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OPINION Open Access
Does the central dogma still stand?
Eugene V Koonin
Abstract: Prions are agents of analog, protein conformation-based inheritance that can confer beneficial
phenotypes to cells, especially under stress. Combined with genetic variation, prion-mediated inheritance can be
channeled into prion-independent genomic inheritance. Latest screening shows that prions are common, at least in
fungi. Thus, there is non-negligible flow of information from proteins to the genome in modern cells, in a direct
violation of the Central Dogma of molecular biology. The prion-mediated heredity that violates the Central Dogma
appears to be a specific, most radical manifestation of the widespread assimilation of protein (epigenetic) variation
into genetic variation. The epigenetic variation precedes and facilitates genetic adaptation through a general
‘look-ahead effect’ of phenotypic mutations. This direction of the information flow is likely to be one of the
important routes of environment-genome interaction and could substantially contribute to the evolution of
complex adaptive traits.

Reviewers: This article was reviewed by Jerzy Jurka, Pierre Pontarotti and Juergen Brosius. For the complete
reviews, see the Reviewers’ Reports section.
The Central Dogma and apparent nonexistence of
reverse translation
There are very few firm principles in biology. It is often
said, in one form or another, that the only actual rule is
that there are no rules, i.e. exceptions can be found to
every ‘fundamental’ principle if one looks hard enough.
The principle known as the Central Dogma of molecular
biology seems to be an exception to this ‘ubiquitous ex-
ception’ rule [1]. The Central Dogma was conjured by
Francis Crick in response to the discovery of reverse tran-
scription [2,3], when it became clear that the RNA to
DNA information transfer was an integral part of the life
cycle of retro-transcribing genetic elements (subsequent
developments demonstrated the broad occurrence of re-
verse transcription in cells [4,5]) (Figure 1). Crick realized
that, all its biologically fundamental implications notwith-
standing, reverse transcription was essentially business as
usual, i.e. interconversion of different forms of nucleic
acids on the basis of universal rules of base complemen-
tarity. The central dogma places the actual ‘exclusion
principle’ at another stage of biological information trans-
fer, translation. Thus, ‘There is no information transfer
from protein to nucleic acid’, postulates the Central
Dogma. This postulate is not based on any physical law
(in principle, all reactions involved in translation are
Correspondence: koonin@ncbi.nlm.nih.gov
National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, MD, USA

© 2012 Koonin; licensee BioMed Central Ltd. T
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
reversible) but rather on the design of the translation sys-
tem that hampers reverse translation. Information flow
back from a protein sequence to the cognate nucleic acid
sequence by reverse translation would require an elaborate
sequence of reactions that are not known to exist in any
life forms. The two fundamental steps would be: i) recog-
nition of nucleotide triplets (tRNA anticodons) by amino
acid residues within a polypeptide chain, ii) joining of
these triplets into an RNA molecule.
There is no reason to consider the Central Dogma a

physical ‘exclusion principle’. However, it appears to be a
fundamental ‘biological law’ that is deeply rooted in the
molecular setup of the information flow in all cells. In-
deed, an entire, distinct system of ‘reverse information
transfer’ would have been required to channel information
back from the protein to nucleic acid sequence. Further-
more, given the degeneracy of the genetic code, reverse
translation could only be a stochastic process and would
entail major loss of information (but also potential gener-
ation of new information). There is no trace of a reverse
translation system in any of the thoroughly characterized
model organisms.
Protein-based analog inheritance: the prions
Reverse translation has not been discovered so far and
seems extremely unlikely to ever be discovered. How-
ever, the Central Dogma is not about a specific molecu-
lar mechanism but rather about information flow: not
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Figure 1 The Central Dogma of Molecular Biology.
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about the (im)possibility of reverse translation but rather
about the (non)existence of information flow from pro-
tein to nucleic acid. Is it conceivable that this channel of
information transfer is after all not fully closed but the
underlying molecular mechanisms are completely differ-
ent from the hypothetical reverse translation?
Enter prions. The entities that eventually became known

