further study and so they were compiled into a pub-
licly available online database, ThExpress.

Results
Generation of high quality CD4+ transcriptome data sets
We performed mRNA-sequencing on two biological rep-
licates of freshly isolated murine splenic CD4+CD62L+

(naive) T cells and CD4+CD25+ Treg cells, as well as
CD4+ cells polarised in vitro to Th1, Th2, Th17 and
iTreg fates. Lineage identities and differentiation states
were verified by analysis of subtype-specific markers
(Figure 1). The naive cell samples were over 95%
CD4+CD62L+; Th1 were over 90% IFN-γ+IL-13−; Th2
were >98% IFN-γ− and 70% IL-4 and/or IL-13 posi-
tive. Similar to previous reports [15], we detected sig-
nificant proportions of cells single-positive for IL-4 and
IL-13 under Th2 conditions. Th17 cells were >90%
CD4+CCR6+ and >90% RORγT+. Treg purity was con-
firmed with >90% cells Foxp3+. iTreg populations generated
from DEREG mice [16] were >95% pure based on expres-
sion of transgenic DTR–eGFP under the control of the
Foxp3 locus.
We obtained between 13.5 and 290 million reads per

biological replicate with, on average, 85% mapping unam-
biguously to the mouse genome (Table 1). We calculated
gene expression levels for each sample by normalising raw
read counts by size factor [17] and transcript length.
Correlations between biological replicates were high
(Figure 2).
Expression levels of genes associated with other splenic

cell populations and therefore suggestive of contamination
were low and thus consistent with pure populations of
each CD4+ T cell subtype (Figure 2).
We then used the read distributions at the master regu-

lator transcription factor loci to verify cell type identities
(Figure 3A–C). The appropriate lineage markers were
expressed at the highest levels in their cognate cell types.
In agreement with previously published observations, we
did observe low expression levels of some transcription
factors within non-canonical cell types: a low level of
Gata3 expression in naive and Th1 cells [7] as well as in
Treg and iTreg cell types. GATA-3 is expressed in Treg
cells, forms a complex with Foxp3 and is necessary for
Treg function [18,19]. mRNA encoding the Th17 regula-
tor RORγt (encoded by a splice variant of Rorc which
lacks the first two exons) is expressed in the Treg subtypes
in agreement with existing work [20]. RORγt interacts
with Foxp3 [21,22] and thus might actively contribute to
Treg commitment.

CD4+ transcriptomes exhibit two major gene expression
classes
We previously demonstrated that genes can be separated
into two groups based on their expression level [23] and
that this bimodality of gene expression levels is indi-
cative of pure cell populations [24]. The distribution of
expression levels in the data analysed here exhibits a peak
corresponding to a class of genes with high expression
levels (HE), and a shoulder representing genes expressed
only at a low level (LE) (Figure 3D–E).

Transcriptome analysis enables clustering of CD4+ cell
subtypes
To study overall characteristics of the CD4+ transcrip-
tomes, we calculated the regularised-log (rlog) transfor-
med expression counts [25] and used these to perform
principal component analysis and hierarchical clustering
(Figure 4) of the cell types. The individual replicates from
each cell type are most similar to each other and the dif-
ferentiated subtypes cluster separately from naive cells.
Furthermore, we found that Th1 cluster with Th2 and
Th17 cluster with Treg.

Clustering of gene expression between subtypes
We used the 50% of genes with the highest variance to
perform gene clustering and inspected the clusters asso-
ciated with known canonical transcription factors to gain
assurance that our data will be of use in exploring the
regulatory networks involved in CD4+ T cell function
(Figure 5).
In this analysis, Tbx21 clusters with Hopx and is near

to Fgl2 and Ifitm3; Gata3 clusters with Nfil3; Rorc clus-
ters with Ccr6 and Stab1; Foxp3 clusters with Rgs16 and
near to Sox4 and Atp1b1. Reassuringly, all of these associ-
ations are expected based on previously published reports
of expression or regulation of these genes in CD4+ T cell
subtypes [26-32].

Differential gene expression between CD4+ subtypes
A detailed understanding of differential gene expression
promises to provide important clues regarding the
lineage commitment and biology of the CD4+ subtypes.



Figure 1 (See legend on next page.)
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Figure 1 Flow cytometry sorting and analysis of Th subtype populations. (A) FACS gating strategies used to sort Th subtypes after growth
in polarizing conditions. Initial gates selected for singlet lymphocyte events and were followed by sorting for specific cell surface markers as
follows. Th1: CXCR3+, PI−, depletion markers− (CD11b−CD11c−Ly6G−CD8a−CD19−). Th2: CD4+, PI−, depletion marker−. Th17: CCR6+, Cd8a−, PI−.
iTreg: GFP+ PI−. (B) Verification of CD4+ cell lineage identities by intracellular flow cytometry staining for the factors indicated. Cells were analysed
using fluorescently-labelled antibodies against the indicated markers. Th1, Th2 and Th17 cells were restimulated prior to analysis as described in
Methods. Percentages within the quadrants/gates are indicated, and are representative of the purities routinely obtained.
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Thus, we determined those genes that exhibit significant
differences (adjusted p-value ≤ 0.01) in gene expression
between subtypes (Figure 6). The numbers of genes
identified as differentially expressed at a significant level
range from two thousand (Th1 vs Th2) to over nine
thousand.
To exemplify the use of the expression atlas we identi-

fied sets of ‘subtype upregulated’ (SU) genes for each cell
type by determining those genes significantly upregu-
lated in one subtype with respect to all others (Figures 7
and 8). We found between 132 (Th2) and 1004 (naive)
SU genes for each subtype. A complete listing of all SU
genes in each cell type is presented in Additional file 1.
When interpreting the lists of SU genes it is important

to remember that not all genes known to have roles in
the function of a particular cell type will be identified as
such due to their expression at high levels in more than
one cell type. For example, this is the case for Rorc
(RORγt, Figure 1) which is the master regulator for
Th17 differentiation but is also expressed in iTreg cells
[20]. In addition, not all subtype-specific cytokines are
classified as SU genes in the Th subtypes that were
rested after activation and prior to transcriptome ana-
lysis; this is true for IL-13 in Th2 cells.
We generated lists of genes likely to encode transcrip-

tion factors, cytokines and transmembrane receptors
(Additional file 1) and determined which of these genes
Table 1 Mapping statistics for the mouse CD4+ cell
mRNA-seq samples

Cell type Total reads Uniquely mapped
reads

% uniquely
mapped

Naive A 190175282 172714808 90.8

Naive B 291840162 274412494 94.0

Th1 A 101511893 91658389 90.3

Th1 B 86944521 77724382 89.4

Th2 A 102603764 89652943 87.4

Th2 B 103927555 91223060 87.8

Th17 A 83276214 71017085 85.3

Th17 B 289793662 226405227 78.1

iTreg A 13501869 10031784 74.3

iTreg B 53187059 39277954 73.8

Treg A 33430348 28411431 85.0

Treg B 31409616 26002127 82.8
were found within the sets of SU genes for the CD4+

subtypes (Figures 7 and 8).
The presence of the already known lineage markers

validates our findings, whilst novel SU genes will provide
areas for future study. As an exhaustive analysis would
be beyond the scope of this study, we provide examples
of expected and novel SU genes below.

