
RESEARCH Open Access

Assessing quality and completeness of human
transcriptional regulatory pathways on a
genome-wide scale
Evgeny Shmelkov1,2, Zuojian Tang2, Iannis Aifantis3, Alexander Statnikov2,4*

Abstract

Background: Pathway databases are becoming increasingly important and almost omnipresent in most types of
biological and translational research. However, little is known about the quality and completeness of pathways
stored in these databases. The present study conducts a comprehensive assessment of transcriptional regulatory
pathways in humans for seven well-studied transcription factors: MYC, NOTCH1, BCL6, TP53, AR, STAT1, and RELA.
The employed benchmarking methodology first involves integrating genome-wide binding with functional gene
expression data to derive direct targets of transcription factors. Then the lists of experimentally obtained direct
targets are compared with relevant lists of transcriptional targets from 10 commonly used pathway databases.

Results: The results of this study show that for the majority of pathway databases, the overlap between
experimentally obtained target genes and targets reported in transcriptional regulatory pathway databases is
surprisingly small and often is not statistically significant. The only exception is MetaCore pathway database which
yields statistically significant intersection with experimental results in 84% cases. Additionally, we suggest that the
lists of experimentally derived direct targets obtained in this study can be used to reveal new biological insight in
transcriptional regulation and suggest novel putative therapeutic targets in cancer.

Conclusions: Our study opens a debate on validity of using many popular pathway databases to obtain
transcriptional regulatory targets. We conclude that the choice of pathway databases should be informed by solid
scientific evidence and rigorous empirical evaluation.

Reviewers: This article was reviewed by Prof. Wing Hung Wong, Dr. Thiago Motta Venancio (nominated by Dr. L
Aravind), and Prof. Geoff J McLachlan.

Background
Recently the biological pathways have become a com-
mon and probably the most popular form of represent-
ing biochemical information for hypothesis generation
and validation. These maps store wide knowledge of
complex molecular interactions and regulations occur-
ring in the living organism in a simple and obvious way,
often using intuitive graphical notation. Two major
types of biological pathways could be distinguished.
Metabolic pathways incorporate complex networks of
protein-based interactions and modifications, while sig-
nal transduction and transcriptional regulatory pathways

are usually considered to provide information on
mechanisms of transcription [1].
For the last decade a variety of different public and

commercial online pathway databases have been devel-
oped [2] and are currently routinely utilized by biomedi-
cal researchers and even by the U.S. government
regulatory agencies such as FDA [3]. Each of these data-
bases has its own structure, way of data storage and
representation, and method for extracting and verifying
biological knowledge. Information in the most popular
publicly available pathway databases, such as BioCarta,
KEGG [4], WikiPathways [5], Cell Signaling Technology
pathways is usually either curated by efforts of a particu-
lar academic group (e.g., KEGG) or by direct participa-
tion of the broader scientific community (e.g.,
WikiPathways). Popular commercial products, such as
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MetaCore [6], Ingenuity Pathway Analysis, Pathway Stu-
dio and Biobase Knowledge Library (TRANSPATH and
TRANSFAC) are often based on literature curation (e.g.,
Biobase Knowledge Library) and/or complex algorithms
for mining biomedical literature (e.g., Pathway Studio).
While there are a lot of data collected on human

metabolic processes, the content of signal transduction
and transcriptional regulatory pathways varies greatly in
quality and completeness [7]. An indicative comparison
of MYC transcriptional targets reported in ten different
pathway databases reveals that these databases differ
greatly from each other (Figure 1). Given that MYC is
involved in the transcriptional regulation of approxi-
mately 15% of all genes [8], one cannot argue that the
majority of pathway databases that contain less than
thirty putative transcriptional targets of MYC are even
close to complete. More importantly, to date there have
been no prior genome-wide evaluation studies (that are
based on genome-wide binding and gene expression
assays) assessing pathway databases. Thus, biomedical
scientists have to make their choice of the database
based on interface, prior experience, or marketing pre-
sentations. However, it is critically important that this
choice is informed by a rigorous evaluation that utilizes
genome-wide experimental data. In the current study we
perform such an evaluation of ten commonly used path-
way databases. Particularly, we assessed the transcrip-
tional regulatory pathways, considered in the current

