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Abstract

Background: The rhesus macaque (Macaca mulatta) is a key species for advancing biomedical research. Like all
draft mammalian genomes, the draft rhesus assembly (rheMac2) has gaps, sequencing errors and misassemblies
that have prevented automated annotation pipelines from functioning correctly. Another rhesus macaque
assembly, CR_1.0, is also available but is substantially more fragmented than rheMac2 with smaller contigs and
scaffolds. Annotations for these two assemblies are limited in completeness and accuracy. High quality assembly
and annotation files are required for a wide range of studies including expression, genetic and evolutionary
analyses.

Results: We report a new de novo assembly of the rhesus macaque genome (MacaM) that incorporates both the
original Sanger sequences used to assemble rheMac2 and new Illumina sequences from the same animal. MacaM
has a weighted average (N50) contig size of 64 kilobases, more than twice the size of the rheMac2 assembly and
almost five times the size of the CR_1.0 assembly. The MacaM chromosome assembly incorporates information
from previously unutilized mapping data and preliminary annotation of scaffolds. Independent assessment of the
assemblies using Ion Torrent read alignments indicates that MacaM is more complete and accurate than rheMac2
and CR_1.0. We assembled messenger RNA sequences from several rhesus tissues into transcripts which allowed us
to identify a total of 11,712 complete proteins representing 9,524 distinct genes. Using a combination of our
assembled rhesus macaque transcripts and human transcripts, we annotated 18,757 transcripts and 16,050 genes
with complete coding sequences in the MacaM assembly. Further, we demonstrate that the new annotations
provide greatly improved accuracy as compared to the current annotations of rheMac2. Finally, we show that the
MacaM genome provides an accurate resource for alignment of reads produced by RNA sequence expression
studies.

Conclusions: The MacaM assembly and annotation files provide a substantially more complete and accurate
representation of the rhesus macaque genome than rheMac2 or CR_1.0 and will serve as an important resource for
investigators conducting next-generation sequencing studies with nonhuman primates.
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Background
Rhesus macaques (Macaca mulatta) already play an im-
portant role in biomedical research because their anat-
omy and physiology are similar to humans. However, the
full potential of these animals as models for preclinical
research can only be realized with a relatively complete
and accurate rhesus macaque reference genome.
To take advantage of the powerful and inexpensive

next-generation sequencing (NGS) technology, a high
quality assembly (chromosome file) and annotation
(GTF or GFF files) are necessary to serve as a reference.
Short NGS reads are aligned against chromosomes; the
annotation file is used to determine to which genes these
reads map. For example, in mRNA-seq analysis, mRNA
reads are aligned against the reference chromosomes.
The GTF file is used to determine which exons of which
genes are expressed. If the genome used as a reference is
incomplete or incorrect, then mRNA-seq analysis will be
impaired.
The publication of the draft Indian-origin rhesus ma-

caque assembly rheMac2 [1] was an important landmark
in nonhuman primate (NHP) genomics. However, rhe-
Mac2 contains many gaps [1] and some sequencing er-
rors [2,3]. Further, some scaffolds were misassembled
[3,4] while others were assigned to the wrong positions
on chromosomes [3-5]. There have been a number of at-
tempts to annotate rheMac2 including efforts by NCBI,
Ensembl and others [6,7]. However, it is not possible to
confidently and correctly annotate a gene in an assembly
with missing, wrong or misassembled sequence. It is im-
portant to note that even a single error in the assembly
of a gene, for example a frameshift indel in a coding
sequence, can produce an incorrect annotation [3].
Since the publication of rheMac2, another rhesus

macaque genome was produced from a Chinese-origin
animal: CR_1.0 [8] (referred to as rheMac3 at the Uni-
versity of California at Santa Cruz Genome Browser).
Whole genome shotgun sequencing was performed on
the Illumina platform generating 142 billion bases of se-
quence data. Scaffolds were assembled with SOAPde-
novo [8]. These scaffolds were assigned to chromosomes
based partly on rheMac2 and partly on human chromo-
some synteny [8]. Hence, this was not a completely new
assembly as errors in scaffold assignment to chromo-
somes in rheMac2 were propagated to the CR_1.0 as-
sembly. Further, the CR_1.0 contig N50 was much lower
than for rheMac2 indicating a more fragmented genome.
Annotations for CR_1.0 are available in the form of a
GFF file. Although Ensembl gene IDs are provided in
this file, gene names and gene descriptions are not,
limiting the use of these annotations for NGS.
We have produced a new rhesus genome (MacaM)

with an assembly that is not dependent on rheMac2.
Further, we provide an annotation in a form that can be
immediately and productively used for NGS studies, i.e.,
a GTF file which provides meaningful gene names and
gene descriptions for a significant portion of the rhesus
macaque genome. We demonstrate that both the assem-
bly and annotation of our new rhesus genome, MacaM,
offer significant improvements over rheMac2 and CR_1.

Methods
Genomic DNA sequencing
We obtained genomic DNA from the reference rhesus
macaque (animal 17573) [1] and performed whole genome
Illumina sequencing on a GAIIx instrument, yielding 107
billion bases of sequence data. We deposited these
sequences in the Sequence Read Archive (SRA) under
accessions [GenBank:SRX112027, GenBank:SRX113068,
GenBank:SRX112904]. In addition, we used a human ex-
ome capture kit (Illumina TruSeq Exome Enrichment) to
enrich exonic sequence from the reference rhesus ma-
caque genomic DNA. Illumina HiSeq2000 sequencing of
exonic fragments from this animal generated a total of
17.7 billion bases of data. We deposited these sequences
in the SRA under accession [GenBank:SRX115899].

Contig and scaffold assembly
We assembled the combined set of Sanger (approxi-
mately 6× coverage), Illumina whole genome shotgun
(approximately 35× coverage) and exome reads using
MaSuRCA (then MSR-CA) assembler version 1.8.3 [9].
We pre-screened and pre-trimmed the Sanger data with
the standard set of vector and contaminant sequences
used by the GenBank submission validation pipeline.
The MaSuRCA assembler is based on the concept of
super-read reduction whereby the high-coverage Illu-
mina data is transformed into 3-4× coverage by much
longer super-reads. This transformation is done by
uniquely extending the Illumina reads using k-mers and
then combining the reads that extend to the same se-
quence. We transformed the exome sequence data from
the reference animal into a separate set of exome super-
reads. We then used these exome super-reads along with
Sanger and whole genome shotgun Illumina data in the
assembly. The exome super-reads were marked as non-
random and therefore were excluded from the contig
coverage evaluation step that is designed to distinguish
between unique and repeat contigs.

