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The RNA world hypothesis: the worst theory of the
early evolution of life (except for all the others)a

Harold S Bernhardt
Abstract

The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these
difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these
alternative models. From a biosynthetic – as well as, arguably, evolutionary – perspective, DNA is a modified RNA,
and so the chicken-and-egg dilemma of “which came first?” boils down to a choice between RNA and protein. This
is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different
types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of
a ‘top down’ (or should it be ‘present back’?) approach to early evolution: how can we simplify modern biological
systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA
possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out
both replication and catalysis. RNA – which constitutes the genome of RNA viruses, and catalyzes peptide synthesis
on the ribosome – could have been both the chicken and the egg! However, the following objections have been
raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is
inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic
repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our
and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as ‘proteins
first’, which holds that proteins either preceded RNA in evolution, or – at the very least – that proteins and RNA
coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the
RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the
backstory to contemporary biology.

Reviewers: This article was reviewed by Eugene Koonin, Anthony Poole and Michael Yarus (nominated by
Laura Landweber).
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Background
The problems associated with the RNA world hypothesis
are well known, not least to its proponents [1,2]. In the
following, I discuss some of these difficulties, some of
the alternative hypotheses that have been proposed (in-
cluding the ‘proteins first’ hypothesis), and some of the
problems with these alternative models. As part of the
discussion, I highlight the support provided to the RNA
world concept by the discovery of some extremely small
ribozymes. The activities of these provide support for
Correspondence: harold.bernhardt@otago.ac.nz
Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New
Zealand

© 2012 Bernhardt; licensee BioMed Central Ltd
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
proposals we have made previously for the identity of
the first tRNA [3], for the origin of coded ribosomal pro-
tein synthesis [4], and for the evolution of an RNA world
at acidic pH [5] (see also [6]). I also revisit the proposal
for a replicase origin of the ribosome, and what has be-
come the most commonly held model for the origin of
tRNA.
In modern biological systems, the components of

DNA are synthesized from RNA components [7], and it
therefore makes sense to view DNA as a modified RNA.
Similarly, the ribosome – the universal cellular machine
that makes proteins – is composed mainly of RNA, and
RNA is its active component, although there are indica-
tions that proteins may be playing an increasing role in
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some instances e.g. [8,9] (even in the case of nonriboso-
mal peptide synthesis [10,11], the protein enzyme
complexes that synthesize other proteins are of course
themselves synthesized on the ribosome). RNA func-
tions as both catalyst (e.g. in peptide synthesis and
tRNA maturation) and genome (in RNA viruses such as
HIV and influenza viruses). In contrast to nucleic acids,
which associate according to the rules of base pair
complementarity, the intricacies of protein structure do
not – normally – allow for an easy mechanism of repli-
cation, which presumably explains the evolution of a
coded system for their synthesis (for an interesting dis-
cussion of the contrasting molecular requirements for
replication and catalysis, see [12]). Parsimony at least
would seem to favour a scenario in which functions
carried out by two classes of macromolecules in the
modern system were, at an earlier stage, carried out by
only one (for an alternative view however, see [13]). So
which came first, the chicken or the egg? Protein or
RNA? This is an underlying current in the debate sur-
rounding the RNA world hypothesis, which I address
when I discuss the ‘proteins first’ hypothesis.
Before beginning, it is important to clear up a com-

mon source of confusion. The RNA world hypothesis
does not necessarily imply that RNA was the first repli-
cating molecule to appear on the Earth (although a new
paper by Benner and colleagues argues that this was, in
fact, the case [14]). The more general claim is that the
RNA world comprised a stage of evolution preceding –
perhaps immediately – the RNA/protein/DNA world we
now inhabit. In this way, the hypothesis is not incompat-
ible with models such as the ‘crystals-as-genes’ concept
of Cairns-Smith [15], which proposes that the first repli-
cators were imperfection-containing layers of clay that
were able to pass on these imperfections to proceeding
layers (unfortunately, one experimental test of Cairns-
Smith’s model suggests that replicated defects are
quickly overrun by random defects or noise [16]). Simi-
larly, it has been hypothesized that RNA was preceded
in evolution by a nucleic acid analogue – for example,
one in which glycerol replaces ribose in the phospho-
diester backbone – though pathways for the prebiotic
synthesis of many such analogues are even less plausible
than for RNA itself [17].