as prions were first discovered as agents of slow, devastat-
ing neuro-degenerative diseases (spongiform encephalop-
athies), the relatively common scrapie in sheep and the
rare Kuru and Creutzfeld-Jacob diseases in humans [6,7].
The agents of these diseases showed extremely unusual
properties, in particular extraordinary resistance to treat-
ment that inactivates even the smallest nucleic acid mole-
cules such as high-dose UV irradiation [8]. The history of
research on the agents of spongiform encephalopathies
involved numerous false leads in the persistent quest for a
conventional virus or an unusual nucleic acid-containing
agent linked to these diseases [9,10]. Eventually, a series of
meticulous experiments by Prusiner and colleagues
(winning the 1997 Nobel Prize in Physiology or Medicine)
has demonstrated beyond doubt that an iconoclastic
hypothesis originally proposed by Griffith [11] held true:
the infectivity of the scrapie agent was completely protein-
mediated [12-15].
The protein-only infectious agents and subsequently dis-

covered factors of epigenetic heredity received the name
prions [15,16]. The prion proteins assume two distinct
conformations one of which is soluble whereas the other
one aggregates to form amyloid-like fibrils [17-19]. The
amyloid-forming conformer possesses self-propagating
properties: once a prion molecule assumes this con-
formation, it interacts with other molecules in the
soluble conformation and induces their conversion to
the amyloid-forming conformation, much like Ice-9 in
Kurt Vonnegut’s Cat’s Cradle [20] (Figure 2). Thus, prions
are agents of analog heredity, in a sharp contrast to the
mainstream, nucleic acid-mediated digital heredity.
A seminal discovery that greatly facilitated further

study of prions was the demonstration that prions exist
not only in animals but also in yeast where they mediate
epigenetic inheritance of phenotypic traits [21-26]. To
date, about two dozen yeast prions have been character-
ized to a varying degree of molecular detail but screen-
ing for prion inheritance indicates that many more exist
[25-29]. The distinctive structural feature of prion pro-
teins is the presence of a disordered prion-determining
domain that triggers the conformational transition [30-32].
The prion conformation forms spontaneously at a low fre-
quency (on the order of 10-6) [33,34]. Switching to and
from the prion state increases in rate under stress [35-37],
and mutants have been isolated, in particular in heterol-
ogous prion genes, with much higher frequency of prion
formation [38,39].
The best characterized yeast prion is [PSI+], the Sup35

translation-termination factor [40]. In the prion strains that
have been shown to be common in nature and conserved
in diverse fungi [29], most of the Sup35 is sequestered in
amyloid, the result being a dramatic increase in the rate of
termination codon readthrough [41]. The aberrant read-
through proteins induce a variety of phenotypes of which a
significant fraction are beneficial under selective conditions
[42,43]. Thus, the Sup35 prion is a catalyst of protein vari-
ation that is often discussed in terms of the bet-hedging
adaptation strategy [29,37,44]. Every grown colony of yeast
will contain several cells with the prion. If, under stress,
the variation engendered by the prion turns out to be dele-
terious, only a few cells will perish without perceptible fit-
ness consequence to the entire colony. However, if a
beneficial variant emerges, the prion-carrying cells have
the potential to take over the colony ensuring survival
under adverse conditions. It is less clear whether prions
other that [PSI+] (Sup35) promote phenotypic variability
but the recent results with the [MOT3+] prion, a repressor
of transcription, revealed properties generally mimicking
those of Sup35 [29]. Also, many of the described prions are
proteins involved in transcription and RNA processing
which is compatible with their role in generating variation
[28,29]. Furthermore, the findings that prion formation is
induced by stress [35-37] and that prions accurately segre-
gate between daughter cells during cell division through
the action of the molecular chaperone HSP104 [45-48]
strongly suggest that prions are at least partially adaptive
[29] rather than being simply a ‘molecular disease’ [49,50].
The most striking observation on prion-mediated epi-