Chromosome assembly steps
A flowchart (Figure 1) illustrates the overall process of
assembly and annotation.
We used BLAST + (version 2.2.25) for all BLASTn [10]

alignments. We used default parameters for BLASTn
alignments with the following exceptions:
–num_descriptions = 1; −num_alignments = 1; −max_

target_seqs = 1.



Figure 1 Flowchart illustrating procedures for assembly and annotation of the MacaM rhesus macaque genome.
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1. We used BLASTn [10] to map exons from
well-annotated human genes (Additional file 1) to
scaffolds and re-ordered contigs so that, for protein
coding orthologs, exons from each gene were in the
correct order and orientation. This contiguity rule
was used to enforce consistency whenever it was
violated in subsequent steps.

2. There are several published reports of radiation
hybrid mapping in rhesus macaques [11,12]. We
used BLASTn to align markers identified in these
studies with MaSuRCA scaffolds. We then used
marker order information from the radiation hybrid
studies to place scaffolds containing these markers
in the correct order on chromosomes.

3. FISH mapping with human BACs has been used to
identify syntenic blocks in rhesus macaques
[5,13,14]. We cross-referenced these assignments
with the locations of human genes within each
block. We then used BLASTn exon ranges identified
in step 1 to find the location of orthologous rhesus
genes within the identified syntenic blocks. We
placed scaffolds containing these genes not already
placed from step 2 on chromosomes according to
the published synteny blocks.

4. There were still some scaffolds unplaced after step 3
as the radiation hybrid and FISH markers do not
cover all portions of the rhesus chromosomes. To
identify orthologous regions, we split human
chromosome sequences into segments of 10,000 bp
and used MegaBLAST [15] to align these segments
against unplaced scaffolds. We then placed these
scaffolds within the syntenic blocks defined by steps
2 and 3 in human chromosome order. As a result,
small inversions and translocations may not be
correctly represented.

5. Manual curation was used to resolve inconsistencies
among the different sources of information.

We developed a new chromosome nomenclature for
the rhesus macaque (Table 1). Our goal was to designate
chromosomes in accord with human and great ape no-
menclature to facilitate comparison of rhesus macaque
genes and chromosomes with these species. Chimpan-
zees, gorillas, and orangutans have the same general
chromosomal structure as humans, with one notable ex-
ception. The human chromosome 2 appears to be the
result of a fusion event that occurred during hominid
evolution. Thus, both the great apes and rhesus ma-
caques have two chromosomes that roughly correspond
to the short and long arms of human chromosome 2. In
the great apes, these two chromosomes are referred to
as 2a and 2b. We adopted the same nomenclature for
rhesus macaques to make comparisons between different
primates easier.
We have deposited our new rhesus macaque assembly

(MacaM_Assembly_v7) in NCBI’s BioProjects database
under accession [GenBank:PRJNA214746].

Chromosome assembly validation
We used genomic DNA from the reference rhesus ma-
caque (animal 17573) to create a 400 bp library accord-
ing to manufacturer’s instructions (Ion Torrent, Personal
Genome Machine). We sequenced this library on an Ion
318 chip and deposited 1.5 billion bases of sequence in
the SRA under accession [GenBank:SRR1216390]. To in-
dependently assess genome assembly, we aligned these



Table 1 Rhesus chromosome nomenclature

H C G O M W R

1 1 1 1 1 1 1

2p+ 2a 2a 2a 2a 15 13

2q- 2b 2b 2b 2b 9 12

3 3 3 3 3 3 2

4 4 4 4 4 4 5

5 5 5 5 5 5 6

6 6 6 6 6 6 4

7/21 7/21 7/21 7/21 7 2 3

8 8 8 8 8 8 8

9 9 9 9 9 14 15

10 10 10 10 10 10 9

11 11 11 11 11 11 14

12 12 12 12 12 12 11

13 13 13 13 13 16 17

14/15 14/15 14/15 14/15 14 7 7

20/22 20/22 20/22 20/22 15 13 10

16 16 16 16 16 20 20

17 17 17 17 17 17 16

18 18 18 18 18 18 18

19 19 19 19 19 19 19

X X X X X X X

Y Y Y Y Y Y Y

H = Human; C = Chimpanzee; G = Gorilla; O = Orangutan; M =MacaM;
W =Wienberg et al. [16]; R = Rogers et al. [17].
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Ion Torrent reads (which were not included in our as-
sembly) against rheMac2, CR_1.0 and MacaM assem-
blies with TMAP 4.0 [18].
RNA sequencing and transcript assembly
We extracted RNA from 11 samples using standard
methods and performed sequencing with an Illumina
Genome Analyzer IIx. We sequenced RNA from the
cerebral cortex from 6 different animals at 76 bp, (sin-
gle-end reads) and deposited the sequences in the SRA
under accessions [GenBank:SRX099247, SRX101205,
SRX101272, SRX101273, SRX101274 and SRX101275].
We sequenced RNA from the caudate nucleus of one
animal at 76 bp (paired-end reads) and deposited the se-
quences at SRA under accession [GenBank:SRX103458].
We sequenced RNA from the caudate nucleus, cerebral
cortex, thymus, and testis from a single rhesus macaque,
001T-NHP, at 76 bp for the caudate nucleus and
at 100 bp for the other tissues (paired-end reads for
all samples) and deposited the sequences in the SRA
under the accessions [GenBank:SRX101672, SRX092157,
SRX092159 and SRX092158], respectively.
To filter out genomic contamination, we aligned reads
against human RefSeq mRNA transcripts using BLASTn
[10]. For 76 bp reads, we filtered out sequences if they
had an alignment length of 70 bp or less with human
transcripts. For 100 bp reads, we filtered out sequences
if they had an alignment length of 90 bp or less with hu-
man transcripts. For paired-end reads, we also removed
a read if its mate was removed. We assembled filtered
reads for each sample using Velvet-Oases [19,20]. We
used K-mer values of 29 for the six samples with single
reads and 31 for the remaining samples with paired-end
reads. We set the coverage cutoff and expected coverage
to ‘auto’. We set the minimum contig length to 200 bp.
We used default parameters for Oases.
We obtained 369,197 de novo transcripts using the