study as the interactions of the type ‘transcription fac-
tor-transcriptional targets’.
Our study first involves integration of human genome-

wide functional microarray or RNA-seq gene expression
data with protein-DNA binding data from ChIP-chip,
ChIP-seq, or ChIP-PET platforms to find direct tran-
scriptional targets of the seven well known transcription
factors: MYC, NOTCH1, BCL6, TP53, AR, STAT1, and
RELA. The choice of transcription factors is based on
their important role in oncogenesis and availability of
binding and expression data in the public domain.
Then, the lists of experimentally derived direct targets
are used to assess the quality and completeness of 84
transcriptional regulatory pathways from four publicly
available (BioCarta, KEGG, WikiPathways and Cell Sig-
naling Technology) and six commercial (MetaCore,
Ingenuity Pathway Analysis, BKL TRANSPATH, BKL
TRANSFAC, Pathway Studio and GeneSpring Pathways)
pathway databases. We measure the overlap between
pathways and experimentally obtained target genes and
assess statistical significance of this overlap. Addition-
ally, we demonstrate that experimentally derived lists of
direct transcriptional targets can be used to reveal new
biological insight on transcriptional regulation. We show
this by analyzing common direct transcriptional targets
of MYC, NOTCH1 and RELA that act in interconnected
molecular pathways. Detection of such genes is impor-
tant as it could reveal novel targets of cancer therapy.
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Number of genes in 
a database 493 29 13 4 14 7 6 26 12 197 1649

Ingenuity (Transcription) 89 12 8 2 5 4 4 2 0 49 56 89

Ingenuity (All) 20 8 3 6 5 6 9 5 96 200 493

TransPath 3 1 2 0 1 3 2 16 23 29

TransFac 1 1 1 2 2 0 10 12 13

BioCarta 0 1 0 0 0 3 4 4

KEGG 1 3 0 0 5 4 14

WikiPathways 1 0 0 6 5 7

CST 0 0 5 6 6
GeneSpring (Expression 

or Promoter binding) 12 10 14 26
GeneSpring (Expression 

and Promoter binding) 4 6 12

Pathway Studio 112 197

Figure 1 Number of genes in common between MYC transcriptional targets derived from ten different pathway databases. Cells are
colored according to their values from white (low values) to red (high values).
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Methods
Functional expression data
The functional expression data was obtained from ele-
ven previously published gene expression microarray
and RNA-seq studies [9-19], where the transcription fac-
tor in question was knocked-down or over-expressed
(see Table S1 in Additional File 1). In order to achieve
statistical significance of our results, we selected only
datasets with at least eight samples in total and three
samples per condition.

Protein-DNA binding data
The transcription factor-DNA genome-wide binding
data was derived from seven previously published ChIP-
chip, ChIP-seq and ChIP-PET studies summarized in
Table S2 in Additional File 1 [9,13,14,20-23].

Generation of the gold-standards
A gold-standard is a list of genes that are directly down-
stream of a particular transcription factor, and are func-
tionally regulated by it. Generation of gold-standards
involved steps that are outlined below.
Functional gene expression data was first used to identify

genes that are downstream (but not necessarily directly) of
a particular transcription factor by application of the Stu-
dent’s t-test with a = 0.05 to ‘experiment’ (e. g., siRNA)
and ‘control’ samples. Wherever applicable, we used a
paired t-test that has larger statistical power to find differ-
entially expressed genes than an unpaired version. Also, if
some transcription factor had a well-known role as either
activator or repressor for the majority of target genes, we
created two gold-standards: one with a one-sided t-test and
another one with a two-sided t-test. For example, since it is
known that MYC is an activator for most target genes [24],