genetic inheritance is that it can be turned into prion-
independent genetic inheritance with a relative ease, a
phenomenon denoted genetic assimilation of an epigeneti-
cally inherited trait.. Assimilation can be achieved simply
by meiotic reassortment of pre-existing genetic variation
[29,42,43]. The relatively low frequency of assimilation im-
plies that several mutations are required. The assimilation
phenomenon has not been investigated in much detail,
and in particular, no genome sequences of the assimilating
strains have been reported, so it remains unknown what
are the exact mutations that lead to fixation of the respect-
ive traits in a prion-independent form. The most straight-
forward possibility is that during assimilation genetic
variation recapitulates the variation that is unmasked by
the prion, e.g. the readthrough variants induced by the
Sup35 prions. However, it cannot be ruled out that the



Sup35, prion-forming

Sup35, prion-forming

Stop codon

regular protein
Extended, readthrough protein 

Figure 2 Prion (Sup35)-mediated generation of epigenetic variation.
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same phenotypic effects ensue, at least in part, from differ-
ent mutations. Regardless of the exact mechanisms, prions
clearly violate the Central Dogma by enabling the infor-
mation flow from proteins to the genome.

The general look-ahead effect
In general terms, what prions do, is extremely simple: they
buy time for the cell to accumulate the beneficial combin-
ation of mutations through recombination and possibly
new mutations as well. This appears to be a specific mani-
festation of a most general phenomenon (Figure 3). Any
phenotypic variation in protein sequence or structure,
such as spontaneous error of transcription, splicing, RNA
editing or translation, capacitation of hidden genetic or
phenotypic variability or protein misfolding, that is benefi-
cial either on its own or combined with another mutation
(i.e. depending on the genetic background) can potentially
become hereditary through the ‘look-ahead effect’ [51], i.e.
Transient beneficial phenotype

Complemen
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and phenoty
mutations

Figure 3 The general look-ahead effect: information flow from protei
by allowing the organism time to generate the required
genotype by recombination or to generate the required
mutation(s) de novo. In other words, a phenotypic and a
genomic mutation complement each other to produce a
transient beneficial phenotype (Figure 3). The rate of
amino acid misincorporation is orders of magnitude
greater than the replication error rate, so any cell contains
numerous variant proteins [52,53]. These phenotypic
mutations might underlie evolution of complex traits that
require more than one mutation (a simplest example of a
potentially beneficial structural feature of proteins that
requires two mutations is a new disulfide bond). Direct ex-
perimental study of the look-ahead effect is still lacking
but population-genetic models indicate that phenotypic
mutations can be sufficient for alleles carrying only one
mutation required for a trait dependent on two mutations
to spread in a population provided the selective advantage
of the combination of two mutations is high enough [51].
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Furthermore, the error rate of translation increases under
stress [54,55] with the implication that the look-ahead effect
could be particularly important to generate stress-resistant
phenotypes – and eventually genotypes. Moreover, agents
that specifically induce mistranslation, such as streptomycin,
also cause a mutator phenotype via mistranslation-induced
mutagenesis [56], directly demonstrating the coupling of
epigenetic and genetic variation [57]. The look-ahead effect
can be similarly potentiated by errors of transcription, spli-
cing or RNA editing. Although in these cases, the actual
change occurs in the RNA sequence, the net result is the
same: information potentially can be transferred from a pro-
tein sequence back to the genome.
A related phenomenon is capacitation of hidden vari-

ation. The best characterized capacitor is the molecular
chaperone HSP90 that prevents misfolding of variant pro-
teins arising either from genomic or from phenotypic
mutations [58,59]. This hidden variation is unmasked and
results in multiple phenotypic effects when the function of
HSP90 is compromised, in particular under environmental
stress [60-62]. Even beyond capacitating hidden variation,
inactivation of HSP90 causes large-effect mutations, such
as aneuploidy, that on some occasions become adaptive
under stress [63]. Screening for hidden variation capaci-
tors in yeast has shown that hundreds of proteins possess
capacitor properties [64]. It seems likely that release of
hidden variation, both genetic and phenotypic, is a regu-
lated form of stress response. In effect, capacitation is an
amplifier of the look-ahead affect. This phenomenon links
robustness and evolvability of evolving biological systems
by ensuring robustness under normal conditions but pro-
moting evolvability under stress.
Thus, the look-ahead effect of phenotypic mutations,

whether in its basic form or enhanced by capacitors,
prions and possibly other factors, seems to be an import-
ant, possibly central factor of evolvability, particularly with
respect to the evolution of complex adaptive traits. This
route of evolution plainly violates the Central Dogma.