Velvet/Oases pipeline. We deposited transcripts in the
NCBI’s Transcriptome Shotgun Assembly database under
accessions [GenBank:JU319578 - JU351361; GenBank:
JU470459 - JU497303; GenBank:JV043150 - JV077152;
GenBank:JV451651 - JV728215] (Additional file 2). We
also used reference-guided transcriptome assembly to
identify rhesus transcripts. We performed spliced align-
ment of the rhesus RNA-seq reads to the MaSuRCA as-
sembly using TopHat2 [21] (version 2.0.8b, default
parameters). We provided the resulting BAM file of the
read alignments as input to Cufflinks2 [22] (version 2.02,
default parameters) for reference guided transcriptome
assembly.
To identify rhesus orthologs of human genes, we used

the BLASTx [23] program to align conceptual transla-
tions from the assembled rhesus transcripts against hu-
man reference proteins. We used the top hit in the
annotation. We did not use a single set of cutoff values
to identify orthologs. Instead, alignment lengths and per-
cent similarity were manually inspected (see Annotation,
procedure 1 for rationale). We identified a total of
11,712 full-length proteins representing 9,524 distinct
genes with full length coding regions using the de novo
and reference-guided methods described above.

Annotation
We produced a GTF file (MacaM_Annotation_v7.6.8,
Additional file 3) that serves as our annotation of the
MacaM assembly. We used the following procedures to
generate this file:

1. We used sim4cc [24] and GMAP [25] to align
transcripts (both rhesus macaque and human)
against the MacaM assembly to identify exon
boundaries. For sim4cc, we specified CDS ranges for
the transcripts which allowed sim4cc to identify the
ranges of CDS within exons. For GMAP, we
determined CDS ranges by concatenating sequences
from proposed exons and then used this transcript
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model as the query in a BLASTx [23] search against
human proteins. We then used a custom script to
calculate CDS ranges within the chromosome files.

To determine whether gene models produced by these
automated annotators should be accepted or rejected for
our final annotation, we parsed the GTF files from both
sim4cc [24] and GMAP [25] with the gffread utility from
the Cufflinks package [26] to construct protein se-
quences. We aligned these protein sequences with
human protein sequences using the Emboss Needle pro-
gram (which implements the Needleman-Wunsch algo-
rithm [27]) to extract identity, similarity and gap values
for each rhesus protein model. Our expectation was that
most rhesus macaque proteins and their human ortho-
logs would have a protein length difference of less than
5 amino acids and a protein similarity of greater than
92%. If no gene model was found which met these
parameters for a given gene, values were manually
inspected. Lower values were accepted for genes known
to be poorly conserved across species, e.g., reproductive
and immune system genes but were rejected for genes
known to be highly conserved across species, e.g. neural
synapse genes.

2. We identified some rhesus macaque exons, missed
by sim4cc and GMAP, by aligning the orthologous
human exon with the MacaM assembly using
BLASTn [10].

3. We manually annotated some rhesus macaque exons
after inspection of mRNA-seq alignments against
the MacaM assembly with the Integrative Genome
Viewer (IGV) [28].

4. We used synteny between human and rhesus
macaque genomes to resolve difficult gene structures
and paralogs.

5. If the 3′ end of the apparent penultimate exon and
terminal exons of a gene were non-coding and were
within 1 kb of each other, we included the
intervening sequence to create a new terminal exon.
In addition, we aligned human terminal exons
against the MacaM assembly to extend rhesus
terminal exon annotations through the 3′ UTR to
the end of the exon. These steps were necessary
because sim4cc and GMAP sometimes failed to
annotate the terminal exon completely, presumably
due to the lower level of conservation in the 3′ UTR.

6. We used several approaches to identify and correct
errors in the GTF file that serves as our annotation
of the new rhesus genome (MacaM_Annotation_7.6,
Additional file 3). These included Eval [29] and
gffread from the Cufflinks2 software packages [22].
We used custom scripts to ensure that every CDS
range had a corresponding exon range and to
remove duplicate transcripts. To correct the
identified errors, we used a combination of custom
scripts and manual editing.

We were able to identify complete protein models for
16,052 rhesus genes (Additional file 3) from a human
gene target list of 19,063 named protein-coding genes
(Additional file 1).

Protein comparison
We downloaded the most recent human assembly
(GRCh38) and GFF3 annotation from NCBI on February
6, 2014. To obtain a list of genes that contained only a
single isoform, we filtered the GFF3 file so that only
Gene IDs linked to a single RefSeq mRNA accession
were retained. This procedure resulted in a list of 11,148
Gene IDs. We downloaded the most recent rhesus as-
sembly, rheMac2, and the GFF3 annotation from NCBI
on February 6, 2014 [30]. We then created a list of genes
that was common to GRCh38, rheMac2, MacaM by de-
termining if the gene name from the GRCh38 (human)
single isoform list was also present in the NCBI annota-
tion of rheMac2 and our new annotation of the MacaM
assembly. We used the Cufflinks2 [22] tool, gffread, to
obtain protein sequences for each of these genes in the
two rhesus genomes. We then aligned the rheMac2/
NCBI and MacaM proteins against their human protein
orthologs using the EMBOSS [31] global alignment tool,
needle v.6.3.1. Once the alignments were done, we used
custom scripts to compile the results into a summary
table (Additional file 4). We used this table to calculate
mean values for Identity, Similarity and Gaps.
We previously identified a gene that was misassembled

in rheMac2 – the Src homology 2 domain containing E
(SHE) gene [3]. To compare models of the SHE gene
from different assemblies and annotations, we attempted
to find the proteins with this designation from several
rhesus macaque annotations. Using BLASTp [32] with
the human SHE protein as a query, we found a protein
annotated by NCBI in the rheMac2 assembly as gene
name “LOC716722”, protein definition “PREDICTED:
SH2 domain-containing adapter protein E-like [Macaca
mulatta]” under the accession XP_002801853.1. Ensembl
annotated the SHE gene in rheMac2 with gene iden-
tification ENSMMUG00000022980. We obtained the
protein sequence associated with this gene model
(ENSMMUT00000032345) for comparison with other
rhesus macaque annotations. We accessed the Rhesus-
Base database (http://www.rhesusbase.org/) on June 17,
2014 and searched under Gene Symbol for “SHE” and
Gene Full Name for “Src homology 2 domain containing
E”. In both cases the message returned was “No gene
found!”. In an attempt to see if the SHE gene was anno-
tated in the CR_1.0 genome, we downloaded the CR.