Naive
As expected, naive cells do not have cytokines or che-
mokine SU genes (Figures 7,8,9). They do have upregu-
lated receptors Ifngr2 and Il21r conferring the ability to
respond to IFN-γ and IL-21 during differentiation to
Th1 and Th17 fates respectively. SU receptors previously
unknown to play a role in naive CD4+ T cells include IL-
17RA and the TRAIL receptor (Tnfrsf10b). Of the 237
SU genes predicted to encode transcription factors
(Figure 7), the majority (123 genes) are associated
with the naive subtype. These include Foxp1 known
to be required for naive cell quiescence [33] and STAT5,
which is necessary for naive T cell survival [34].

Th1
The canonical Th1 cytokine IFN-γ is an SU gene in the
Th1 subtype (Figures 7,8,9). CSF-1 and IL-34 are also
Th1 SU genes and both act as ligands for the colony
stimulating factor 1 receptor (CSF-1R). Th1-associated
chemokine and cytokine receptor genes Cxcr6, Il12rb2
and Il18r1 [35,36] are upregulated in Th1 cells. An ex-
ample of a novel SU receptor gene is Klrc1 which en-
codes a receptor previously described as having function
in NK cells [37].
The gene encoding the canonical transcription factor

TBX21 is a Th1 SU gene along with Hopx, Hlx and One-
cut2 which all encode transcription factors with known
roles in Th1 gene expression [11,26,38]. A potentially
interesting novel upregulated Th1 TF is the Lipolysis
Stimulated Lipoprotein Receptor (encoded by Lsr) which
is in the HE class in Th1 cells but in the INT class in all
other subtypes.

Th2
The well-studied Th2 cytokine IL-4 is a Th2 SU gene
(Figures 7,8,9) along with the only other Th2 SU cytokine,
B cell activating factor (BAFF, Tnfsf13b). There is only a
single Th2 SU receptor gene, Fcgrt, which encodes a gene



Figure 2 (See legend on next page.)
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Figure 2 Quality control of the transcriptomic data. (A) Comparison of the two biological replicates for each subtype. Gene expression levels
as size-factor adjusted, length-normalised counts are plotted for each pair of replicates as two-dimensional kernel density estimates in yellow–
green with individual points plotted in light grey. Correlation coefficients are consistently high, ranging from 0.81 to 0.98. (B) Expression of splenic
cell population markers. Expression levels of markers indicative of CD4+ T cells (top row) and those suggestive of other contaminant splenic cell
populations (middle and bottom rows).
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with no known function in Th2 biology. Examples of Th2
SU TF genes with known function include Gata3, Batf
and Nfil3 [27,39]. Atf5 is a Th2 SU TF gene that has not
been characterised in this cell type but has well under-
stood functions in brain [40,41] and liver [42].

Th17
Expected Th17 SU cytokine genes include Il17f, Il17a
and Il21 (Figures 7,8,9). Whilst IL-2 has been shown to
be secreted by Th17 cells [43], its observed upregulation
in Th17 cells is most likely due to an experimental bias:
the Th1 cells were rested prior to their transcriptomic
analysis whilst the Th17 cells were not. Similarly, the IL-
2Rα chain (CD25) is particularly highly-expressed in the
Th17 cells and so is classified as an SU gene for this sub-
type; Il2ra is highly expressed on all subtypes apart from
naive. Of the other Th17 SU receptor genes (including
Tnfrsf13b and Ptgfrn), none have a known T cell func-
tion. The TGF-β family cytokine Inhibin A (Inhba) is an
Th17 SU gene although its secretion by Th cells has not
previously been observed.
The transcription factors AHR, IRF4 and RORα are all

known to be involved in defining the Th17 transcrip-
tional program [13,20,44] and are defined as Th17 SU
genes here. Several novel TF genes were identified,
amongst them Plagl2 and Pax6. The former has no
known function in T cells, but is a proto-oncogene with
roles in acute myeloid leukaemia [45]. PAX6 is well
known for its role in brain and eye development [46]
and, whilst it is not expressed at the same very high level
in Th17 cells as the canonical TF Rorc, its expression
level is sufficiently high to be of interest.
Th17 cells also express high levels of Cyp11a1, a gene

for a key enzyme in steroid hormone biosynthesis (data
not shown) that we recently found to have a functional
role in a subset of Th2 cells [47]. Furthermore, these
data confirm our observation that genes of the steroid
biosynthesis pathway are upregulated in Th1 and Th2
subtypes and extend this finding to show that they are
also upregulated in the other subtypes compared with
naive cells.

Treg and iTreg
SU gene analysis of the Treg and iTreg populations pro-
vides genes that may be useful in distiguishing these two
subtypes. Currently, neuropilin-1 (Nrp1) and Helios (Ikzf2)
have been described as markers specific to tTreg cells
[48]. In the datasets described here, we see Helios only
expressed in the splenic Treg population whilst Nrp1 is
expressed in Treg and iTreg populations (Figure 9). Cyto-
kine genes specific to splenic Tregs include Cxcl10 whilst
Il17d and Tnfsf11 (RANK ligand) are specific to iTregs
(Figures 7,8,9). Tnfrsf11a (RANK) is an SU receptor gene
for Tregs and BAFF receptor (Tnfrsf13c) is an upregulated
receptor in iTregs. Fosb and Irf8 are transcription factors
that differentiate iTregs from Tregs.

Differential isoform expression
Alternative splicing plays an important role in the regu-
lation of eukaryotic gene regulation. To demonstrate the
use of our data beyond gene-level differential expression
we estimated isoform expression profiles in the subtypes
using the mixture-of-isoforms (MISO) model [49]. We
observed the previously reported change in major iso-
form for CD45 (Ptprc) [50] (Figure 10) and explored
other aspects of alternative splicing during CD4+ T cell
differentiation.
For protein-coding genes with multiple isoforms we

typically observed a major isoform that comprised the
majority of the gene’s total expression while any further
isoforms contributed decreasing proportions (Figure 11
A and B). This is similar to the distribution of isoforms
previously described in human cells [51].
The major mRNA transcript from a gene can vary be-

tween cell types without there being overall differential
expression of the gene [51]. Across all pairwise compari-
sons between cell subtypes, on average, 475 genes exhib-
ited this transcript-switching behaviour whilst 212
underwent at least a two-fold switch (Figure 11C). The
expression levels of switched transcripts before and after
switching are similar to those of major and minor tran-
scripts from the whole population (Figure 11D).
Isoform quantitation can also provide new insights

into gene regulation: the gene encoding the signalling
adaptor SKAP-55 (Skap1) is an example. SKAP-55 is
crucial for integrin activation following T lymphocyte
stimulation and contains an SH3 domain and a pleck-
strin homology (PH) domain [52-54] required for mem-
brane localisation and protection from degradation
respectively [52,55,56]. Skap1 has ten different splice
isoforms (Figure 12A) and, whilst Skap1 is expressed at
high levels in all subtypes (Figure 12B), there are striking
differences in its isoform expression. Naive cells pre-
dominantly express the shortest truncated form lacking