we expect that in siRNA experiments genes downstream of
MYC are down-regulated; this can be detected by a one-
sided t-test. However, since there are studies that reported
role of MYC as a repressor [25,26], we can also expect that
genes downstream of MYC can be either up-or down-
regulated; this can be detected by a two-sided t-test.
Genome-wide binding data was then employed to

identify direct binding targets of each transcription fac-
tor. Specifically, for each studied transcription factor we
obtained the set(s) of genes with detected promoter
region-transcription factor binding according to the pri-
mary study that generated binding data.
We emphasize that using genome-wide binding data

by itself is insufficient to find downstream functional
targets of a transcription factor, because many binding
sites can be non-functional [27]. Therefore, the final
step in gold-standard creation required overlapping of
the list of direct binding targets (from binding data) with
the list of downstream functional targets (from expres-
sion data). Knowledge gained by integration of data
from these two sources is believed to provide high con-
fidence that a given transcription factor directly regu-
lates a particular gene [28]. Also, integration of data
from two different sources contributes to the reduction
of false positives in the resulting gold-standards.

Pathway databases
In the current study we analyzed twelve pathway-derived
sets of direct transcriptional targets for each transcription
factor of interest. These gene sets were extracted from
the ten pathway databases listed in Table 1 according to
the following protocol.
From each relevant pathway present in BioCarta,

KEGG, WikiPathways and Cell Signaling Technology,

Table 1 Pathway databases

Pathway Database Access Primary data source Vendor/Developer Web site

Ingenuity Pathway
Analyzer (IPA)

Commercial Expert curation/data
mining

Ingenuity Systems, Inc. http://www.ingenuity.com

BKL TRANSPATH Commercial Expert curation BIOBASE http://www.biobase-international.
com

BKL TRANSFAC Commercial Expert curation BIOBASE http://www.biobase-international.
com

BioCarta Free Expert curation/scientific
community contribution

BioCarta, LLC http://www.biocarta.com

KEGG Free Expert curation Kanehisa Laboratories http://www.genome.jp/kegg

WikiPathways Free Expert curation/scientific
community contribution

BiGCaT Bioinformatics (University of Maastricht)
and Conklin Lab (Gladstone Institutes, UCSF)

http://www.wikipathways.org

Cell Signaling
Technology pathways

(CST)

Free Expert curation/scientific
community contribution

Cell Signaling Technology, Inc. http://www.cellsignal.com

GeneSpring Commercial Expert curation/data
mining

Agilent Technologies, Inc. http://www.chem.agilent.com

Pathway Studio Commercial Data mining Ariadne Genomics, Inc. http://www.ariadnegenomics.com

MetaCore Commercial Expert curation GeneGo, Inc. http://www.genego.com
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we manually extracted all stated direct transcriptional
targets of each of the seven transcription factors from
our list. From the Ingenuity Pathway Analysis database,
we extracted two sets of target genes regulated by each
transcription factor of interest. One of them (a more
conservative) contained all genes with the ‘transcription’
relation type to a given transcription factor, while
another one (a more liberal) incorporated union of the
genes with relation types ‘transcription’, ‘expression’ and
‘protein-DNA interaction’. From each of the BKL
TRANSPATH and TRANSFAC databases, we extracted
a set of genes that are stated to be regulated by each
transcription factor in question (i.e., “Binding Sites/
Regulated Genes” and “Regulates expression of (direct
or indirect)”). From the GenSpring database, we created
two gene sets. The first set (a more conservative) con-
tained intersection of the following two groups of genes:
genes regulated by the transcription factor on the
expression level and genes that are bound to a given
transcription factor. The second set (a more liberal)
incorporated a union of above two groups of genes.
Finally, from the Pathway Studio and MetaCore pathway
databases, we extracted a set of targets that are tran-
scriptionally regulated by each of the transcription fac-
tors from our list (in MetaCore we considered a union
of genes with ‘transcription regulation’ and ‘co-regula-
tion of transcription’ types of relations with given tran-
scription factor).