http://www.rhesusbase.org/
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pep.fa file, containing proteins derived from this genome
from the GIGA database site (http://gigadb.org/dataset/
100002) containing sequences and annotations related to
CR_1.0 on June 17, 2014. In this file, we identified a pro-
tein with the ENSEMBL identifier ENSMMUP000000
30263, with a partial match to the rhesus macaque SHE
protein we identified in MacaM. We searched the
ENBSEMBL website for “ENSMMUP00000030263” and
received a message directing us to the rhesus macaque
SHE gene. This protein was also submitted to NCBI
under accession EHH15290.1 where it is described
as “hypothetical protein EGK_01357, partial [Macaca
mulatta]”. The various putative rhesus macaque SHE
proteins were aligned against the human SHE protein
(NP_001010846.1).

RNA expression analysis
We aligned raw reads from three samples: testes,
thymus and caudate nucleus of the brain to both the
rheMac2 and the MacaM assemblies using TopHat [21]
(version 2.0.8) with default parameters. We analyzed
those alignment files using Cufflinks2 [22], specifically
Cuffdiff, to generate normalized expression (FPKM)
values. The samples from which these mRNA sequences
are derived are described above in the section on RNA
sequencing and transcript assembly (accessions Gen-
Bank:SRX092158, GenBank:SRX092159 and GenBank:
SRX101672).
We also obtained 60 peripheral blood mononuclear

cell (PBMC) samples from rhesus macaques in a social
hierarchy experiment performed at the Yerkes National
Primate Research Center. We individually subjected 10
macaques that were dominant in the social hierarchy
and 10 subordinate macaques to a human intruder as a
stressor. Whole blood was then collected at several time
points using a BD CPT vacutainer which allow for the
Table 2 Assembly statistics for de novo rhesus transcripts

Sample accession Tissue Read length Si

SRX099247 Cerebral cortex 76

SRX101205 Cerebral cortex 76

SRX101272 Cerebral cortex 76

SRX101273 Cerebral cortex 76

SRX101274 Cerebral cortex 76

SRX101275 Cerebral cortex 76

SRX103458 Caudate nucleus 76

SRX101672 Caudate nucleus 76

SRX092157 Cerebral cortex 100

SRX092159 Thymus 100

SRX092158 Testis 100
collection of PBMCs. RNA was purified from PBMCs
using the RNeasy kit (QIAGEN, Valencia CA). We
prepared libraries using standard TruSeq chemistry
(Illumina Inc., San Diego CA) and sequenced them on
an Illumina Hi-Seq 1000 as 2 × 100 base paired-end reads
at the Yerkes NHP Genomics Core Laboratory (http://
www.yerkes.emory.edu/nhp_genomics_core/). Sequences
were deposited at NCBI under accessions [GenBank:
SAMN02743270 - SAMN02743329]. We mapped reads
with STAR [33] (version 2.3.0e) to both the rheMac2
and MacaM genomes, using the reference annotations as
splice junction references. rheMac2 annotations were
obtained from UCSC. We discarded un-annotated non-
canonical splice junctions, non-unique mappings and dis-
cordant paired-end mappings. We performed transcript
assembly, abundance estimates and differential expres-
sion analysis with Cufflinks2 (version 2.1.1) and Cuffdiff
2 [22]. We determined differentially expressed transcripts
for pair-wise experimental group comparisons with an
FDR-corrected p-value (q-value) <0.05. We compared
differences in unique read counts and mapping percent-
ages between rheMac2 and MacaM assemblies using a
paired T-test.

Statement of ethical approval
Materials used in these studies were from animal work
performed under Institutional Animal Care and Use
Committee approval from the University of Nebraska
Medical Center, Oregon Health and Sciences University
and Yerkes National Primate Research Center. Animal
welfare was maintained by following NIH (Public Health
Service, Office of Laboratory Animal Welfare) and USDA
guidelines by trained veterinary staff and researchers
under Association for Assessment and Accreditation of
Laboratory Animal Care certification, insuring stan-
dards for housing, health care, nutrition, environmental
ngle or paired N50 Median Mean within 1 SD

Single 1578 547 643

Single 1552 530 624

Single 1659 496 626

Single 1656 484 596

Single 2054 590 722

Single 1646 466 585

Paired 2651 824 952

Paired 2831 1079 1128

Paired 2322 829 924

Paired 2731 1060 1121

Paired 1970 641 753

http://gigadb.org/dataset/100002
http://gigadb.org/dataset/100002
http://www.yerkes.emory.edu/nhp_genomics_core/
http://www.yerkes.emory.edu/nhp_genomics_core/


Table 3 Mutations in the reference rhesus macaque
which interfere with annotation

Chromosome Location Gene symbol Mutation

1 135383631 KLHDC9 stop-gain

1 169148554 ZBTB41 start-loss

3 50555959 ZXDC stop-gain

9 18304595 PRUNE2 deletion

10 23470221 C10orf67 start-loss

15 274407 PRPF6 stop-gain

All mutations were in the heterozygous state.
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enrichment and psychological well-being. These met or
exceeded those set forth in the Guide for the Care and
Use of Laboratory Animals from the National Research
Council of the US National Academy of Sciences.
Results
Assembly of MacaM
We combined Sanger sequences from the reference rhe-
sus macaque with newly generated Illumina whole gen-
ome and exome sequences from the same animal and
created new de novo contig and scaffold assemblies using
the MaSuRCA assembler [9]. Although there are many
procedures for generating scaffolds, they all produce
misassemblies with greater or lesser frequency [34-37].
To identify and correct misassembled scaffolds and as-
sign scaffolds to chromosomes, we used independent
mapping data and preliminary scaffold annotation. To
properly assign genomic segments, we introduced 395
breaks in the assembled scaffolds. There were a total of
2312 scaffolds assigned to chromosomes.
To guide the splitting of misassembled scaffolds and

placement of scaffolds on chromosomes, we used BLASTn
[10] to align human exons with rhesus scaffolds, identi-
fied rhesus radiation hybrid markers [11,12] within scaf-
folds, and used rhesus FISH maps to identify areas of
synteny as well as species differences in chromosome
structure [5,13,14].
We term our new assembly: MacaM.
Annotation of MacaM
We annotated 16,050 genes and 18,757 transcripts with
full-length coding sequences in the MacaM genome
Table 4 Chromosome assembly statistics