Figure 3 (See legend on next page.)
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Figure 3 Master regulator expression and gene expression distributions in CD4+ subtypes. (A) Read distributions along the master
regulator Tbx21, Gata3, Rorc (RORγt), and Foxp3 loci in all cell types. The values are normalized to millions of total reads within each library. (B)
Expression levels of master regulator transcription factors in all cell types. (C) Heatmap showing relative expression levels of the transcription
factor loci in each biological replicate. Expression levels for each gene are scaled relative to the sample with the highest expression of that gene.
(D) Kernel density estimates of expression level distributions for all cell types. Genes with zero counts were excluded from the distributions. Each
of the samples displays the characteristic low expression (LE)/high expression (HE) shape with a shoulder of lowly expressed genes and a peak of
highly expressed. (E) Expectation maximisation curve fitting of a Gaussian mixture model for the Th1 expression level kernel density estimate.
Kernel density estimate is plotted in black whilst fitted Gaussian distributions are in yellow and purple. Boundaries between LE, Intermediate (Int)
and HE expression were calculated using an FDR of 0.01 as previously described [72].

Figure 4 Clustering CD4+ subtypes based upon gene expression.
(A) Plot of first two principal components for each sample calculated
from regularised-log (rlog) transformed gene expression counts for all
genes. (B) Heatmap showing hierarchical clustering performed using
Euclidean distances for each subtype replicate. Distances were
calculated using rlog-transformed gene expression counts for all genes.
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both SH3 and PH domains whilst in all differentiated
subtypes the major Skap1 isoform encodes full-length
protein (Figure 12C).
To find a possible explanation for the observed splicing

changes between subtypes we analysed the differential
expression of genes encoding protein factors involved in
the regulation of alternative splicing [57]. The expression
of these genes varies between subtypes and seven of them
are classed as SU genes (Figure 13).

Discussion
In accordance with our previous observation in Th2 cells
[23], we demonstrated that gene expression profiles from
the mRNA-seq data exhibited bimodality with high and
low expression classes. This suggests that this expression
pattern is a general phenomenon. Several lines of evi-
dence indicate that the HE genes represent the func-
tional transcriptome, while LE genes correspond to
transcriptional background [23], enabling us to use HE/
LE categories in our analyses of the transcriptomes. The
bimodality of expression levels is indicative of pure cell
populations [24] and as such increases our confidence in
the purity of our starting populations.
Hierarchical clustering demonstrated that naive cells

were distinct from all the differentiated subtypes. Th17
and Treg subtypes clustered together which is interest-
ing since both Treg and Th17 gene expression programs
can be simultaneously induced in some cells, and some
Treg cells appear to be able to transdifferentiate into
Th17 cells [20,58]. We also performed hierarchical clus-
tering of the genes with highest between-subtype vari-
ability. Genes near to the master regulator transcription
factors provided confidence that the coexpression of
genes observed in these datasets can be used to investi-
gate CD4+ T cell gene regulatory networks.
We determined the subtype upregulated genes that are

overexpressed in one cell type compared with all others.
Novel SU cytokines, chemokines and cell-surface recep-
tors provide suggestions of previously unknown signal-
ling interactions within the CD4+ T cell compartment
and also between these cells and other immune effec-
tors. For example, the TRAIL receptor gene (Tnfrsf10b)
is upregulated in naive cells. Binding of the TRAIL lig-
and to its receptor leads to apoptosis [59]. It is tempting



Figure 5 (See legend on next page.)
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Figure 5 Clustering of the 50% of genes with highest between-sample variance for the CD4+ subtypes. Sections of the gene expression
heatmap illustrating the local clusters around (A) Tbx21, (B) Gata3, (C) Rorc and (D) Foxp3. Genes and samples were clustered by Euclidean
distance using rlog-transformed expression counts. Expression levels are presented as rlog-transformed counts (left) or as Z-scores (right). Colours
to the left of the rows indicate the subtype to which SU genes were assigned.
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to speculate that this receptor plays a similar role to Fas
[60] in apoptosis during T cell peripheral negative
selection.
Th1, Th2 and Th17 SU cytokines imply signalling

from these cells to influence the differentiation of other
immune cells. The Th17 SU gene inhibin A regulates
early T cell development [61]. Csf1 is upregulated in Th1
cells along with Il34, and both proteins encoded by these
genes are ligands for the colony stimulating factor 1
receptor (CSF1R) promoting survival, proliferation and
differentiation of macrophages [62]. Th2 cells express B
cell activation factor (BAFF, Tnfsf13b) as an SU gene;
BAFF is required for maturation and survival of B lym-
phocytes. These findings suggest that Th1 and Th2 cells
are able to affect the survival and development of the
cells with which they interact during an immune response.
A receptor for BAFF (BAFFR, encoded by Tnfrsf13c) is
upregulated in iTreg cells and another receptor, TACI
(Tnfrsf13b) is expressed on all subtypes raising the possi-
bility that BAFF plays a role in signalling within the CD4+

T cell compartment.
If splenic Tregs are similar to tTregs, whilst iTregs are

more pTreg-like, then their SU genes will have appli-
cation in distinguishing between these two cell types
in vivo. This supposition is supported by the expression
of Helios only in splenic Tregs. The proposed tTreg
marker Nrp1 is expressed in both populations in agree-
ment with previous work, showing that it is upregulated
during in vitro iTreg polarisation [63]. A novel splenic
Treg SU gene is Cxcl10, a chemokine associated with re-
cruitment of Treg cells to the liver during inflammation
[64]. Its expression by Tregs themselves suggests a posi-
tive feedback effect whereby Tregs already in the liver
are able to recruit more of their subtype. RANK ligand
and its receptor, RANK, are iTreg and Treg SU genes
respectively. Perhaps this is indicative of signalling be-
tween these two subtypes.
We identified 237 SU genes that encoded potential

transcription factors, and these will provide a rich resource
for investigation into the transcriptional regulation of
CD4+ T cell fates. Those with notable but low expression
within a subtype (such as PAX6 in Th17) may well be a
marker for a discrete subset within that population. The
highest number (123) of SU transcription factors was
found in the naive subtype – perhaps this implies a
requirement for this number in maintaining a tran-
scriptional programme poised for commitment to one of
several possible differentiated fates. A reduced number of
TFs may then be required to maintain a more-specialised
fate after differentiation.
Extending comparisons beyond SU genes to find, for