Violation of the Central Dogma and Lamarckian
inheritance
The Central Dogma is often linked with the purported
(im)possibility of Lamarckian inheritance [65]. Indeed, if
the information flow from proteins to the genome existed,
it could be imagined that environmental cues could have a
directed effect on genomes. However, a deeper examin-
ation of the available data shows that violation of the
Central Dogma is not necessary for Lamarckian evolution
and conversely that not all evolutionary phenomena that
involve such violation are necessarily Lamarckian. The
reality of full-fledged Lamarckian evolution that is com-
pletely based on standard complementary interactions
between nucleic acid strands has been convincingly
demonstrated by the discovery and subsequent study of
the CRISPR-Cas adaptive immunity system in archaea and
bacteria [66-69]. This system specifically responds to an
environmental cue (virus or plasmid invasion) by directed
changes in the genome that provide adaptation to this par-
ticular cue (immunity). The integration of Piwi RNAs into
animal germ line providing defense against specific trans-
posable elements seems to fit the definition of Lamarckian
evolution equally well [70,71]. A much broader range of
phenomena including the pervasive horizontal gene trans-
fer in prokaryotes and stress-induced mutagenesis that
exists in most if not all cellular life forms combine clear
Lamarckian elements with substantial stochasticity and
could be most appropriately classified as quasi-Lamarckian
[67,72]. The general look-ahead effect that contributes to
evolution via information flow from proteins to the gen-
ome seems to belong in the quasi-Lamarckian category.
There is a Lamarckian component to this form of evolu-
tion because it is stimulated by environmental stress.
However, there are also major stochastic and selection
contributions given that variation is undirected and unre-
lated (as far as currently known) to specific environmental
cues, so that the fittest variants survive by selection.

Conclusions
The Central Dogma of molecular biology is refuted by gen-
etic assimilation of prion-dependent phenotypic heredity.
This phenomenon is likely to be the tip of the proverbial
iceberg, a specific, most dramatic manifestation of a major
facet of evolution that I denoted here ‘general look-ahead
effect.’ Even more generally, the entire spectrum of epigen-
etic variation, in particular various modifications of DNA,
chromatin proteins and RNA, potentially can be similarly
assimilated by evolving genomes. It is interesting to note
that genetic assimilation of phenotypic adaptation had
been predicted [73] and then experimentally demonstrated
by Waddington in classic experiments on Drosophila over
half a century ago [74]. Obviously, no molecular details of
this process could be deciphered at the time.
The specific cases of prions and capacitation of cryptic

variation discussed here have been discovered and explored
in eukaryotic model systems. Although specific mechan-
isms of information transfer from proteins to genome, such
as the prions, indeed might be more common or even
unique in eukaryotes, the look-ahead effect as such seems
to be a general feature of all evolving life forms and might
be particularly important in viruses for which the standing
variation in populations is particularly high.
Thus, the Central Dogma of molecular biology is invalid

as an ‘absolute’ principle: transfer of information from
proteins (and specifically from protein sequences) to the
genome does exist. This is not to deny that the Central
Dogma does capture the principal route of information
transfer in biology: the main flow information does follow
the path in Figure 1, and elaborate mechanisms ensuring
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acceptable fidelity operate on each step. And, there is a
major discontinuity between the levels of RNA and pro-
tein because during translation because the coupling of
amino acids with the cognate tRNAs does not involve dir-
ect recognition but rather requires dedicated enzymes,
aminoacyl-tRNA synthetases, that recognize and connect
the partners. The opposite direction of information flow,
from proteins to the genome, is asymmetrical (not a sim-
ple reversion), much more modest quantitatively and in-
trinsically stochastic but nevertheless appears to be
important in evolution.
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Reviewers’ reports
Reviewer 1: Jerzy Jurka, Genetics Information Institute