Assembly # contigs Total bp of contigs Max contig le

rheMac2 172351 2646263223 219335

CR_1.0 399581 2562947788 205919

MacaM 93402 2721371100 560771

Contig statistics based on contigs placed on chromosomes.
(from a target list of 19,063 genes, Additional file 1). To
accomplish this, we used rhesus macaque Illumina
mRNA-sequences to assemble a total of 11,712 tran-
scripts representing 9,524 distinct genes (Additional
file 3) using de novo (Table 2) and reference-guided tran-
scriptome assemblers. We used these rhesus transcripts,
as well as human data, in our new annotation of the rhe-
sus genome. We were not able to annotate six genes in
the assembly due to mutations in the reference animal
(Table 3). We were able to annotate several MHC class II
genes as well as major histocompatibility complex, class
I, F (MAMU-F). However, the more polymorphic and re-
petitive MHC class I genes are difficult to assemble and
annotate. Additional targeted sequencing of the reference
animal, such as has been done for other rhesus macaques
[38,39], is necessary to provide a high-quality assembly
and annotation for these genes. Given the importance of
rhesus macaques for immunological studies, finished se-
quencing of the reference rhesus MHC class I genes
would be beneficial. The new rhesus annotation (Maca-
M_Annotation_v7.6) is available as a GTF file (Additional
file 3).
Future updates to the assembly and annotation will be

made available here: http://www.unmc.edu/rhesusgenechip/
index.htm#NewRhesusGenome.
Comparison of MacaM with rheMac2 and CR_1
The MacaM assembly has 2,721,371,100 bp of sequence
placed on chromosomes with a N50 contig size of
64,032 bp, more than double the size of the original
published assembly and five times the size of the CR_1.0
assembly (Table 4).
To independently assess the completeness and accur-

acy of the three rhesus macaque assemblies, we aligned
Ion Torrent reads from the reference rhesus macaque
against each assembly. These reads had not been used in
any of the assemblies, including MacaM. We were able
to align 93, 94 and 98% of these reads to the rheMac2,
CR_1.0 and MacaM assemblies, respectively. This sug-
gests that the MacaM assembly is the most complete
and accurate of the three available rhesus macaque
assemblies.
The original NCBI annotation (in GFF format) of the

rheMac2 assembly contains 20,973 genes. However, only
ngth Mean contig length Contig N50 Scaffold N50

(kb) (kb)

15354 28 6760

6414 13 1707

29136 64 3534

http://www.unmc.edu/rhesusgenechip/index.htm#NewRhesusGenome
http://www.unmc.edu/rhesusgenechip/index.htm#NewRhesusGenome


Table 5 Comparison of rhesus proteins extracted from
rheMac2 and MacaM annotation files with human
orthologs

Annotation Identity Similarity Gaps

rheMac2_N 90.93 92.28 41.86

MacaM 97.02 98.16 1.12

rheMac2_N: NCBI annotation of rheMac2.
MacaM: Our annotation of the new MacaM assembly.
Values equal the mean percent Identities, Similarities and Gaps when
comparing rheMac2_N and MacaM with human orthologs.
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11,265 of these have been assigned informative gene
names. The rest have generic names, most commonly a
“LOC” prefix followed by a number. The rhesus proteins
derived from our annotation of the MacaM assembly are
much more similar to their human orthologs than those
derived from the NCBI annotations of rheMac2 (Table 5,
Additional file 4).
We were able to annotate genes in MacaM whose

exons had been split by misassemblies in rheMac2 [3]
but which were contiguous in the MacaM assembly
(Figure 2). We used this case (the SHE gene) to assess
the annotations for rheMac2 and CR_1.0 (Figure 3). A
search for SHE at the RhesusBase database indicated that
no gene was found. We were able to identify proteins
that appeared to correspond to the SHE protein in
MacaM, rheMac2 (both NCBI and Ensembl annotations)
and CR_1.0. We aligned these sequences against the
human SHE protein sequence. The MacaM sequence
was highly similar to the human SHE protein sequence.
We found that a portion of the protein sequence
encoded by exon 1 was missing in CR_1.0. The protein
sequence encoded by exon 3 was missing from the
NCBI annotation of rheMac2. For the Ensembl annotation
of rheMac2 and CR_1.0, spurious sequence, presumably
0 1K 2K

0 1K 2K

Exons 1,2 : Chr 1

Exon 3 : Chr X

E

Exons 1-6 on a sing

A

B

Figure 2 Correction of rheMac2 SHE gene misassembly in MacaM. A.
domain containing E. (SHE) gene are contained within scaffold NW_001108
Scaffold NW_001108937.1 was correctly assigned to chromosome 1. Howe
X. This resulted in an annotation of the rhesus SHE gene with missing sequ
of this gene in rheMac2 can be found in [3]. B. MacaM genome. All 6 exon
MacaM assembly.
derived from intronic sequence, was substituted for the
correct protein sequence encoded by exon 3. A correct
protein sequence encoded by exon 3 was derived from
MacaM because the scaffold containing exon 3 was
correctly assembled which was not the case for rheMac2
[3] or, apparently, CR_1.0 (Figure 2). This demonstrates
an important principle: better genome assemblies permit
better annotations.
mRNA expression studies with MacaM
When we compared mRNA-seq expression in three tis-
sues (testis, thymus and caudate nucleus), we found that
substantially more named genes were reported as
expressed when the MacaM rhesus genome was used as
compared to NCBI annotation of rheMac2 (Table 6).
To compare the performance of the rheMac2 and