example, genes upregulated in two particular subtypes
or in all differentiated subtypes compared with naive
cells should provide insight into further biologically
relevant questions in T cell biology. Examination of
gene classes in addition to the TFs, cytokines and recep-
tors described here should also prove fruitful. For ex-
ample, 49 genes annotated as long non-coding RNAs
(lncRNAs) were found to be SU genes.
Estimation of mRNA transcript isoform abundance

indicated that hundreds of genes with unaltered between-
sample expression levels change their predominant iso-
form. This demonstrates that regulation of gene function
by alternative splicing is a feature of CD4+ T cells in
addition to erythropoieisis and ESC differentiation [65-67].
We also identified an example of a gene (Skap1) that
undergoes alternative splicing whereby differentiation
away from the naive state leads to increased expression of
its full-length, functional isoform. Further work will be re-
quired to determine the functional relevance of transcript
switching and changes in expression of alternative splicing
factors during CD4+ T cell differentiation.
As with all transcriptomic studies, the work presented

here does not address the question of protein abundance or
activity within the subtypes and so conclusions about the
role of specific proteins in CD4+ T cells should be supported
by further work. Furthermore, it should be noted that the
transcriptional profiles that we determine here are from
single time-points during the development of the sub-
types and so do not address the dynamic changes in
gene expression that occur during CD4+ T cell differen-
tiation; differentiation time-course experiments will pro-
vide important avenues for further study. The data
presented here do, however, provide multiple insights into
the transcriptional landscapes that exist during the main-
tenance of cell fate once cells have fully differentiated.

Conclusion
We anticipate that these datasets will be a valuable re-
source for further study and that our analyses illustrate
their utility. We would like these data to be of use to the
widest possible range of researchers without the need to
use programming environments to perform differential
gene expression analysis. As such, we have made the data



Figure 6 Differential gene expression analysis between CD4+ subtypes. Heatmap representation of the number of genes found to be
significantly differentially expressed (p-value≤ 0.01) in each pairwise comparison at fold change cutoffs of zero, two and five. Lighter colours
indicate greater similarity between samples.
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Figure 7 Expression of subtype upregulated genes for the CD4+ subtypes. Expression of SU cytokines (A, D), receptors (B, E) and
transcription factors (C, F). Expression levels are presented as rlog-transformed counts (A–C) or as Z-scores (D–E). Colours to the left of the rows
indicate the subtype to which SU genes were assigned.
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available in an easily accessible database with a graphical
interface and search capabilities at www.th-express.org [68].

Methods
Mice and CD4+ T cell preparation
C57BL/6 mice were maintained under specific pathogen-
free conditions at the MRC Laboratory of Molecular
Biology (MRC-LMB) animal facility or at the Wellcome
Trust Genome Campus Research Support Facility (both
Cambridge, UK). These animal facilities are approved by
and registered with the UK Home Office. Animals were
sacrificed by approved animal technicians in accordance
with Schedule 1 of the Animals (Scientific Procedures)
Act 1986. Oversight of the arrangements for Schedule 1

http://www.th-express.org


Figure 8 Scheme illustrating subtype upregulated genes predicted from the mRNA-seq data for each cell type. Transcription factor
genes are listed in grey in the ‘nucleus’ of each cell, those for receptors are in brown next to the ‘lollipop’ shapes that represent them, and
cytokines are the coloured spheres outside each cell. Not all genes known to have roles in the function of a particular cell type are identified as
SU genes. Due to their expression at high levels in more than one cell type. For example, this is the case for Rorc which is the master regulator
for Th17 differentiation but is also expressed in iTreg cells.
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killing was performed by either the Ethical Review
Committee of the MRC-LMB or by the Animal Welfare
and Ethical Review Body of the Wellcome Trust Genome
Campus.
Naive T cells were purified from dissociated spleens from

C57BL/6 mice using the CD4+CD62L+ T Cell Isolation Kit
II (Miltenyi Biotec). Prior to polarisation to the Th17 fate,
CD4+ CD62L+ naive cells were further purified by FACS.
Purified cells were stimulated with anti-CD3e and anti-

CD28 and cultured for four days with polarising cytokines
and neutralising antibodies. Cells were seeded into anti-CD3
(2 μg/ml for Th1/Th2 or 1 μg/ml for all others, clone 145-
2C11, eBioscience) and anti-CD28 (5 μg/ml, clone 37.51,
eBioscience) coated 96-well plates, at a density of 250,000–
500,000 cells/ml and cultured in a total volume of 200 μl in
the presence of cytokines and/or antibodies as follows. Th1:
recombinant murine IL-12 (10 ng/ml, R&D Systems) and
neutralising anti-IL4 (10 μg/ml, clone 11B11, eBioscience);
Th2: recombinant murine IL-4 (10 ng/ml, R&D Systems)
and neutralizing anti-IFN-γ (10 μg/ml, clone XMG1.2,
eBioscience); Th17: recombinant human IL-6 (30 ng/ml,
Immunotools), recombinant human TGF-β1 (5 ng/ml,
Sigma), recombinant murine IL-1β (10 ng/ml, Immu-
notools), recombinant murine IL-23 (10 ng/ml, R&D
systems), neutralizing anti-IL4 (5 μg/ml, clone 11B11,
eBioscience), neutralizing anti-IFN-γ (5 μg/ml, clone
XMG1.2, eBioscience), and neutralizing anti-IL2 (5 μg/ml,
clone JES6-5H4, eBioscience). Th17 cells were then FACS
sorted for the CCR6+CD8a− Propidium Iodide (PI)− popu-
lation. Th1 and Th2 cells were cultured for another three
days without anti-CD3/CD28. The original medium was
kept and fresh medium containing the same cytokines
as before was added to dilute the cultures 1:3. FACS sort-
ing was used to purify CXCR3+CD11b−CD11c−Ly6G−CD8a
−CD19−PI− cells for Th1 and CD4+CD11b−CD11c
−Ly6G−CD8a−CD19−PI−.

Treg cell preparation
To generate iTreg cells, CD4+ CD62L+ cells from
DEREG [16] mice were cultured for four days in the
presence of anti-CD3e, anti-CD28 as above with the
addition of recombinant human TGF-β1 (20 ng/ml,
Sigma). GFP+ PI- cells were purified by FACS. Splenic
Tregs were isolated using MACS by first depleting
CD8a, CD11b, CD11c, CD19 and Ly6G expressing cells,
followed by positive selection for CD25+ cells.

Flow cytometry analysis
Prior to flow cytometry analysis, Th1, Th2 and Th17
cells were restimulated with phorbol dibutyrate and
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ionomycin (500 ng/ml, Sigma) for 4 h in the presence of
Monensin (2 μM, eBioscience) for the last 2 h. Other
subtypes were not stimulated. For staining of intracel-
lular markers, cells were washed in PBS and fixed over-
night in IC fixation buffer (eBioscience). Staining for
intracellular cytokine expression was carried out accord-
ing to the eBioscience protocol, using Permeabilization
Buffer (eBioscience), and appropriate fluorescent-labelled
antibodies. Tregs were permeabilized using the Cytofix/
Cytoperm kit (BD) prior to staining. Stained cells were
analysed on a FACSCalibur (BD Biosciences) flow cyt-
ometer using Cellquest Pro and FlowJo software.