Discussion
The following objections to the RNA world hypothesis
have been raised:

RNA is too complex a molecule to have arisen
prebiotically
RNA is an extremely complex molecule, with four differ-
ent nitrogen-containing heterocycles hanging off a back-
bone of alternating phosphate and D-ribose groups
joined by 3′,5′ linkages. Although there are a number of
problems with its prebiotic synthesis, there are a few
indications that these may not be insurmountable.
Following on from the earlier work of Sanchez and
Orgel [18], Powner, Sutherland and colleagues [19] have
published a pathway for the synthesis of pyrimidine
nucleotides utilizing plausibly prebiotic precursor mole-
cules, albeit with the necessity of their timed delivery
(this requirement for timed delivery has been criticized
by Benner and colleagues [14], although most origin of
life models invoke a succession of changing conditions,
dealing as they do with the evolution of chemical sys-
tems over time; what is critical is the plausibility of the
changes). A particularly interesting aspect of the path-
way is the use of UV light as a method of isolating the
naturally occurring nucleotides [18,19], suggesting a
possible means of nucleotide selection (see also [20]).
Although RNA is constructed with uniform 3′,5-linked

backbones, recent work by Szostak and colleagues has
demonstrated that ribozymes and RNA aptamers retain
partial function when the standard 3′,5′-linkages are
replaced with a mixture of 3′,5′- and 2′,5′- linkages,
suggesting that a degree of heterogeneity may be com-
patible with (or even beneficial to) RNA function and
synthesis (J. Szostak, pers. commun.; [21]). This comple-
ments an earlier study by Ertem and Ferris [22] that
showed that poly C oligonucleotides with mixed 3′,5′-
and 2′,5′-linkages are able to serve as templates for the
synthesis of poly G oligonucleotides by nonenzymatic
replication. Such work suggests that ancestral systems
may not have been as tightly constrained as they
are today.
Due perhaps to the molecular complexity of nucleic

acids, metabolism-first models (as opposed to
replication-first models such as the RNA world hypoth-
esis) highlight the importance of the initial generation of
small molecules through chemical or metabolic cycles.
Establishment of a plausible energy source is a critical
aspect of these models, some of which propose that life
arose in the vicinity of hot alkaline (pH 9–11) under-sea
hydrothermal vents, with energy provided by pH and
temperature gradients between the vent and the cooler,
more acidic ocean [23-26]. In some ways, metabolism-
first models appear not to conflict with the RNA world
hypothesis, as they potentially offer a solution to the dif-
ficulty of ribonucleotide and RNA synthesis. A large
point of difference, however, comes with the claim that
such nucleic acid-free systems are capable of Darwinian
evolution. Addressing this claim, Vasas et al. [27] have
reported a lack of evolvability in such systems, while
Benner and colleagues have noted the lack of experi-
mental support from specific chemical models [14]. A
more recent paper by Vasas et al. [28], while seemingly
contradicting their earlier paper, uses a computational
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modeling approach without reference to a real-world
chemical system (something noted by two of the
reviewers in their published reviews).

RNA is inherently unstable
RNA is often considered too unstable to have accumu-
lated in the prebiotic environment. RNA is particularly
labile at moderate to high temperatures, and thus a
number of groups have proposed the RNA world may
have evolved on ice, possibly in the eutectic phase (a li-
quid phase within the ice solid) [29-33]. Two of these
studies [31,32] demonstrated maximal ribozymic activity
at −7 to −8°C, possibly due to the combined effects of
increased RNA concentration and lowered water activity.
A possible difficulty with this scenario is that RNA
sequences have an increased tendency to base pair at
such temperatures, leading in some cases to the forma-
tion of intermolecular complexes [34] that potentially
could reduce catalytic activity.
A further problem is the susceptibility of RNA to

base-catalyzed hydrolysis at pH >6 [35]. The phospho-
diester bonds of the RNA backbone and the ester bond
between tRNAs and amino acids – something similar to
which would have been critical for the evolution of
ribosomal protein synthesis – are both more stable at
pH 4–5 [5,6]. With our proposal for RNA world evolu-
tion at acidic pH [5], we have suggested that the primor-
dial ‘soup’ may have been more like vinaigrette, while
Hanczyc [36] has drawn a comparison with mayonnaise,
with its emulsified mixture of oil in water (in light of
these, could there be potential for food science to pro-
vide insights for origin of life studies?) While Mg2+ is
important for stabilizing RNA secondary and tertiary
structure, high Mg2+ concentrations also catalyze RNA
degradation, which has been identified as a particular
problem in the case of RNA template copying [21]. Here
too, acidic pH offers a possible solution, as the positive
charge on protonated cytosine and adenosine residues in
acidic conditions may reduce the requirement for diva-
lent cations. For example, a self-cleaving ribozyme with
maximum activity at pH 4 isolated by in vitro selection,
is active in the absence of divalent ions (including Mg2+)
[37]. RNA secondary (and tertiary) structure would ap-
pear to be compatible with the presence of protonated
nucleotides, as we have found an increased number of
potentially protonated A-C base pair ‘mismatches’ in the
tRNAs from acidophilic archaeal species with reported
cytoplasmic pHs of 4.6-6.2 [5].