Statistical comparison of gene sets
Since we are seeking to compare gene sets from differ-
ent studies/databases, it is essential to transform genes
to standard identifiers. That is why we transformed all
gene sets to the HUGO Gene Nomenclature Committee
approved gene symbols and names [29].
In order to assess statistical significance of the overlap

between the resulting gene sets, we used the hypergeo-
metric test at 5% a-level with false discovery rate cor-
rection for multiple comparisons by the method of
Benjamini and Yekutieli [30]. The alternative hypothesis
of this test is that two sets of genes (set A from pathway
database and set B from experiments) have greater num-
ber of genes in common than two randomly selected
gene sets with the same number of genes as in sets
A and B. For example, consider that for some transcrip-
tion factor there are 300 direct targets in the pathway
database #1 and 700 in the experimentally derived list
(gold-standard), and their intersection is 16 genes
(Figure 2a). If we select on random from a total of
20,000 genes two sets with 300 and 700 genes each,
their overlap would be greater or equal to 16 genes in
6.34% times. Thus, this overlap will not be statistically
significant at 5% a-level (p = 0.0634). On the other
hand, consider that for the pathway database #2, there

are 30 direct targets of that transcription factor, and
their intersection with the 700-gene gold-standard is
only 6 genes. Even though the size of this intersection is
rather small, it is unlikely to randomly select 30 genes
(out of 20,000) with an overlap greater or equal to 6
genes with a 700-gene gold-standard (p = 0.0005, see
Figure 2a). This overlap is statistically significant at 5%
a-level.
Even though the above statistical methodology is based

on odds ratios, databases with a very small number of
targets may not reach statistical significance regardless of
the quality of their data. To address this issue and pro-
vide another view on the data of our study, we calculate
an enrichment fold change ratio (EFC) for every intersec-
tion between a gold-standard and a pathway database.
For a given pair of a gold-standard and a pathway data-
base, EFC is equal to the observed number of genes in
their intersection, divided by the expected size of inter-
section under the null hypothesis (plus machine epsilon,
to avoid division by zero). Notice however that larger
values of EFC may correspond to databases that are
highly incomplete and contain only a few relations. For
example, consider that for some transcription factor
there are 300 direct targets in the pathway database #1
and 50 in the experimentally derived list (gold-standard),
and their intersection is 30 genes (Figure 2b). If we select
on random from a total of 20,000 genes two sets with

Figure 2 Illustration of statistical methodology for comparison
between a gold-standard and a pathway database.
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300 and 50 genes each, their expected overlap under the
null hypothesis will be equal to 0.75. Thus, the EFC ratio
will be equal to 40 (= 30/0.75). On the other hand, con-
sider that for the pathway database #2, there are 2 direct
targets of that transcription factor, and their intersection
with the 50-gene gold-standard is only 1 gene. Even
though the expected overlap under the null hypothesis
will be equal to 0.005 and EFC equal to 200 (5 times big-
ger than for the database #1), the size of this intersection
with the gold-standard is 30 times less than for database
#1 (Figure 2b).

Results
Comparison between pathway databases
First, we assessed all pathway databases listed in Table 1
by a comparison of the extracted transcriptional targets
for each of the seven transcription factors. The number
of overlapping MYC targets between pathway databases
is shown in Figure 1. We also calculated Jaccard index,
the normalized measure of similarity between two gene
lists (which is the size of intersection between two gene
lists divided by the size of their union), for all pairwise
comparisons of pathway databases (Figure S1 in Addi-
tional File 1). Since the information in the majority of
these databases is curated, we would expect to see
almost full intersection for every pair of databases, i.e.
Jaccard index close to 1. However, our analysis revealed
that the transcriptional data differs significantly from
one database to another. Indeed, the average Jaccard
index over all pairwise comparisons of pathway data-
bases ranges between 0.0180 (AR) and 0.0742 (RELA),
depending on a transcription factor. The grand average
Jaccard index over all pathway comparisons and tran-
scription factors is 0.0533. This means that only 5.33%
of gene targets that belong to either of the two tran-
scriptional regulatory pathways, also belong to both
pathways. Furthermore, the transcriptional regulatory
information on particular transcription factors was
totally absent from some pathway databases.