RNA-seq data generation
Poly-(A) + RNA from all samples apart from Th1 and
Th2 was purified, reverse transcribed and prepared for
sequencing described previously [23]. For Th1 and Th2
samples the TruSeq RNA Sample Prep v2 kit (Illumina)
was used according to the manufacturer’s instructions.
The data were deposited at ArrayExpress [69] with ac-
cession number [ArrayExpress:E-MTAB-2582].

RNA-seq read mapping and differential expression analysis
Reads were aligned against the GRCm38v70 mouse gen-
ome using the spliced-read mapper GSNAP [70] with
only uniquely-mapped reads reported. Expression level
quantification was performed using the htseq-count Py-
thon script [71]. Read counts were used as input to the
DESeq2 R package [25].
DESeq2 was used to calculate ‘size-factors’ for each

sample. Size factors allow for comparison between sam-
ples sequenced to different depths in much the same
way as simply using the total number of sequencing
reads. Importantly, they are not as strongly influenced
by differential expression of a small number of highly
expressed genes [17]. To permit comparison between
genes, size-factor normalised counts were then divided
by the length of the transcript to give a measure equiva-
lent to the commonly used reads per kilobase million
(RPKM).
To assess distribution of gene expression values,

expectation-maximization curve fitting of a Gaussian mix-
ture model and classification of genes into HE and LE
classes was performed as described previously [23,72].
Genes with zero read counts were not included. Genes
that fell between the expression FDR boundaries were
classified as ‘intermediate’ (INT).
Differential expression of genes between subtypes was

determined using DESeq2. This uses Wald tests to calcu-
late the significance of differential expression for each
gene in a comparison between two subtypes. The p-values
from these tests then undergo Benjamini–Hochberg cor-
rection for multiple testing. A gene was considered differ-
entially expressed for a pairwise comparison if its adjusted
p-value was less than or equal to 0.01. To identify ‘subtype
upregulated’ (SU) genes for a particular cell subtype, that
subtype was compared with every other subtype. We
defined SU genes as those that were significantly upregu-
lated in every comparison and that belonged to the INT
or HE classes.

Gene annotations for transcription factors, cytokines and
receptors
Mouse genes were annotated by cross-referencing mouse
gene symbols against the following functional annotation
databases: mouse Gene Ontology annotations [73], DBD
[74], TFCat [75], IMMPORT [76], and Immunome [77].
The following prediction algorithms were used to annotate
signal sequences and transmembrane regions: Ensembl’s
transmembrane TMHMM [78] and SignalP [79] assign-
ments, and transmembrane helix predictions from Philius
[80] and SCAMPI [81]. Genes were categorised as being
likely transcription factors, cytokines, receptors, and sur-
face molecules using the criteria described in Additional
file 1.

Hierarchical clustering and principal component analysis
Sequencing read counts were made approximately ho-
moscedastic by using the regularised-log (rlog) trans-
formation provided by DESeq2 [25]. This transforms
the read counts into log space while moderating the
differences between samples for genes with low counts
so that these genes do not dominate the clustering
results.
Hierarchical clustering was performed with rlog trans-

formed gene expression values using the heatmap.2
function from the gplots R package, using Euclidean dis-
tance as the distance metric.
Principal component analysis was performed using the

prcomp function in R.

Differential splicing analysis
Relative expression of each transcript annotated in the
ENSEMBL GRCm38v70 mouse genome was calculated
using the mixture-of-isoforms (MISO) model [49]. This
provides a percent spliced in (PSI) value indicating the
proportion of transcripts estimated to be from each iso-
form for a gene. The major isoform for each gene in a
subtype was found by determining the transcript with
the highest PSI value in each biological replicate. If the
major isoform was not the same in each replicate then
that gene was not included in further analyses.
Transcript switching genes were determined by finding

all pairwise comparisons between subtypes where the
major isoform differed, but where the gene was not signifi-
cantly differentially expressed. Genes in the NE or LE ex-
pression categories in one or both of the compared
subtypes were discounted.



Figure 9 Expression of specific genes referred to in the text. Expression levels quantified as size-factor adjusted, length-normalised counts.
(A) Cytokine genes. (B) Receptor genes. (C) Transcription factor genes. (D) Proposed iTreg/tTreg markers.
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Figure 10 Alternative splicing of the gene encoding CD45 (Ptprc). (A) The first exons of the two Ptprc isoforms (Ptprc-201, Ptprc-202)
annotated in the ENSEMBL GRCm38v70 mouse genome. Exons 4–6 (highlighted by grey box) are skipped in Ptprc-202 leading to a shorter
transcript that is preferentially expressed following T cell activation. (B) Relative expression of Ptprc splice isoforms in the CD4+ subtypes was
estimated using the mixture-of-isoforms (MISO) model to calculate percent spliced in (PSI) values for each isoform in each subtype.
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Transcript switching fold changes were calculated as de-
scribed previously [51]. Expression ratios in each subtype were
calculated by dividing the PSI value for the most abundant
transcript by that for the other transcript. The switching fold
change was then defined as the minimum of the two ratios.

Open peer review
Reviewed by Wayne Hancock, Christine Wells and Erik van
Nimwegen. For the full reviews, please go to the Reviewers’
comments section.

Reviewer’s report 1
Wayne Hancock, Perelman School of Medicine, University
of Pennsylvania, Philadelphia, USA
This is a useful comparison of the transcriptomes of various
murine T helper cell subsets. No data on changes with cell
activation or corresponding proteome analysis are available,
but the existing information is valuable.
Authors’ response: We thank Dr. Hancock for this

positive assessment.
Quality of written English: Acceptable

Reviewer’s report 2
Christine Wells, Australian Institute for Bioengineering
and Nanotechnology, The University of Queensland,
Brisbane, Australia
The manuscript by Stubbington and colleagues describes
an RNAseq experiment on mouse T-cell subsets. The
manuscript is well written, the experiments designed
sensibly - well replicated and sequenced to good depth
for the analyses provided here - altogether the manu-
script provides a useful description of high quality RNA-
seq data. The data is available in GEO, and also in a
local database, th-express, however this local database
was not accessible to me at the time of this review.
My main critique of the manuscript is centered on the

interpretation of the data.
On page 4, the authors state their motivation for the

study as “To better elucidate the transcriptional mecha-
nisms underlying Th cell identity…”. Actually, this is a de-
scriptive paper, albeit a very useful one, but no attempt
has been made to identify mechanism, so this is a little
too disconnected from the content of the paper. In the
same summary paragraph, the authors went on to promise
a computational pipeline - but it is not clear what method
development has been undertaken in the manuscript.
Authors’ response: We agree that this paragraph could

have been better phrased. We have altered it as follows to
more accurately represent the work within the paper.
“We sought to create a resource to aid investigation

of the transcriptional mechanisms underlying Th cell
identity. To this end we profiled the transcriptomes of
murine naive, Th1, Th2, Th17, splenic Treg, and in vitro-
induced Treg (iTreg) cells by RNA-sequencing. We used
multiple computational analysis tools to quantify gene
and transcript isoform expression levels and to analyse