Catalysis is a relatively rare property of long RNA
sequences only
The RNA world hypothesis has been criticized because
of the belief that long RNA sequences are needed for
catalytic activity, and for the enormous numbers of
randomized sequences required to isolate catalytic and
binding functions using in vitro selection. For example,
the best ribozyme replicase created so far – able to repli-
cate an impressive 95-nucleotide stretch of RNA – is
~190 nucleotides in length [38], far too long a sequence
to have arisen through any conceivable process of
random assembly. And typically 10,000,000,000,000-
1,000,000,000,000,000 randomized RNA molecules are
required as a starting point for the isolation of ribozy-
mic and/or binding activity in in vitro selection experi-
ments, completely divorced from the probable prebiotic
situation. As Charles Carter, in a published review of
our recent paper in Biology Direct [5], puts it:

“I, for one, have never subscribed to this view of the
origin of life, and I am by no means alone. The RNA
world hypothesis is driven almost entirely by the flow
of data from very high technology combinatorial
libraries, whose relationship to the prebiotic world is
anything but worthy of “unanimous support”. There
are several serious problems associated with it, and I
view it as little more than a popular fantasy”
(reviewer's report in [5]).

1014-1016 is an awful lot of RNA molecules. However,
the discovery of a number of extremely short ribozymes
suggests that long sequences – and hence the huge
numbers of RNA molecules required to sample the ne-
cessary sequence space – might not have been necessary.
In a section titled ‘Miniribozymes: small is beautiful,
Landweber and colleagues [31] discuss a number of such
small ribozymes, including a minimal size active duplex
of only 7 nucleotides that self-cleaves. Regarding the
relatively modest rate enhancement of this miniribozyme
– three orders of magnitude less than the parent ribo-
zyme from which it is derived – the authors conclude:
“the smallest molecules are likely to arise first, and any
rate enhancement would have been beneficial in a pre-
biotic setting” [31]. Another, closely related, miniribozyme
can ligate a small RNA to its 5′ end, requiring only a sin-
gle(!) bulged nucleotide in the context of a larger base-
paired structure containing a strand break. Interestingly,
the self-cleaving 7-nucleotide sequence forms a part of the
ligase ribozyme, demonstrating the closeness in sequence
space of the two, albeit related, functions [31]. Equally as
interesting from an RNA world perspective, Yarus and col-
leagues have recently isolated by in vitro selection a ribo-
zyme that is able to be truncated to just 5 nucleotides,
while retaining its ability to catalyze the aminoacylation in
trans of a 4-nucleotide RNA substrate [39]. Remarkably,
only 3 nucleotides are responsible for this activity: 2 in the
ribozyme and 1 in the substrate. In fact, even this much is
not required: a variant of the parent ribozyme with a mu-
tation of 1 of the 3 conserved nucleotides is able to
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aminoacylate a substrate variant with the sequence GCCA
(similar to the universal aminoacylated 3′ terminus of
tRNA), albeit at a reduced rate [40] (we have previously
proposed a possible sequence for an aminoacylating ribo-
zyme based on this variant that could have base-paired
with the universal 3′ CCA termini of tRNAs (and pro-
posed RNA hairpin precursors [41,3] through a double
helix interaction, while also forming specific triple helix
interactions – at acidic pH – with other nucleotides in the
tRNA [5]). As with the small ribozymes discussed by
Landweber and colleagues, the rates of aminoacylation of
Yarus' ribozymes are somewhat underwhelming: that of
the original 5-nucleotide ribozyme is only 25-fold higher
than the uncatalyzed rate [39], while that of the variant is
only 6-fold higher than the uncatalyzed rate [40] (for fur-
ther discussion of the implications of such tiny ribozymes
see [42], and [31] and references therein).
Although not quite as small as the ribozymes dis-

cussed above, Gross and colleagues have demonstrated
that 12-nucleotide and 20-nucleotide nuclear tRNATyr