Generation of the gold-standards
By integrating functional gene expression and genome-
wide binding datasets, we obtained 25 gold-standards
for the seven transcription factors considered in our
study (Table 2). Each of these gold-standards was gener-
ated as described in the Methods section and contains
genes that are directly downstream of a particular tran-
scription factor and are functionally regulated by it. A
detailed list of all genes in each gold-standard is avail-
able from http://www.nyuinformatics.org/downloads/
supplements/PathwayAssessment Additionally, as for
MYC, NOTCH1, RELA, and BCL6 there was more than
one dataset (functional gene expression or genome-wide
binding) available, we also generated a list of most

confident direct downstream targets of each of these
transcription factors by overlapping gold-standards that
were obtained with different datasets (Table S3 in Addi-
tional File 1). While these lists are expected to contain
only the most confident genes which are directly regu-
lated by a transcription factor in question, these lists are
likely to be incomplete due to condition-specific tran-
scriptional targets that may not appear in all datasets
and also due to statistical considerations, namely the
fact that probability of obtaining significant results in
several studies declines with the number of studies [31].

Comparison between gold-standards and transcriptional
regulatory pathways
For each transcription factor, we analyzed an overlap
between experimentally derived gold-standards of direct
transcriptional targets and 12 gene sets from pathway
databases as described in the Methods section. The
detailed results are shown in Figure 3 and are summar-
ized in Figure 4. Over all gold-standards and transcrip-
tion factors, the largest overlap with experimentally
derived gene targets was obtained by MetaCore (statisti-
cally significant overlap with 84% gold-standards). Other
pathway databases to a large extent do not have statisti-
cally significant overlaps with experimentally obtained
target genes: the best of the remaining pathway data-
bases, Ingenuity Pathway Analysis, results in statistically
significant overlap with only 36% of gold-standards.
Notably, in 82 comparisons (over all 25 gold-standards
and 12 gene sets for each transcription factor) the
resulting overlap of pathways with gold-standards is
empty. In brief, for the majority of pathway databases
used in this study, randomly selected gene sets yield the
same number of overlapping genes with gold-standards
as the pathway databases. On the other hand, the big-
gest average EFC ratio was obtained by WikiPathways
and was equal to 19. Notably, the intersection of Wiki-
Pathways data with the gold-standard #I for TP53 was
203 times bigger than the expected one for that overlap
(the largest EFC over all assessed data). Furthermore,
the EFC of this intersection was approximately 18.5
times bigger than the corresponding EFC of MetaCore.
However, the overlap of WikiPathways data with this
gold-standard (3 genes) was 6 times smaller than the
overlap of MetaCore data with the gold-standard (18
genes).

Cross-talk of MYC, NOTCH1, RELA transcriptional
regulatory pathways
The gold-standards generated in our study contain direct
targets of each individual transcription factor. However,
these factors only rarely act individually. Indeed, we and
others have previously suggested that induction and
maintenance of T-cell acute lymphoblastic leukemia
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(T-ALL), a devastating pediatric blood cancer, depends
on the cross talk of three transcription factors,
NOTCH1, MYC, and RELA (NF-�B) [15,19,32]. We have
thus hypothesized that these factors should share target-
genes that could be important for the progression of the
disease. Our analysis supported this hypothesis as it iden-
tified a large number of genes targeted by two or more
factors (Table S4 in Additional File 1). As expected,
NOTCH1 and MYC, two transcription factors that have
been closely connected in T-ALL share a large number of
common targets (> 400). Some of these genes are very
intriguing from a biological point of view. For example,

two activators of cell cycle entry, CDK4 and CDK6
appear to be induced by both factors. We have previously
shown that silencing of CDK4/6 activity is able to sup-
press T-ALL suggesting that NOTCH1 and MYC activ-
ities could converge on these CDK genes to initiate
expansion of transformed cells [33]. Interestingly, MYC
itself and its interacting partners MYCB and MYCB2
appear to also be targeted by both factors, suggesting an
interesting signal amplification mechanism.
RELA and MYC also share a large number (> 550) of

common gene targets. This is a novel biological finding
with importance for the biology of T-cell leukemia. For