Figure 11 Differential splicing between CD4+ subtypes. (A) Schematic illustrating expression of major and minor mRNA transcript isoforms
by alternative splicing of a single gene. (B) Distribution of relative expression (MISO percent spliced in, PSI, values) of major and minor isoforms
for protein coding genes in Th1 cells with two (top), three (middle), and four (bottom) annotated isoforms. The data represent the top 25% most
highly expressed genes with multiple isoforms, such that most of these isoforms are classified as highly expressed (HE) genes. (C) For each
pairwise comparison between subtypes, protein-coding genes that do not exhibit differential gene expression but that do express different major
splice isoforms (referred to as transcript switching) were found. Distributions of the number of genes that exhibit any transcript switching (left) or
at least a two-fold switch (right) for all pairwise comparisons between CD4+ subtypes are shown. (D) Relative expression (PSI) of switched
transcripts at their high levels (left) and low levels (right) for each switch event across all comparisons.
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Figure 12 Skap1 transcript switiching. (A) Splice isoforms of Skap1 annotated in the GRCm38v70 genome. The ‘functional’ isoforms encode
a protein with a PH domain annotated in Pfam; isoforms 001 and 009 also contain an SH3 domain. Exons contributing to the domains are
indicated in green (PH) and red (SH3). The truncated isoforms lack both PH and SH3 domains. Non-coding isoforms do not encode a protein.
(B) Expression levels of Skap1 in the CD4+ subtypes. (C) Relative expression of Skap1 functional, truncated and non-coding isoforms for each
CD4+ subtype. PSI values were summed for all full-length, truncated or non-coding isoforms.
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differential expression between CD4+ T cell subtypes. We
anticipate that the datasets presented here will be a valu-
able resource for further study and so they were compiled
into a publicly available online database, ThExpress.”
We also altered the abstract in a similar manner to

include the following text:
“To assist investigations into the transcriptional iden-

tity and regulatory processes of these cells we performed
mRNA-sequencing on three murine T helper subtypes
(Th1, Th2 and Th17) as well as on splenic Treg cells
and induced Treg (iTreg) cells.”
I’d like to commend the authors on the thoroughness

of their descriptions of data quality and sample quality -
I found Figures 1,2,3 both useful and sensible in this
regard - this adds to the value of the RNAseq data im-
measurably, as it provides context often missing from
similar studies. Figures 4 and 5 contain a lot of redundant
information, which should be summarized more suc-
cinctly, and in relation to the analyses conducted in the
next stages of the manuscript. The overall conclusions to
be drawn from Figures 1,2,3,4,5 are that the material is
from lymphocytes that have transcriptional phenotypes
consistent with their known roles as T-cell subsets.
Authors’ response: We thank Dr. Wells for her com-

ments on our attempts to characterise in detail the cell
populations that we studied. Although Figures 4 and 5



Figure 13 Varying expression of splicing factors in the CD4+

subtypes. Expression levels of genes known to encode proteins
involved in pre-mRNA splicing are presented as Z-scores. Colours to
the left of the rows indicate the subtype that SU genes were
assigned to as follows. Naive, red; Th1, blue; Th2, green, Th17, purple,
Treg, orange; iTreg, yellow. The list of splicing factors was taken from
Chen et al. [68] and mouse orthologues of human genes were
found by searching the Mouse Genome Database [82].
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do contain some redundant information, we feel that
multiple visualizations of these large and complex data-
sets serve a valuable purpose in clarifying the analyses
that were performed with regards to clustering and the
differential expression of genes.
I dislike the use of ‘signature’ as a description of the

genes that were differentially expressed in what appears
to be a pair-wise comparison across all of the different
sample classes. The term suggests that these genes will
be a definitive set of genes that are characteristic of one
particular T-cell subset. I would expect that a ‘signature’
should reoccur in other datasets and be indicative of the
presence of a particular T-cell subset, and the authors
point to this in their discussion of the signature genes.
However the authors haven’t run any experiments to as-
sess how stably the expression of these genes might be
in terms of temporal expression in culture, in vivo or in
ex vivo isolated cells, or even in the same subsets taken
from different mouse strains or under different or continu-
ous stimulation. There are a number of independent T-cell
RNAseq experiments available in GEO that could have
been used in some form of cross-validation, but this was
not attempted. Quite a few of the genes listed in various
signatures - Cxcl10 for example - are inducible genes and
may be transiently expressed, not as a signature of a t-cell
identity, but rather as a signature of an external stimulus.
Authors’ response: Given this comment and Dr. Wells’

recommendation below about an ‘edit of nomenclature’
we have changed our terminology to use ‘subtype upregu-
lated’ instead of ‘signature’ throughout the manuscript.
The observations about the extent of alternate splicing

were very much underplayed in this manuscript, but
tantalizing, and I would like to have seen a broader
description of these events in the different T-cell sub-
classes. Re the analysis of splicing factors - this was very
shallow. These factors work in complexes and I would
have found it more helpful to have the analysis focused
on the changes to complexes that might help prioritise
candidate isoform-determining events.
Authors’ response: We agree that our findings about

alternative splicing are tantalizing and certainly are
worthy of further study. In this context, we intended only
to demonstrate the use of our datasets beyond simple
gene-level expression quantification and not to add in de-
tail to the extensive body of literature on the mechanisms
of alternative splicing. We hope that this work provides an
inspiration and a resource for more in-depth analyses of
alternative splicing in CD4+ T cells. We have added the
following text to the results and discussion sections to
clarify our appreciation of the need for further work.
“To demonstrate the use of our data beyond gene-

level differential expression we estimated isoform ex-
pression profiles in the subtypes using the mixture-of-
isoforms (MISO) model [49].”
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“Further work will be required to determine the func-
tional relevance of transcript switching and changes in
expression of alternative splicing factors during CD4+ T
cell differentiation.”
Overall the manuscript describes a valuable dataset,

which has been carefully collected from well phenotyped
cells and has been analyzed with a great deal of con-
sideration to the importance of this phenotyping. The
description of the differentially expressed gene lists may
be over-interpreted, specifically in regard to potential T-cell
expression signatures. My recommendation would be an
edit of nomenclature in the absence of a more rigorous
testing of any signature on external data.
Authors’ response: To avoid overinterpretation we

have changed our nomenclature as discussed above.
Quality of written English: Acceptable