introns from Arabidopsis thaliana and Homo sapiens –
understood to be cleaved by protein enzymes in vivo –
are able to self-cleave in the presence of 10 mM Mg2+,
0.5 mM spermine and 0.4% Triton X-100 [43-45]. Al-
though the introns form part of a larger pre-tRNA se-
quence, the nucleotides responsible for self-excision are
possibly confined to a 3- or 4-nucleotide bulge region.
The discovery of this intrinsic activity (which admittedly
requires the presence of a low concentration of surfac-
tant) supports previous proposals for the origin of tRNA
[41,3,4]. Although there exist a number of other models
for the origin of tRNA (one of which is discussed in detail
in the following section), a hairpin duplication-ligation ori-
gin stands as a credible hypothesis [41,3] that has received
support from a number of sources [46-48]. Briefly, the idea
- first proposed by Di Giulio [41] - is that two (either
Figure 1 A proposal for the origin of tRNA through the ligation of a h
intron based on proposals by Di Giulio [41], and Dick and Schamel [4
extension of one of the precursor hairpins formed by a transcriptional runo
imply that an amino acid was necessarily attached here during the intron l
identical or very similar) hairpins, approximately half the
size of contemporary tRNA, formed a ligated duplex due
to the symmetry of base-pairing interactions, possibly by
an intron-mediated mechanism [49] (Figure 1). It has been
proposed previously that contemporary protein-spliced
nuclear tRNA introns are descended from an ancestral
self-splicing group I-type intron that catalyzed the ancestral
ligation [49] (as depicted in Figure 1, the ancestral tRNA in-
tron may have derived from a 3′ extension of one of the
precursor hairpins by a transcriptional runoff error). The
findings of Gross and colleagues [43-45] indicate that some
normally protein-cleaved nuclear tRNA introns have par-
tially retained the ability to self-cleave. This ability to self-
cleave implies the reverse reaction – self-ligation – is also
possible, which could have produced the ligated intron-
containing hairpin intermediate; subsequent intron self-
cleavage could have produced the first proto-tRNA [49]
(Figure 1).

The catalytic repertoire of RNA is too limited
It has been suggested that the probable metabolic
requirements of an RNA world [50] would have
exceeded the catalytic capacity of RNA. The majority of
naturally occurring ribozymes catalyze phosphoryl trans-
fer reactions – the making and breaking of RNA
phosphodiester bonds [51]. Although the most efficient
of these ribozymes catalyze the reaction at a comparable
rate to protein enzymes – and in vitro selection has iso-
lated ribozymes with a far wider range of catalytic abil-
ities [9,51] – the estimate of proteins being one million
times fitter than RNA as catalysts seems reasonable, pre-
sumably due to proteins being composed of 22 chem-
ically rather different amino acids as opposed to the 4
very similar nucleotides of RNA [12].
It is frequently forgotten however that proteins too

have their catalytic limitations: after all, many enzyme
airpin duplex catalyzed by an ancestral self-splicing group I-type
9]. In this depiction, the intron is shown as originating from a 3′
ff error. aa indicates the amino acid binding site, but is not meant to
igation events.
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active sites contain cofactors and/or coordinated metal
ions, suggesting that some reactions are ‘too hard’ for
proteins as well (it is estimated that ~50% of proteins
are metalloproteins [52], although of course not all these
metal ions are found at the active site). RNA ribos-
witches bind a range of protein cofactors, such as flavin
mononucleotide, thiamine pyrophosphate, tetrahydrofo-
late, S-adenosylmethionine and adenosylcobalamin (a form
of vitamin B12) [53]. In the case of the glmS riboswitch/
ribozyme, the metabolite glucosamine-6-phosphate binds
in the active site and appears to participate in catalysis
[54]. Because of the ability of these naturally occurring
RNA riboswitches to bind protein enzyme cofactors, and
because many of these cofactors possess non-functional
fragments of RNA – one of the earliest pointers to a
possible ancestral RNA world [55] – it is likely that at
least some of the cofactors now used by proteins were
handed down directly from the RNA world, where they
played a similar if not identical role in assisting catalytic
function [53].
One of the arguments for the RNA world hypothesis

comes from the observation that RNAs are, in most cases,
worse catalysts than proteins. This implies that their pres-
ence in modern biological systems can best be explained
by their being remnants of an earlier stage of evolution,
which were too embedded in biological systems to allow
replacement easily. An alternative explanation is that they
were co-opted by a protein world due to their superior
properties for the particular functions they perform. While
such an explanation seems intuitively less likely, surpris-
ingly it is held by some proponents of the ‘proteins first’
model [56-60] (discussed in more detail below).

Proteins first
An increasingly strident view is that protein either pre-
ceded RNA in evolution or, at the very least, that RNA
and protein coevolved, in what is known as the ‘proteins
(or peptides) first’ hypothesis [56-60]. Take, for example,
Charles Kurland in his 2010 piece in Bioessays [57],
which is utterly scathing of the RNA world hypothesis
and its fellow travelers:

“[The RNA world hypothesis] has been reduced by ritual
abuse to something like a creationist mantra”, and

“[The] RNA world is an expression of the infatuation
of molecular biologists with base pairing in nucleic
acids played out in a one-dimensional space with no
reference to time or energy” [57].