Table 2 Gold standards for each transcription factor (TF)

TF Gold
Standard ID#

Genes bound by the TF are
obtained from

Genes that are downstream of the TF are obtained from

Study Analyzed to find genes that are

AR I • differentially expressed between DHT treated (for 4 hr.) and
control samples

II Wang et al. [22] Wang et al. [18] • differentially expressed between DHT treated (for 16 hr.) and
control samples

III • differentially expressed between DHT treated (for 4 hr. and 16
hr.) and control samples

BCL6 I Basso et al. [9] • differentially expressed between siRNA treated and control
samples

II Ci et al [20] Basso et al. [9] • differentially expressed between siRNA treated and control
samples

III Basso et al. [9] • up-regulated in siRNA treated samples

IV Ci et al [20] • up-regulated in siRNA treated samples

MYC I Cappellen et al. [11] • differentially expressed between siRNA treated and control
samples

II Margolin et al. [14] • down-regulated in siRNA treated samples

III Bild et al. [10] • differentially expressed between MYCexpressing and control
samples

IV • up-regulated in MYC-expressing samples

NOTCH1 I Margolin et al. [14] • differentially expressed between GSI treated and control
samples

II • down-regulated in GSI treated samples

III Margolin et al. [14] Palomero et al. [15] • differentially expressed between GSI treated and control
samples

IV • down-regulated in GSI treated samples

V Sanda et al. [17] • differentially expressed between GSI treated and control
samples

VI • down-regulated in GSI treated samples

RELA I Espinosa et al. [19] • differentially expressed between NBD treated and control
samples

II Kasowski et al. [13] • down-regulated in NBD treated samples

III Kasowski et al. [13] • differentially expressed between TNF-a treated and control
samples

IV • up-regulated in TNF-a treated samples

STAT1 I Robertson et al. [21] Pitroda et al. [16] • differentially expressed between shRNA treated and control
samples

II • down-regulated in shRNA treated samples

TP53 I Wei et al. [23] Chau et al. [12] • differentially expressed between shRNA and control samples

II • down-regulated in shRNA treated samples
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17 83 31 8 0 1 1 0 11 1 51 441
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II 98 1 1 0 0 0 0 0 0 0 0 1 5
III 271 0 4 0 0 0 0 0 0 0 0 2 14
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I 1887 15 85 5 3 2 0 1 0 4 1 28 333
II 1708 19 80 5 2 1 1 0 1 2 1 26 278
III 3039 30 151 13 6 0 3 4 4 7 4 65 624
IV 2224 20 112 9 5 0 2 3 1 8 5 39 476

89 493 29 13 4 14 7 6 26 12 197 1649

I 414 2 4 1 0 1 1 1 2 1 1 8 16
II 302 2 4 1 0 1 1 1 2 1 1 7 17
III 637 2 4 1 1 1 1 1 2 2 1 11 21
IV 471 2 2 1 0 1 1 1 2 1 1 5 19
V 167 1 1 1 0 0 0 0 1 0 0 1 4
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8 84 5 1 4 3 3 9 15 4 210 133

I 1864 2 31 6 5 9 4 1 3 5 0 21 53
II 1420 0 16 4 4 1 1 0 1 2 0 10 28
III 188 1 11 6 3 7 4 1 1 3 0 6 15
IV 136 1 13 7 3 4 3 1 1 3 0 8 12