Reviewer’s report 3
Erik van Nimwegen, Biozentrum, University of Basel,
Switzerland
Report form: This is a nice and very solid looking study
concerning the transcriptomes of different types of T
cells, and I have no doubt that this will be a very valu-
able to the community of T cell researchers. Right at the
outset, I'd like to note that I know very little about the
biology of different T cell types, so that I am unable to
make informed comments on the plausibility, novelty,
and general interest of the particular biological observa-
tions made in this manuscript. My review will focus pre-
dominantly on the computational analysis methods used,
as this is my area of expertise.
My overall impression is that the computational ana-

lysis is very competently performed. There aren't any
particularly novel methods introduced as far as I can
see, but the analysis seems appropriate and reasonably
done. I felt that the identification of ‘signature genes’
that are over-expressed in a particular cell type relative
to all other ones, and the further focus on signature
genes within particular functional categories of genes
(e.g. receptors, cytokines, TFs), was a particularly nice
and useful approach. Its relatively simple but helps
focus on those genes that are the best candidates for pro-
viding biological insights into what is specific about each
subtype.
My only ‘issues’ with the manuscript as it is now con-

cern the descriptions of a number of the methods
employed, which often seem unnecessarily cryptic and
vague. In some cases this leads me to be unable to assess
whether the conclusions that the authors present actu-
ally follow from the presented data.
This is partly caused by the fact that the resolution of

some of the images is really poor. To give an example,
in Figure 2A none of the symbols are readable and also
the scatter of the grey dots cannot be clearly discerned.
In fact, from what I can tell from the figure in its current
resolution it appears as if the grey dots fall within nar-
row vertical stripes in some of the panels, which would
be rather strange. Thus, although I have little doubt that
the replicates look fine, based on the current Figure 2A I
cannot really assess this.
Authors’ response: We were surprised to find that the

figures were not of sufficient resolution. Having spoken to
the editorial team at Biology Direct we have found that
this was, for the most part, due to a problem during
conversion after manuscript submission. We will ensure
that the final figures are optimal. We did, however, dis-
cover a problem with the resolution of Figure 2A that has
now been corrected.
For the gene expression analysis, the authors make use

of the DESeq suite of tools, and in the description of the
Methods refer to certain technical concepts associated
with this tool such as the 'size factor' and 'r log trans-
forms'. Although I appreciate that DESeq is a fairly
widely used tool, it would make the manuscript much
more self-contained if one or two paragraphs in the
Methods could be spend explaining what these things
are and how precisely they are defined. Right now a lot
of the Methods are described at the level of 'we used this
tool to get this, then that tool to do that', and unless one
has specific experience with these tools, it is hard to tell
precisely what was done.
Authors’ response: We have extended and clarified

the methods to add detail about the tools used. The
following details were added.
“DESeq2 was used to calculate ‘size-factors’ for each

sample. Size factors allow for comparison between
samples sequenced to different depths in much the same
way as simply using the total number of sequencing
reads. Importantly, they are not as strongly influenced
by differential expression of a small number of highly
expressed genes [17]. To permit comparison between
genes, size-factor normalised counts were then divided
by the length of the transcript to give a measure equiva-
lent to the commonly used reads per kilobase million
(RPKM).”
“Differential expression of genes between subtypes was

determined using DESeq2. This uses Wald tests to calcu-
late the significance of differential expression for each
gene in a comparison between two subtypes. The p-values
from these tests then undergo Benjamini–Hochberg cor-
rection for multiple testing.”
“Sequencing read counts were made approximately

homoscedastic by using the regularised-log (rlog)
transformation provided by DESeq2 [25]. This trans-
forms the read counts into log space while moderat-
ing the differences between samples for genes with
low counts so that these genes do not dominate the
clustering results.”
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For a non-expert, the significance of the beginning of
the results section, reporting some statistics on the fre-
quencies of occurrence of various sub-type specific
markers, is hard to interpret. In particular, I understand
that according to the literature, each subtype is character-
ized by a particular combination of markers. So ideally,
each cell would show one of these known combinations of
markers and would thus have an unambiguous subtype.
But it was hard for me to tell from the reported results
what fraction of cells are unambiguous in this way, or
whether there are subsets of cells with previously unde-
scribed combinations of markers.
"Expression levels of genes indicative of contamin-

ation.... consistent with pure populations of each CD4+

T cell subtype (Figure 2)." I did not understand this ana-
lysis. I presume that 'genes indicative of contamination'
are genes that should not be expressed at all in the sub-
type under consideration (it would be nice to explicitly
state this). But if that's what they are, then any expres-
sion of these genes should be inconsistent with pure
populations. Figure 2 does seem to show some expres-
sion for some of these genes so I do not understand the
claim in the sentence cited above. This is just another
example where I think the authors could have easily been
much more concrete and specific regarding precisely what
analysis was done.
Authors’ response: These data are intended to provide

readers the opportunity to assess the purity of our starting
cell populations using the expression of well-characterised
combinations of markers. The high percentages that we
observe are consistent with populations accepted to be pure
in previous work.
Regarding the data in Figure 2 the ‘genes indicative of

contamination’ are those that we would expect to see
expressed at high levels in populations of other cell types
typically found in the spleen. For the most part we see
very low expression of these genes within our samples.
Very low levels of expression may be due to a small
amount of contamination (insufficient to dominate over-
all gene expression within the sample) or may indicate
genuine expression of that gene at low levels within the
cell population of interest. To attempt to add clarity to
this section we have altered the relevant paragraph and
also changed the text to read ‘genes suggestive of
contamination’.
The authors find that TFs which are know lineage

markers always have higher mRNA levels in their cognate
subtype than in all other subtypes. This would imply that
all lineage marker TFs are regulated transcriptionally
(rather than,say, through post-transcriptional or post-
translational mechanisms). I find this striking, i.e. in my
experience differences in TF activities are often non-
transcriptional in mammals, and wonder if the authors
might want to command on this.
Authors’ response: We agree that TF activity regula-
tion by non-transcriptional mechanisms is not unusual
and this is certainly the case for the STAT proteins
upstream of the master lineage regulators described in
this work. However, in the case of the well-
characterised master regulators it is known that their
mRNA expression is highest in their cognate cell types
and that ectopic expression of the genes within naive
CD4+ T cells leads to differentiation to the appropriate
subtype [5-10]. This suggests that mRNA levels are a
suitable proxy for TF activity in these cases. Of course,
this does not rule out an additional role for non-
transcriptional mechanisms in the modulation of activity
of these factors.
Regarding the Bimodal expression distributions. I