On a less emotional note, Harish and Caetano-Anollés
[60] earlier this year published a phylogenetic analysis of
ribosomal RNA and ribosomal proteins, concluding that
the oldest region of the ribosome is a helical stem of the
small ribosomal subunit RNA and the ribosomal protein
that binds to it. As this helical stem has the important
roles in the modern ribosome of decoding the mRNA
message and in the movement of the two subunits rela-
tive to each other (including translocation of the mRNA
message and tRNAs), Harish and Caetano-Anollés con-
clude that the original function of the ribosome was as
an RNA replicase (this idea, which has been suggested
previously, is discussed in detail in the following sec-
tion). In addition, because RNA and protein components
of the ribosome apparently have similar ages, Harish and
Caetano-Anollés surmise that peptide synthesis has al-
ways been carried out by RNA in association with pro-
teins, as is the case with the modern ribosome.
Without debating the merits or otherwise of their

phylogenetic techniques, the most serious objection to
these conclusions is that phylogenetic analysis has the
limitation that it can only analyze the protein sequence
record as it has been captured in DNA (this is true even
for a phylogenetic analysis based on protein fold struc-
tures, as the only record we possess of these folds is their
primary amino acid sequence as captured in the DNA).
Therefore, any information we can recover can only date
from the advent of coded protein synthesis, as that is the
point at which protein sequence became coded in nucleic
acid. In an online report [61] on Harish and Caetano-
Anollés’ paper, Russell Doolittle makes this same point:

“This is a very engaging and provocative article by one
of the most innovative and productive researchers in the
field of protein evolution,” said University of California
at San Diego research professor Russell Doolittle, who
was not involved in the study. Doolittle remains puzzled,
however, by “the notion that some early proteins were
made before the evolution of the ribosome as a protein-
manufacturing system.” He wondered how – if proteins
were more ancient than the ribosomal machinery that
today produces most of them –“the amino acid
sequences of those early proteins were ‘remembered’ and
incorporated into the new system.” [61].

To which, Caetano-Anollés’ reported response is
slightly puzzling:

“It requires understanding the boundaries of emergent
biological functions during the very early stages of
protein evolution. However, the proteins that catalyze
non-ribosomal protein synthesis – a complex and
apparently universal assembly-line process of the cell
that does not involve RNA molecules and can still
retain high levels of specificity – are more ancient
than ribosomal proteins. It is therefore likely that the
ribosomes were not the first biological machines to
synthesize proteins.” ([61]; italics in original).
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It is certainly possible that there were functional noncoded
peptides prior to the advent of coded protein synthesis.
These could have been formed either through random pro-
cesses, by noncoded ribosomal synthesis prior to the advent
of coding [4], by non-ribosomal peptide synthesis catalyzed
by specific ribozymes (analogous to non-ribosomal peptide
synthesis catalyzed by protein enzymes in modern systems
[62]), or by some combination of the above. It seems highly
unlikely, however, that proteins synthesized proteins prior to
the advent of the ribosome, as this would appear to suggest
an infinite regression series. As Doolittle [61] suggests, the
critical point is that once coding evolved, the sequences of
these noncoded proteins would have needed to be recapitu-
lated by coded proteins; therefore the phylogenetic signal
would only go back to the point of recapitulation. Put an-
other way, the earliest proteins phylogenetically speaking will
be the first proteins that were coded for. Presumably, if these
sequences can still be detected in modern genomes, they
would tend to be relatively short and somewhat indistinct
traces only, as one might expect for the first proteins pro-
duced by a rudimentary ribosome. In a sense then, one can
say that the advent of coded protein synthesis has drawn a
veil over the previous life of proteins. Although it seems un-
likely, complex proteins may have existed prior to this, but –
as all record of them has been erased by the advent of coding
– that is as much as we can say (for an in-depth discussion
of the implications of non-ribosomal peptide synthesis for
the RNA world hypothesis, see [62]).

RNA replicase origin of the ribosome
As mentioned above, Harish and Caetano-Anollés are
not the first to suggest an RNA replicase origin of the
ribosome (or small ribosomal subunit). The idea, which
was possibly first proposed by Weiss and Cherry [63], is
that “the ancestor of small subunit RNA was an RNA
replicase that used oligonucleotides as a substrate” [63].
The hypothesis has grown in scope to include the use of
excised tRNA anticodons as the source of oligonucleo-
tides, with the energy required for ligation provided by
concomitant peptide bond formation [64-66]. However,
as pointed out by Wolf and Koonin [67], such a ligase
would have required a molecular machinery at least as
complex as the modern ribosome, which would make it
an unlikely evolutionary forerunner. This notwithstand-
ing, Weiss and Cherry’s original, simpler, model may
have some merit. If, as has been recently suggested, early
RNA replication was performed by the ligation of short
oligonucleotides [68,69], or by a combination of nucleo-
tide polymerization and oligonucleotide ligation [21], a
‘decoding’ RNA able to proofread triplet base pair inter-
actions for accuracy – similar to its role in the modern
ribosome of maintaining the fidelity of the triplet codon-
anticodon interaction – might have played an important
role. Interestingly, a 49-nucleotide hairpin comprising
part of the decoding site of the small ribosomal subunit
RNA has been found to bind both poly U oligonucleo-
tide and the tRNAPhe anticodon stem-loop in a similar
fashion to the entire small subunit [70]. This hairpin
contains the two mobile nucleotides A1492 and A1493