This is a straightforward paper exploring important implications of prion-
mediated heredity for the Central Dogma.
I have only some minor comments:
(1) It would be useful to quote the article Alain E. Bussard on the same
subject [75], and to highlight the major new arguments introduced in the
current article.

Author’s response: Bussard’s article appears to be something of a misnomer in
that the author puts the Central Dogma in the title but does not really examine
it with respect to the properites of prions. His article instead explores the
Lamarckian features of the prion inheritance and certainly is of interest for its
historical aspects.

(2) I believe that the author should also comment on RNA editing in the
“look-ahead” section; e.g. [76].

Author’s response: This comment is appreciated, an interesting point is
brought up here. Although as far as RNA editing or transcriptional errors are
involved, the actual mutating entity is RNA rather than protein, the net effect on
heredity is the same as with translation errors. Effectively, a version of the look-
ahead effect indeed could be engendered by RNA editing, with stochastic
editing creating variation that can be subsequently fixed in the genome through
convergent genetic variation. I included a statement to that effect in the revised
version of the manuscript. The same pertains to errors of transcription.
Unfortunately, the report of extensive editing by Li et al. [76] has been
compromised to such an extent [77-79] that it has become difficult to interpret
these observations.

(3) Finally, I recommend including the article by Sergey G. Inge-Vechtomov
et al. [16], that includes a unique historical perspective on “non-inherent
variability” dating back to Kirpichnikov.

Author’s response: I cited the article by Inge-Vechtomov et al. as a review but
my reading again is that this is about protein-based heredity not violations of
the Central Dogma.

Reviewer 2: Pierre Pontarotti, Universités de Provence et de la
Méditerranée

In this review/outlook, the author studied the assumption that the
information could be originated from protein to protein and from
phenotypes to DNA. The author also highlighted that “violation of the
central dogma” and the “epigenetics trans generational inheritance” are two
different phenomena, even if sometime, they could be connected. Although
this point seems to be obvious, this clarification is essential (I meet several
scientists mixing the two concepts). In my opinion, I think that the main
question asked by the author: “Does the central dogma still stand?” is
opportune. Investigators really need to transgress scientific dogmas. But we
will still need to propose robust approaches to test new hypotheses.

Reviewer 3: Juergen Brosius, University of Muenster

The author questions the Central Dogma of Molecular Biology, because
structural modification of prion-like proteins might have a (more global) effect
on the expression and even structure of gene products. The idea is based on
data obtained with studies of yeast prion-like proteins, for example, the Sup35
protein that normally acts as a translation termination factor. However, when
sequestered in amyloid, hence insoluble and inactive, its deficiency allows for
readthrough of termination codons in messenger RNAs.
The author places such strategies of increasing evolvability into the category
of quasi-Lamarckian evolution. Like most phenomena in biology, similarity to
the Lamarckian mode of evolution lies somewhere on a continuum ranging
from barely apparent to very strong. In my opinion, the possible elongation
of polypeptides is at the very weak end of the continuum of Lamarckian
mode of evolution, not too remote from random mutations of nucleotides,
since this process is almost equally non-directed.

Author’s response: I am not going to strongly argue this point. Thea ‘quasi-
Lamarckian’ mechanisms certainly belong to the continuum of evolutionary
phenomena, from stochastic to deterministic ones [67]. The Lamarckian
character of this readthrough is not the focus of the present article which is
about information transfer from protein to genome; the readthrough seems to
capacitate such transfer.