know the authors have previously published on this, but
it is any issue of which I must frankly say I am a bit
skeptical based on my own experiences with analysis of
RNA-seq data. In particular, when we analyze RNA-seq
data-sets in my lab, we typically cannot robustly identify
such bimodal distributions. Also, I have extensively
analyized CAGE data, which has the advantage that it
quantifies directly the expression of a TSS (i.e. without
having the complication of having different transcript
lengths) and the distribution of expression levels of
TSSs NEVER look bimodal. They almost always look
like power laws. Another issue that makes me sceptical
is that, depending on precisely how the RNA-seq data is
processed, it is quite easy to produce kernel densities
that 'look' bimodal, but this bimodality is more an arte-
fact of the data processing than a true underlying bio-
logical reality. In particular, RNA-seq data is inherently
discrete, i.e. the read count in a given sample for a given
gene (or transcript) is either zero, one, two, three, etcet-
era. To draw a density of (log) gene expression levels,
there needs to be a normalization for length, some sort
of 'pseudo-count' needs to be added to deal with genes
that have zero counts, the numbers need to be log
transformed, and then finally the density is typically
approximated using some kernel density. Depending on
precisely how this is done one can easily produce a 'low
expression peak' that simply corresponds to all genes
that had zero read counts, but whose 'expression' levels
are smeared out in the density because of their differing
lengths and the convolution with the kernel. But this
low expression peak is then typically not robust to
changes in the pseudo-count or normalization
procedure.
Notably, when a gene had a read count of zero, this

means its total expression was at most on the order of
1/total_reads_in_sample, but it could be arbitrarily smaller
(which is really an infinitely wide range of possibilities in
log-scale). Due to this, estimating the density of ex-
pression levels in log-scale becomes poorly defined in the



Stubbington et al. Biology Direct  (2015) 10:14 Page 22 of 25
region that corresponds to very low read-counts. So to
make a convincing case that the distribution is truly
bimodal on a logarithmic scale, I feel that quite a bit more
needs to be done. One could for example make a cumula-
tive distribution F(x) which shows the expected fraction of
all genes that has a log-expression level less than x. To
estimate F(x) one would calculate for each gene g, the
probability p(>x|g) that its expression is larger than x,
given the number of reads it has. F(x) would then be esti-
mated as F(x) = sum_g (1-p(>x|g)). One would then like to
see that there is a clear inflection in this curve. There
might be other, better, ways to show bimodality. I realize
that the authors might feel they have already made a suffi-
cient case for bimodality in previous publications but I
thought they might want to be aware that some people,
such as myself, have not been convinced that this bimo-
dality is real, and this might be an opportunity to make a
case to convince people like me.
Authors’ response: Thank you for the detailed discus-

sion on this point. Firstly we would note that genes with
zero counts were not included in the bimodality ana-
lyses and so did not contribute to the LE population
within the kernel density plots; we have added text to
the manuscript to clarify this point. Whilst we would
like to be able to convince skeptics as to the reality of
this bimodal distribution it is beyond the scope of this
manuscript to do so. Our previously published work on
this topic includes a plot showing the third mode that
occurs if genes with zero counts are included (FigureS4
in [23]); we see similar results with the data here. We
have also published validations of the findings by single-
molecule RNA-FISH [23] and modeling of the distribu-
tions that would occur from populations of varying
purity [24]. As such, we continue to feel that this is a
useful method for use in assessing purity of populations
(in conjunction with the other more cell type-specific
approaches used here) as well as for determining genes
to exclude from differential expression analyses in a
rational manner.
Reqarding the signature gene expression. It is one

thing for a gene to be higher expressed in the specific
subtype than in all others, but this does not necessarily
imply that a measurement of the gene's expression level
would be sufficient to realiably classify the subtype. It
would be nice if the authors could show, or at least dis-
cuss, to what extent the subtype can be identified from
expression measurements of a signature gene.
Authors’ response: Given these comments and those

from Dr. Wells above, we have adjusted our nomencla-
ture to change ‘signature genes’ to ‘subtype upregulated’
genes. We hope that this will avoid overinterpretation of
the lists as being definitive of a particular subtype. We
intend them to act as a demonstration of the utility of
our datasets whilst providing possible avenues for further
work regarding the functional roles of particular gene
products in the various subtypes.
It appears that the naive subtype has by far the largest

number of TFs that are signature genes (123 or 237).
Can the authors comment on this observation?
Authors’ response: This is an intriguing finding. We

added the following text to the discussion to address it.
“The highest number (123) of SU transcription factors

was found in the naive subtype – perhaps this implies a
requirement for this number in maintaining a trans-
criptional programme poised for commitment to one of
several possible differentiated fates. A reduced number
of TFs may then be required to maintain a more-
specialised fate after differentiation.”
Also, are there any examples of signature genes whose

expression profiles do not match with what is assumed
in the literature, or known ‘markers’ from the literature
that fail to show up as signature genes? This would help
to place into context the mentioned examples of signa-
ture genes that match what is known in the literature.
Authors’ response: In general, our findings agree well

with previously characterized markers and we discuss
occasions where our findings are not in complete con-
cordance with previous work – this is particularly the
case for the expression of some cytokines in resting cells
(discussed on page 7). A valuable element of this work is
the prediction of novel candidate markers that have not
been described previously – we discuss this within the
manuscript and hope that the online resource at www.
th-express.org is valuable in further exploration of these
genes.
As a final remark, the authors are inferring the 'activ-

ities' of TFs in different subtypes solely from their
mRNA expression levels but TFs often vary in activities
do to other regulatory mechanisms (I already commen-
ted on this above). Such non-transcriptional changes in
activity can be inferred from the expression behavior of
the targets of the TFs. My group has actually developed
a tool to automatically infer such TF activities from raw
RNA-seq data (it is available at ismara.unibas.ch and
only requires uploading the data). It might be interesting
for the authors to compare the mRNA level changes of
key TFs with the activity changes inferred from the be-
havior of the targets of these TFs.
Authors’ response: This would be an interesting use of

these data but we feel that it is beyond the scope of the
current study. We will certainly use this tool in future
explorations of these data and we anticipate that our data
will generally be valuable in the inference of TF activities as
well as in the creation of regulatory networks.
Finally, I could not follow the analysis of splice vari-

ation. The authors say that the major isoform comprises
80-90% of the total expression FOR EACH protein-
coding gene. Are they really saying this is true for ALL

http://www.th-express.org
http://www.th-express.org
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genes? The legend of Figure 11 is not really specific
about what is shown (this is actually something that can
be improved in many of the legends) but my guess is
that what it shows is that, for the genes shown, the inter-
quartile range for the frequency of the major isoform is
80 = 90%. This would mean that the 50% of 'typical'
genes have between 80-90% in the major isoform.
Authors’ response: We apologise for the lack of clarity

here. Your interpretation is correct. We have altered the
text in the results section as follows. We have also altered
figure legends throughout the manuscript to add clarity.
“For protein-coding genes with multiple isoforms we

typically observed a major isoform that comprised the
majority of the gene’s total expression while any further
isoforms contributed decreasing proportions (Figure 11
A and B). This is similar to the distribution of isoforms
previously described in human cells [51].
Quality of written English: Acceptable

Additional file

Additional file 1: Subtype upregaulted genes for each CD4+

subtype and lists of genes likely to encode transcription factors,
cytokines and receptors.
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