(numbered according to the Escherichia coli small ribo-
somal subunit RNA sequence) that proofread the
anticodon-codon helix in the modern ribosome [71]. It
would be interesting to test whether this hairpin is able
to enhance the rate and/or accuracy of non-enzymatic
ligation using a single-stranded RNA ‘template’ and short
complementary oligonucleotides. If an enhancement
were indeed demonstrated, such a mechanism would be
analogous to that utilized by the large ribosomal subunit,
for which substrate positioning of the two tRNAs may
constitute one of its main roles in catalyzing peptide
synthesis [72].
As part of their model of early RNA replication by

oligonucleotide ligation, Manrubia and colleagues
propose that an increase in the catalytic rate of the rep-
licase/ligase would have occurred with an increase in se-
quence length through a process of bootstrapping
[68,69]. Furthermore, they suggest that the first RNA
replication possibly had a high error-rate:

“Highly mutagenic replication processes could have
produced relatively large repertoires of short,
genetically different molecules, some of them folding
into secondary/tertiary structures able to perform
selectable functions” [68].

Similarly, we have proposed that, in an RNA world
evolving at acidic pH, non-standard base pairing interac-
tions due to base protonation could have provided a
means of increasing RNA sequence variation through
non-enzymatic replication [5].

The origin of tRNA
Wiener and Maizels’ genomic tag hypothesis proposes
that the 3′ (or ‘top’) half of tRNA originally functioned
as a tag demarking the 3′-end of genomic RNAs for rep-
lication, and thus was the first part of tRNA to evolve
[73]. Sun and Caetano-Anollés [74,75] have published
phylogenetic evidence that they believe supports the
genomic tag hypothesis by confirming, “that the ‘top
half ’ of tRNA is more ancient than the ‘bottom half ’”
[75]. Noller [76] has observed that the tRNA top half
(comprising the T arm and the acceptor stem – includ-
ing the amino acid binding site) interacts almost exclu-
sively with the large ribosomal subunit, while the
bottom half (comprising the D and anticodon arms)
interacts almost exclusively with the small subunit. Be-
cause peptide synthesis (a function of the large subunit)
is usually viewed as more ancestral than decoding (a
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function of the small subunit) – a view which has sup-
port from a structural analysis by Bokov and Steinberg
[77] – the top half of tRNA (which interacts with the
large subunit) has been viewed as being more ancestral
than the bottom half [73,78]. However, this ‘standard
model’ for the origin of tRNA, and the results of Sun
and Caetano-Anollés that support this model [74,75],
are apparently both in conflict with Harish and Caetano-
Anollés’ [60] more recent findings on the relative ages of
the ribosomal subunits. As described above, these find-
ings suggest that the small ribosomal subunit was the
first to evolve, which is difficult to reconcile with the fact
that the bottom half of tRNA (with which the small sub-
unit mainly interacts), is, by theirs [74,75] and others
[73,78] estimation, the newer half of tRNA. Equally, their
finding that the large ribosomal subunit evolved more
recently [60] is difficult to reconcile with the fact that
the top half of tRNA (with which the large subunit
mainly interacts), is, by theirs and others estimation, the
older half of tRNA. Incidentally, Caetano-Anollés and
colleagues’ finding [75,79,80] that the most ancient
tRNAs coded for selenocysteine, tyrosine, serine and leu-
cine not only runs counter to other work in the area
(see e.g. [81]), but – as these tRNAs all possess long vari-
able arms – appears to contradict their own finding that
the “variable region was the last structural addition to
the molecular repertoire of evolving tRNA substruc-
tures” [74].