MacaM genomes on a ‘real-world’ mRNA-seq dataset,
we examined the effects of an acute stressor on a back-
ground of chronic stress in social-housed female rhesus
macaques. Social subordination in macaques is a natural
stressor that produces distinct stress-related phenotypes
and chronically stressed subordinate subjects [40]. We
drew blood from both dominant and subordinate ani-
mals; following this, we exposed both to an acute stres-
sor (human intruder paradigm [41]) and then drew blood
at different time points after exposure. mRNA-seq read-
mapping was significantly higher with MacaM as com-
pared to rheMac2 (mean 3.1 × 107 vs. 2.6 × 107, p <0.0001)
(Figure 4A). Similarly, mRNA-seq read-mapping percent-
ages were significantly higher using the MacaM assembly
than the rheMac2 assembly (mean 85.2% vs. 70.0%,
p <0.0001 (Figure 4B). When we compared mRNA expres-
sion levels with one set of animals at two time points
(Figure 4C), we detected many more Differentially
Expressed Genes (DEGs) with the MacM genome than
3K 4K 5K 6K

3K 4K 5K 6K

xons 4-6: Chr 1

le scaffold (scf2317188291)

rheMac2 genome. Exons 1, 2, 4, 5 and 6 of the Src homology 2
937.1. Exon 3 of this gene was assigned to scaffold NW_001218118.1.
ver, scaffold NW_001218118.1 was mistakenly assigned to chromosome
ence (corresponding to exon 3). Additional details on the misassembly
s of the SHE gene were found on scaffold 2317188291 of the



Exon 1

Exon 3

Exon 5

Exon 4

Exon 6

Exon 2

Figure 3 Alignment of rhesus macaque SHE proteins from different annotations with human protein. Human SHE protein accession:
NP_001010846.1. MacaM: Protein derived from the MacaM rhesus macaque genome. rheMac2_N: Protein obtained from the NCBI annotation of
rheMac2, accession. rheMac2_E: Protein obtained from the Ensembl annotation of rheMac2, accession ENSMMUT00000032345. CR_1.0: Protein
obtained from the Chinese rhesus macaque genome produced by BGI [8]. Yellow highlighting indicates identical sequence in human and
alternative rhesus macaque annotations with the exception of sequences that are only shared in rheMac2_E and CR_1.0 which are indicated by
green highlighting. Exon boundaries are indicated by line separating amino acids.

Table 6 mRNA-seq expression comparison between
rheMac2 and MacaM in four tissues

Sample # genes # genes Mean expression Mean expression

rheMac2_N MacaM rheMac2_N MacaM

Testis 5176 7587 45 47

Thymus 5177 7116 56 55

Caudate
nucleus

4831 6726 51 52

Cerebral
cortex

4963 6574 44 44

rheMac2_N: NCBI annotation of rheMac2.
MacaM: Our annotation of the new MacaM assembly.
All statistics were based on genes with an FPKM > =10.
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with rheMac2. We observed this same pattern in 8
additional comparisons (Figure 5).

Discussion
There are several novel aspects to the approach we took
to constructing a rhesus macaque genome as compared
to previous efforts. First, we used both the original
Sanger sequences and Illumina whole genome and ex-
ome sequences in the assembly. To accomplish this, we
used a new assembler, MaSuRCA [9], to assemble con-
tigs and scaffolds from this combination of sequences.
The contigs we obtained had a much higher N50 than
those obtained for rheMac2 or CR_1.0. Second, we used
a preliminary annotation of scaffolds to identify and
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Figure 4 mRNA expression validation. We sequenced RNA from 60 rhesus macaque PBMC samples of differing ranks using Illumina paired
end sequencing. After filtering, we mapped reads to either the MacaM (green symbols) or rheMac2 (blue symbols) assemblies using the STAR
algorithm; we used CUFFLINKS to assign transcripts and determine differentially expressed genes (DEGs). (A) Number of uniquely mapping
reads in individual RNA samples mapped using the MacaM and rheMac2 assemblies. Individual samples mapped by either assembly are joined
by lines. (B) Percentage of total filtered reads that uniquely mapped to each assembly. (C) Number of DEGs that were identified using
CUFFDIFF2.1 for dominant animals at two time points using the MacaM and rheMac2 genomes.
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correct misassemblies and aid assignment of scaffolds to
chromosomes. Third, we used mapping information for
chromosome assignments that was not used for either
the rheMac2 or CR_1.0 assemblies. Fourth, we used a
combination of approaches, including both automated
and manual curation, to provide a relatively complete,
accurate and immediately useful annotation. NCBI has
recently used our assembled transcripts to construct
3,392 rhesus macaque Reference Sequences (personal
communication, Dr. David Webb, NCBI).
Users of genomes for NGS expression analysis re-

quire gene names and/or gene descriptions in the an-
notations to determine which genes are differentially
Figure 5 Number of DEGs which were identified in an
experiment analyzing social anxiety in rhesus macaques.
CUFFDIFF2.1 was used to identify DEGs with two Ranks (R1 =
dominant; R2 = subordinate) and three time points (T1 = baseline;
T2 = T1 + 20 minutes; T3 = T1 + 260 minutes). Human intruder
intervention occurred immediately before T2, after T1.
expressed. Our MacaM GTF file provides gene names
and gene descriptions for 16,050 genes with full-length
coding sequences. The GenBank GFF file associated
with rheMac2 provides meaningful gene names for
11,265 genes. Neither the RhesusBase annotation of
rheMac2 nor the annotation provided for the CR_1.0
assembly contain gene names or gene descriptions.
Although it is possible to link some of the Ensembl
identifiers provided for RhesusBase and CR_1.0 to spe-
cific genes, this is a convoluted and uncertain process.
It would be helpful if these annotation files were to in-
clude specific gene names so as to better allow a com-
parison of these annotations with others. In addition
to being more complete, MacaM annotations were also
more accurate than other available gene models for the
rhesus macaque.
Typically, draft genome assemblies are produced by

genome centers but are annotated by NCBI or EMBL
using automated procedures. This practice has lead to
annotation errors in a wide variety of species, including
primates [3,42-44] because automated annotation pro-
cedures have difficulty coping with even small errors in
assemblies. Our experience argues for integration of
genome assembly and annotation. Preliminary annota-
tion of scaffolds was critical for correcting some scaffold
assembly errors and placing scaffolds in the correct
order and orientation on chromosomes for MacaM.
Thus, we argue for incorporation of annotation in the
chromosome assembly pipeline.
MacaM could be used to improve other macaque ge-

nomes that were constructed at least in part with refer-
ence to rheMac2 [8,45]. However, given the similarities
between Chinese origin rhesus macaques, cynomolgus
macaques and the Indian rhesus macaque used as the
reference animal for MacaM, it is likely that the
MacaM genome could be used directly for alignments
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of Chinese origin rhesus macaque and cynomolgus
macaque (Macaca fascicularis) NGS reads. It is likely
that MacaM could be used as a reference genome for
NGS studies with other macaque species such as
Macaca nemestrina. It may be possible to use MacaM
to aid in the assembly and annotation of other, some-
what more distantly related old world monkeys such as
the baboon (Papio anubis) and sooty mangabey (Cerco-
cebus atys).