18 196 69 42 141 63 13 7 18 0 134 389

I 2128 1 5 5 0 1 2 0 1 2 1 8 15
II 2967 1 6 6 2 0 3 2 0 5 1 15 33

5 95 67 35 3 33 22 2 19 4 152 285

I 34 5 8 7 3 3 6 3 1 0 0 10 18
II 37 5 10 8 3 3 7 3 1 0 0 11 16

65 416 151 26 13 42 7 3 21 9 447 913

Number of genes 
(in pathway)

AR

Number of genes 
(in pathway)

BCL6

Number of genes 
(in pathway)

Number of genes 
(in pathway)

STAT1

Number of genes 
(in pathway)

TP53

MYC

Number of genes 
(in pathway)

NOTCH1

Number of genes 
(in pathway)

RELA

Figure 3 Comparison between different pathway databases and experimentally derived gold-standards for all considered
transcription factors. Value in a given cell is a number of overlapping genes between a gold-standard and a pathway-derived gene set. Cells
are colored according to their values from white (low values) to red (high values). Underlined values in red represent statistically significant
intersections.
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example, several essential T-cell regulators, including
RUNX1, BCL2L1 (BCL-xL), ID3, ITCH, JAK3 and
NOTCH1, appear to be controlled by both transcription
factors. Interestingly, NOTCH1 is downstream of both
RELA and MYC but at the same time these two factors
are targets of oncogenic NOTCH1 [15,32], suggesting

once more an intricate auto-amplification loop that
could sustain transformation.

Discussion
At the core of this study was creation of gold-standards
of transcriptional regulation in humans that can be

Figure 4 Summary of the pathway databases assessment. Green cells represent statistically significant intersections between experimentally
derived gold-standards and transcriptional regulatory pathways. White cells denote results that are not statistically significant. Numbers are the
enrichment fold change ratios (EFC) calculated for each intersection.
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compared with target genes reported in transcriptional
regulatory pathways. We focused on seven well known
transcription factors and obtained gold-standards by
integrating genome-wide transcription factor-DNA bind-
ing data (from ChIP-chip, ChIP-seq, or ChIP-PET plat-
forms) with functional gene expression microarray and
RNA-seq data. The latter data allows to survey changes
in the transcriptomes on a genome-wide scale after the
inhibition or over-expression of the transcription factor
in question. However, change in the expression of a par-
ticular gene could be caused either by the direct effect
of the removal or introduction of a given transcription
factor, as well as by an indirect effect, through the
change in expression level of some other gene(s). As
mentioned in the Methods section, transcription factor-
DNA binding data by itself is similarly insufficient to
determine downstream functional targets of a transcrip-
tion factor due to the occurring nonfunctional and/or
non-specific protein binding activity [27]. Thus, it is
essential to integrate data from these two sources to
obtain an accurate list of gene targets that are directly
regulated by a transcription factor [28].
It is worth noting that tested pathway databases typically

do not give distinction between cell-lines, experimental
conditions, and other details relevant to experimental sys-
tems in which data were obtained. These databases in a
sense propose a ‘universal’ list of transcriptional targets.
However, it is known that transcriptional regulation in a
cell is dynamic and works differently for different systems
and stimuli. This accentuates the major limitation of path-
way databases and emphasizes importance of deriving a
specific list of transcriptional targets for the current
experimental system. In this study we followed the latter
approach by developing gold-standards for specific well-
characterized biological systems and experimental
conditions.
However our approach for building gold-standards of

direct mechanistic knowledge has several limitations.
First of all, these are limitations inherited by the assay-
ing technology. Microarrays cannot reliably detect small
changes in gene expression and/or genes expressed on
very low levels [34]. Similarly, ChIP-chip transcription
factor-DNA binding data is known to have imperfect
reproducibility [35]. Second, functional gene expression
and binding data used in our work often originated
from different studies. Even though we verified that
there were comparable biological systems, even minor
differences in experimental conditions and phenotypes
between studies can challenge integration of binding
and functional expression data. Third, the siRNA knock-
down is not ideal experiment for proving direct causa-
tion for identified binding relations, because it could
cause some false positives in our gold-standards. For
example, a transcription factor could bind to promoter