As discussed above, a plausible scenario for the origin of
tRNA is the duplication and subsequent ligation of an RNA
hairpin approximately half the length of modern tRNA (or al-
ternatively the ligation of two very similar hairpins) [41,3],
with ligation possibly catalyzed by an ancestral self-cleaving
intron [49] (see Figure 1). An important implication of such
an origin is that both tRNA halves are of equal antiquity, as
both would have to be present for ligation to occur! However,
due to the symmetry of the tRNA molecule, the top half,
which is considered to be the more ancient, is in fact more
ancient-like, as it retains the base-paired 3′ and 5′ ends of
the original hairpin from which it derives. In contrast, the
bottom half, considered to be the more recently acquired,
contains the ‘join’ between the two hairpins, which has
altered the conformation of the original hairpin, giving this
bottom half a new structure. If one accepts a hairpin
duplication-ligation origin of tRNA, this explains why the top
half of tRNA interacts with the peptidyl transferase region of
the large ribosomal subunit: it is because this half retains the
same structure (and possibly nucleotide sequence) as the
hairpin from which it derives, which originally interacted
with the peptidyl transferase region of the large subunit.
In fact - and this point has been made by others [49] – this
retention of structure probably favoured (or even enabled)
the duplication event, as it meant the resultant tRNA was
able to be aminoacylated by the same ribozyme synthetase
that aminoacylated the hairpin precursor, and therefore
the tRNA was able to participate in ribosomal protein syn-
thesis. At the same time, the appearance of a novel struc-
ture at the ligation point – the anticodon loop – allowed
for the subsequent evolution of genetic coding [4,3].
One of the strongest arguments in favour of the hair-

pin ligation being catalyzed by an ancestral self-cleaving
intron [49] (as depicted in Figure 1) is the presence of
the highly conserved ‘canonical intron insertion position’
between nucleotides 37 and 38 in the anticodon loop
[41], where almost all eukaryotic nuclear (and the major-
ity of archaeal) tRNA introns are found, even though
introns are only found in a subset of tRNA isoacceptors
[82]. It has been proposed previously that this conserved
position constitutes a 'molecular memory’ of the position
of the ancestral intron that was responsible for the
ligation that created the first tRNA [83]. If the canonical
intron insertion position is ancestral, it implies that
eukaryotic nuclear tRNAs (and possibly archaeal tRNAs)
have a more ancestral structure than eubacterial tRNAs,
which usually lack tRNA introns altogether or possess
self-splicing introns at a variety of different positions in
the molecule. Such a finding is consistent with the
introns-early hypothesis, and the proposal that eubac-
teria have undergone a process of intron loss [84,85].
Conclusions
I have argued that the RNA world hypothesis, while
certainly imperfect, is the best model we currently have
for the early evolution of life. While the hypothesis
does not exclude a number of possibilities for what – if
anything – preceded RNA, unfortunately the evolution
of coded protein synthesis has drawn a veil over the
previous history of proteins. The situation is different
in the case of non-coding RNAs such as ribosomal
RNA and tRNA, as these were able to replicate prior to
the evolution of ribosomal protein synthesis.
As we have noted previously [5], the proposal that the

RNA world evolved in acidic conditions [5,6] offers a
plausible solution to Charles Kurland's criticism [57]
that the RNA world hypothesis makes no reference to a
possible energy source. As de Duve [87] has noted, "the
widespread use of proton-motive force for energy trans-
duction throughout the living world today is explained
as a legacy of a highly acidic prebiotic environment and
may be viewed as a clue to the existence of such an en-
vironment" [87]. Although Russell, Martin and others
[23-26] have argued that proton and thermal gradients
between the outflow from hot alkaline (pH 9-11) under-
sea hydrothermal vents and the surrounding cooler
more acidic ocean may have constituted the first sources
of energy at the origin of life, the lack of RNA stability
at alkaline pH ([5] and references within) would appear
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to make such vents an unlikely location for RNA world
evolution.
Although possible, it seems unlikely that the A-C base