Conclusions
We have demonstrated that it is possible to significantly
improve a draft mammalian genome with a modest
amount of additional NGS, a new genome assembler [9],
consideration of gene contiguity, full use of all mapping
data and careful annotation. MacaM works well for NGS
studies requiring a high quality reference genome. An
early version of the MacaM genome has already been
used for expression analysis in a rhesus macaque model
of HIV [46].
Reviewers’ comments
We thank Professor Lutz Walter at the German Primate
Center and Dr. Soojin Yi at the Georgia Institute of
Technology for their helpful comments. We have revised
our manuscript accordingly.
Reviewer #1: Professor Lutz Walter
Zimin and co-workers re-sequenced the Indian rhesus
macaque individual that was used for the first genome
assembly (rheMac2). They combined their Illumina se-
quences (whole genome as well as exome sequencing)
with the original Sanger sequences (of rheMac2) to pro-
duce a new rhesus macaque genome assembly which
they called MacaM. These efforts resulted in a weighted
average contig size being twice as large as the original
rheMac2 assembly and five times larger than the CR_1.0
(Chinese rhesus macaque) assembly and in correction of
several misassemblies. Inclusion of Illumina RNA-seq
data from different tissues (cerebral cortex, caudate nu-
cleus, thymus, testis) improved gene annotations. Fur-
ther, the authors used RNA-seq data from peripheral
blood mononuclear cells (PBMCs) to demonstrate the
superior accuracy and capability of the MacaM assembly
to align reads from RNA-seq experiments.
The previous rhesus macaque genome assemblies and

gene annotations urgently needed an update, which Rob-
ert Norgren’s group provided at the right time. Their
data will help researchers to use the rhesus macaque
genome much more efficiently.
Authors’ response: We thank Professor Walter for his

kind evaluation.
Specific comments:
1) The PBMC samples are missing in the Material/
Methods section.

Authors’ response: We have now more fully explained
our handling of the PBMC samples in the Methods sec-
tion (in the second paragraph under “RNA expression
analysis”).

2) The authors used samples from different animals
such as cerebral cortex from 6 rhesus macaques or
PBMC samples from 20 animals. So, they obviously
obtained a lot of genetic variability data. However,
they used information from different animals only
for the analysis of transcript abundance (done only
for PBMC samples). Why did the authors not
present data on the cerebral cortex?

Authors’ response: For the mRNA-seq expression com-
parison, we initially did not provide data on the cerebral
cortex because we provided data from another region of
the brain, the caudate nucleus, and wanted to emphasize
results from widely varying tissues. However, we can
understand the desire to include all four samples in this
table. We have therefore added values for the cerebral
cortex to Table 6.
Further, RNA-seq from 26 animals should contain a lot

of SNP data. Is there also an increase in the ability to align
SNPs on the MacaM assembly compared to rheMac2?
Authors’ response: Professor Walter is correct that

many SNPs could potentially be identified from the
mRNA samples we obtained. However, using RNA-seq
data for comparing MacaM with rheMac2 is problemat-
ical due to variability in transcript abundance. To in-
terpret differences in candidate SNPs derived from
alignments of mRNA reads against the two assemblies,
one should ideally have a gold standard list of SNPs in a
given tissue. Such a gold standard list has only recently
become available in humans and is unfortunately not yet
available in rhesus macaques. We agree that a compari-
son between rheMac2 and MacaM for mRNA-seq SNPs
should be done as soon as a gold standard list of SNPs is
established.

3) The accompanying additional files indicate that
MacaM does not contain non-coding RNA. Any
plans to include this?

Authors’ response: Yes, this is on our list of things to
do. We expect to continue to update and improve both
the MacaM assembly and annotation based on user in-
put. Future updates to the assembly and annotation will
be posted here: http://www.unmc.edu/rhesusgenechip/
index.htm#NewRhesusGenome. We have also added this
link to the text.

http://www.unmc.edu/rhesusgenechip/index.htm#NewRhesusGenome
http://www.unmc.edu/rhesusgenechip/index.htm#NewRhesusGenome
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4) Statistical analyses of the data shown in Figures 4C
and 5 are missing.

Authors’ response: We did not provide a statistical com-
parison for the expression analysis of the different behav-
ioral groups because a manuscript focused on this question
is in preparation. For the current work, our focus was on
the differences between the two assemblies. Figures 4C and
5 were provided to indicate how prevalent these differ-
ences are. Since Dr. Yi (reviewer 2) had a related concern,
we have deleted the last paragraph in the Results section
relating to the different behavioral groups.

5) I particularly acknowledge the new rhesus macaque
chromosome nomenclature presented in Table 1, as
there have been confusing reports in the past and
nomenclatures of chromosomes were published that
clearly contradicted published data.

Authors’ response: We appreciate Professor Walter’s
comment on this issue.