In addition, most S. cerevisiae 30-UTRs tend to be short, typically in the size
range of 50 to 200 nucleotides, with a median length of 121 nt [80]. Should a
C-terminal ORF extension truly be part of a ‘look ahead effect’ [50] for times of
stress, might one not observe distal to the bona fide stop codons a slightly
higher conservation of the first two positions in the respective codons?

Author’s response: This is a really, really interesting idea. Yes, in principle, one
should expect some degree of purifying selection in the sequences downstream
of stop codons. However, because readthrough is not frequent, the effect could
be quite weak so that its detection would require sophisticated statistical
analysis of large data sets. To the best of my knowledge, no one has shown
that such conservation does not exist (a difficult task as well). This seems to be
well worth investigating.

Furthermore, messenger RNAs transcribed from genes containing mutations
that generate aberrant extended 30 untranslated regions are degraded by
nonsense mediated decay (NMD) [81-83]. Even if NMD was suppressed by an
additional stress induced mechanism, the C-termini of proteins usually are
the least conserved parts of a protein and often can be altered or extended
without functional consequences [84]. Once more, the action of prions
apparently do not have an effect on their own expression or C-terminal
extension. Due to this undirected nature, I would place prion formation to
the weak end of the continuum concerning quasi-Lamarckian mode of
evolution. Something similar could be said about modification of nucleic
acids, most prominently methylation of DNA in control regions of genes, as
this process seems to be not specifically directed. However should the link
between prenatal nutrient deprivation in humans and adiposity in later life -
in conjunction with the findings that reduced methylation of the insulin like
growth factor II gene (IGF2) is the underlying molecular mechanism for this
effect – become substantiated, at least some of these epigenetic effects due
to methylation changes could be placed closer to the opposite end of the
continuum [85-87]. Animal studies will be essential to rigorously test these
observations initially made in human populations. The case of the
prokaryotic CRISPR-cas system of defense against mobile elements including
plasmids and viruses is an interesting and much stronger case as covered by
the author in a previous publication [67]. Nevertheless, a stochastic event
and not the need for viral defense lead to integration and antisense
transcription of part of the invader’s genome. The fortuitous beneficiary
effect of, e.g., antiviral protection was of selective advantage and became
fixed. As mentioned in the review of this Koonin/Wolf article, in my view, the
examples that most closely resemble Lamarckism or quasi-Lamarckism stem
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from several ongoing transitions in our own lineage, namely vertical and
horizontal transmission of memes [88,89] and at the level of genes through
our potential (not yet realized) to direct acquired knowledge about
genotype/phenotype relationships into our own genome in a precise and
specific manner via genetic engineering [90-92].

Author’s response: These comments are appreciated. I find memetics to be of
much interest and promise. However, in my view, this field of enquiry is outside
evolutionary biology sensu strictu.

The Central Dogma of Molecular Biology is, in my opinion, still untouched as
there is no reverse translation. This would change if a mutation in a given
protein including a translational readthrough beyond the stop codon
directly would lead to a nucleotide change that converts said stop codon
into one that encodes an amino acid. My own problem with the Central
Dogma of Molecular Biology is different, more trivial, and based on the
depiction of DNA and not RNA topping the hierarchy [93].

Author’s response: This is a key conceptual point that is addressed in the main
text of the present article but is worth pondering again. True, to the best of our
knowledge, there is no reverse translation but this is not what the Central
Dogma is about. Quoting Crick [1]: ‘The central dogma of molecular biology
deals with the detailed residue-by-residue transfer of sequential information. It
states that such information cannot be transferred back from protein to either
protein or nucleic acid.’ So Crick was fully explicit in formulating the Central
Dogma as a ‘law’ of information transfer in biological systems not as a
statement about specific reaction paths. It is remarkable that, although
evolution failed to find ways to reverse transcription, it has found means to
circumvent this irreversibility through completely different mechanism, and so
after all, to reverse the direction of the information flow. As for the “more trivial”
aspect, it is certainly indisputable that the diversity of RNA roles in biology, in
particular in shaping genomes via retrotransposition, was vastly under-
appreciated 40 years ago (and might not be fully appreciated yet).
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