pair 'mismatches' found in the tRNA genes of Ferro-
plasma acidarmanus and Picrophilus torridus (two spe-
cies of archaebacteria with a reportedly acidic internal
pH) [5] are corrected by C to U RNA editing that
occurs, for example, with some - but not other - plant
chloroplast tRNAs [88,89]. Such editing of secondary
structure A-C base pair mismatches has so far not been
found to occur in archaebacteria; however, in a single
archaeal species (Methanopyrus kandleri) a tertiary
structure A-C base pair found in 30 of its 34 tRNAs
undergoes C to U editing catalyzed by a cytidine deami-
nase CDAT8 [90]. M. kandleri is a unique organism that
contains many 'orphan' proteins. CDAT8, which con-
tains a cytidine deaminase domain and putative RNA-
binding domain, has no homologues in other arachaeal
species, including F. acidarmanus and P. torridus (L
Randau, pers. commun.; [90]). Definitive proof, however,
that the A-C base pairs in these two species are not
modified would of course require e.g. cDNA sequencing
of the tRNAs.
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Reviewers’ comments
Referee 1: Eugene Koonin
I basically agree with Bernhardt. The RNA World scenario is bad as a
scientific hypothesis: it is hardly falsifiable and is extremely difficult to verify
due to a great number of holes in the most important parts. To wit, no one
has achieved bona fide self-replication of RNA which is the cornerstone of
the RNA World. Nevertheless, there is a lot going for the RNA World
(Bernhardt summarizes much of the evidence, and I add more below)
whereas the other hypotheses on the origin of life are outright helpless.
Moreover, as argued in some detail elsewhere [91], the RNA World appears
to be an outright logical inevitability. ‘Something’ had to start efficiently
replicating to kick off evolution, and proteins do not have this ability. As
Bernhardt rightly points out, it is not certain that RNA was the first replicator
but it does seem certain that it was the first ‘good’ replicator. To clarify, this
does not imply that the primordial RNA World did not have peptides; on the
contrary, it is plausible that peptides played important roles but they were
not initially encoded in RNA.
Moreover, straightforward observations on modern proteins indicate that the
role of RNA in the ancient translation system was much greater that it is in the
modern system. Indeed, Class I aminoacyl-tRNA synthetases (aaRS) represent
only a small branch on the complex evolutionary tree of Rossmann-like
domains, so the common ancestor of all 10 Class I aaRS emerged after
extensive diversification of this particular class of protein domains had already
taken place. Accordingly, one is compelled to conclude that a high-fidelity
translation system that alone would enable extensive protein evolution existed
already at the late stages of the hypothetical RNA World [92].

All this discussion is not pointless play with hypotheses. Realization of the
unique status of the RNA World among the origin of life scenarios is critical
for maintaining the focus of research on truly important directions such as
experimental and theoretical study of the evolution of ribozymes rather than
futile attempts to debunk the RNA World.

Referee 2: Anthony Poole

Harold Bernhardt’s review of the RNA world hypothesis is readable and timely.
He presents a very open-minded review of recent results and how they impact
on old ideas, and distills a large amount of material. Aside from the admirable
attempt to synthesize a vast array of ideas, a valuable contribution hidden
within is the critical assessment of the view that the RNA world hypothesis
needs to be abandoned in favour of a peptides-first model.

Author’s response: I have revised the abstract and introduction to include
reference to my critique of the ‘proteins (or peptides) first’ hypothesis.
While I doubt that anyone seriously excluded peptides as part of a prebiotic milieu,
the primacy of peptides does need careful consideration. In this regard, the explicit
explanation of why a pre-genetic code origin of proteins will not be detectable
from comparative genomic analyses is an important contribution. Perhaps this is
obvious to some, but in light of a growing view that non-ribosomal peptide
synthesis preceded ribosomal peptide synthesis, it would seem that the community
needs a reminder, and Bernhardt spells it out in a very informative manner.
Another issue with arguing for non-ribosomal peptide synthesis preceding the
ribosome is that there is an enormous difference in information input versus
output. As discussed in [62], megaenzymes like cyclosporin are ~15000 amino
acids in length and produce products of 11 amino acids in length – a factor of
104 is not trivial. While non-ribosomal peptide synthetases are modular and
could in principle be engineered into minimal entities, the challenge of
equalizing information input and output is significant regardless of one’s
favoured prebiotic starting point. It is clear from reading Bernhardt’s review that
the RNA community is much closer to this than those who seek to replace
primordial RNA-based replication with peptide-based replication.

Referee 3: Michael Yarus (nominated by Laura Landweber)

Almost always, progress to new understanding is sporadic, with insights
coming in separated locales. Difficulties temporarily immobilize discussion,
but then are surmounted by a successful theory. This sometimes inchoate
stagger toward a broader, more self-consistent argument is all that can be
expected, even of an ultimately successful idea. Discussions of the RNA
world sometimes forget this, and demand e.g., the ultimate replicase today!
But this essay by Harold Bernhardt remembers what has happened for other
successful evolutionary ideas, like the big tree. For all its successes, the tree is
still being questioned under extreme prejudice in certain quarters, as is the
RNA world.

Contrariwise, here we have here a sympathetic review of the support for the
RNA world, which specifically makes the point that it fits our descent better
than other ideas (You look like the son of a montmorillonite to me, ya
mangy mutant!). It will be useful to those who want an entry to the RNA
world literature, and could easily serve as the crux of a university course.
However, this is also its weakness; the text is polite and respectful, even to
those whose ‘contribution’ has been otherwise. It treats even loony ideas
(‘we need proteins to evolve translation!’) with deference. Or to put it in
other words, it is edgeless – some attitude would be welcome. Some choice
between hypotheses should go with the territory; some consequent
make-or-break predictions are the responsibilities of a guide. But as a gentle
introduction, you will not find better.
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Author’s response: In revising the manuscript, I have – to some degree
inadvertently – added a bit more bite!
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