Reviewer #2: Dr. Soojin Yi
In this manuscript the authors provide a new sequencing
and assembly of a rhesus macaque using the animal used
to generate the widely used RheMac1 assembly. Rhesus
macaque is a promising nonhuman primate model spe-
cies and the utility of an improved rhesus macaque gen-
ome assembly for biomedical and comparative studies is
tremendous. This paper contains abundant merits and I
look forward to using the new assembly for research and
education in the near future. The obvious merits of this
work include 1) combining Sanger and Illumina reads
for assembly 2) validation of assembly with Ion Torrent
reads 3) direct comparison of the efficiencies of different
assemblies for differential gene expression studies. The
RNA sequencing and transcript assembly strategy as well
as annotation strategy are excellent.
Authors’ response: We thank Dr. Yi for her generous

evaluation of our work.
I have a few technical comments most of which are for

clarifications or details that will be helpful for future users.
p.2 and throughout the manuscript: the authors refer

to the rheMac3 assembly as CR_1.0. It may help avoid-
ing confusion if the authors used a more widely used
term CR_1.0/rheMac3 (as in UCSC browser).
Authors’ response: We agree with Dr. Yi that we

should note that CR_1.0 is termed rheMac3 in the UCSC
genome browser and have now done so in the text. How-
ever, this is a bit of a controversial issue as only the ori-
ginal submitter of an assembly is technically allowed to
issue updates. Baylor may wish to update their assembly,
rheMac2, and would normally refer to their update as
rheMac3. Because BGI has termed their assembly
rheMac3, there may be some confusion if/when Baylor
attempts to name their next update. We named our as-
sembly MacaM to avoid contributing to this confusion.
p.5/Table 1: I would appreciate more details on the

logic underlying the proposed new chromosome
nomenclature.
Authors’ response: Chimpanzees, gorillas, and orangu-

tans have the same general chromosomal structure as
humans, with one notable exception. The human chromo-
some 2 appears to be the result of a fusion event that oc-
curred during hominid evolution. Thus, the great apes and
rhesus macaques both have two chromosomes that roughly
correspond to the short and long arms of human chro-
mosome 2. In the great apes, these two chromosomes are
referred to as 2a and 2b. We adopted the same nomencla-
ture for rhesus macaques to make comparisons between
different primates easier. We have added additional text
to our manuscript to make this point more clearly.
Adding chromosome nomenclature in other ape spe-

cies may help the readers to see the merit of the pro-
posed nomenclature system.
Authors’ response: We have added chimpanzee, gorilla

and orangutan to Table 1 as requested.
p.6 identifying orthologs of human genes: as described

currently it is not clear whether the reciprocal-best-blast
hit strategy is used; the reciprocal step using human ref-
erence proteins against the rhesus macaque transcripts
is not specified.
Authors’ response: We did not use a reciprocal-best-

blast hit strategy to identify orthologs of human genes.
Also the cutoff values need to be given (e.g. e-value

coverage similarity criteria).
Authors’ response: A single set of cutoff values was not

used because different types of genes evolve at different
rates. Our rationale for this is similar to that used to de-
termine whether sim4cc and GMAP gene models were
correct. We have added text to the manuscript to make
this clearer.
p.7 p.9 discussions on protein sequence annotation

and exon misassembly: The authors use the example of
the Src homology 2 domain containing E (SHE) gene to
demonstrate the utility of MacaM assembly and how dif-
ferent annotations differ in their qualities.
However I failed to find a mention of this gene until

this specific section. It will be nice to see why this spe-
cific example has been selected.
Authors’ response: We agree that our discussion of the

misassembly of the SHE gene begins a bit abruptly. We
selected this gene because we had previously identified it
as misassembled in another paper [3]. We have added
text to the Protein Comparison section of the Methods to
make this clear.
Did they perform a global comparison between

MacaM versus rheMac2? If they did it will be nice to
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see a table of such results (beyond the Table 5 which
simply indicates identity/similarity/gaps) something like
the mismatch of exon numbers and so on would be use-
ful) as well as the list of curated/improved gene sets.
Even though this is an optional comment I feel that de-
tailed discussion on such results would also be a nice
addition to support the authors’ conclusion that the
MacaM is a better assembly and thus offers a better
annotation.
Authors’ response: No, we did not do a global com-

parison of gene assembly between MacaM and rheMac2.
We discovered a number of misassembled genes in rhe-
Mac2, described in [3], in the course of attempting to an-
notate that assembly. I cannot say that we have found
them all. Automation only takes one so far in annota-
tion. To confirm that a given gene model is correct in one
assembly and wrong in another takes a tremendous
amount of manual effort, unfortunately.
p.9 please provide the full name for the gene MAMU-

F. People who are not directly working with MHC class
genes are not likely to understand.
Authors’ response: This was an oversight on our part.

We thank Dr. Yi for pointing it out. We added the full
gene name for MAMU-F to the text.
p.9 Comparison of MacaM with rheMac2 and CR_1: I

understand what the authors are saying but I would re-
move or edit the three sentences following (Table 4) as
this discussion is not directly validated with the identifi-
cation of misassemblies in rheMac2.
Authors’ response: We have removed these three sen-

tences, as suggested.
p.10 mRNA expression studies with MacaM: the au-

thors conclude that MacaM assembly provides biologic-
ally relevant information while rheMac2 doesn’t. I agree
that the results described supports “MacaM assembly
provides biologically relevant information” but I am not
seeing the support for “while rheMac2 doesn’t”. Perhaps
they authors can elaborate.
At any rate these new data sound very interesting and

perhaps the authors are preparing to publish them inde-
pendently. If the authors decide not to include this data
in the current manuscript so that they can publish in an-
other paper I feel it is justified.
Authors’ response: Indeed, a manuscript focused on

behavior is in preparation. We have deleted the last
paragraph in the Results section relating to differences in
the behavioral groups.
p. 11 a possible future direction is to complement the

evidence-based assembly as done here with a purely
computational gene prediction. This way we may be able
to identify genes that are not easy to annotate based
upon transcript information alone (RNA-seq data) or
those that are not homologous to human genes (ortho-
log approach and exome approach).
Authors’ response: We acknowledge that our approach
may miss genes present in rhesus macaques but not in
humans. Gene prediction programs are improving. So, it
may be possible that additional genes will be identified
using purely computational methods.

Reviewer #3: Dr. Kateryna Makova
This reviewer provided no comments for publication.

Additional files

Additional file 1: Target Gene List. List of human genes for which we
attempted to obtain annotations of rhesus macaque orthologs. Includes
human gene ID, gene symbol, gene description and whether we
successfully annotated the rhesus ortholog (− = no, + = yes).

Additional file 2: De novo assembled transcripts. Accessions and
names of rhesus macaque transcripts we assembled using Velvet-Oases.
Includes human gene ID, gene symbol, gene description and accessions
of TSA records.

Additional file 3: MacaM_Annotation_v7.6. Annotation of the MacaM
assembly in GTF format.

Additional file 4: NCBI and MacaM protein comparison table.
Statistics comparing NCBI annotations of rheMac2 with our annotations
of MacaM.
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