region of a gene, but regulate expression of that gene
indirectly via transregulation of another transcription
factor. Forth, some number of false negatives in our
approach could arise due to the compensatory mechan-
ism in the cell. Finally, our approach can yield only
gold-standards with direct downstream targets of the
transcription factor, and therefore information about
upstream regulation cannot be obtained by this method.
Likewise, it does not allow capturing interactions
between genes that are not transcription factors. Not-
withstanding the above challenges, this method is cur-
rently state-of-the-art and is believed to provide with
high confidence direct regulatory interactions of the
transcription factors on genome-wide scale [28].
In addition to assessment of pathway databases, these

gold-standards can be used in order to get new biologi-
cal insights in the field of transcriptional regulation.
Specifically, our results suggest that multiple transcrip-
tion factors can co-operate and control both physiologi-
cal differentiation and malignant transformation, as
demonstrated utilizing combinatorial gene-profiling for
NOTCH1, MYC and RELA targets. These studies might
lead us to multi-pathway gene expression “signatures”
essential for the prediction of genes that could be tar-
geted in cancer treatments. In agreement with this
hypothesis, several of the genes identified in our analysis
have been suggested to be putative therapeutic targets
in leukemia, with either preclinical or clinical trials
underway (CDK4, CDK6, GSK3b, MYC, LCK, NFkB2,
BCL2L1, NOTCH1) [36].

Conclusions
The comparison of the pathway databases, the main goal
of this study, first of all revealed that human transcrip-
tional regulatory pathways often do not agree with each
other and contain different target genes. More impor-
tantly, with the exception of MetaCore, the majority of
sets of target genes specified in the transcriptional regu-
latory pathways were found to be incomplete and/or
inaccurate when compared with experimentally derived
gold-standards. Despite of the fact that in the present
study we assessed the transcriptional pathways of only
seven transcription factors (due to limited availability of
high-quality genome-wide binding and expression data
in the public domain), we anticipate that our results
would generalize to other transcription factors and
pathways.
Given widespread use of pathways for hypothesis gen-

eration, the conclusions of our study have significant
implications for biomedical research in general and dis-
covery of new drugs and treatments. In order to obtain
a more accurate research hypothesis, the choice of path-
way databases has to be informed by solid scientific evi-
dence and rigorous empirical evaluations such as ours.
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We thus aim to continue comprehensive benchmarking
of biological pathways to facilitate evidence-based path-
way selection of biomedical researchers. At the same
time we propose to developers of pathways databases to
take advantage of recently available genome-wide bind-
ing and functional expression data to refine transcrip-
tional regulatory pathways.

Reviewers’ comments
Reviewer #1: Prof. Wing Hung Wong
Department of Statistics, Stanford University, Stan-

ford, CA, USA

Reviewer’s comments
The purpose of this paper is to assess the quality and
completeness of information in several popular pathway
databases on the targets of transcription factors. To do
this, the authors extracted this information for seven
transcription factors from 10 pathway databases, and
compared it to “gold standard” target lists identified
from expression profiling and ChIP-seq experiments.
The “gold standard” criterion is a relatively stringent
one that requires not only ChIP-seq support for interac-
tion between the regulator and the regulatory regions of
the target gene, but also significant changes in target
gene expression upon knockdown or overexpression of
the regulator.
The main finding is that there is a very low degree of

agreement among the target lists extracted from the dif-
ferent databases, and only one of the database (Meta-
Core) can provide a statistically significant overlap of
targets when compared to the gold standard lists.
This is a very timely research. Many investigators are

now incorporating information from the pathway data-
bases in their data analysis. The results of this paper
serve to warn us that the pathway databases are far
from complete and may yield misleading results.
One unsatisfactory aspect of the statistical analysis

presented in this paper is the over-reliance of test of sig-
nificance as opposed to quantification of the degree of
overlap by appropriate indexes such as odds ratio or
enrichment fold-changes. For example, it may be that
TransFac and KEGG annotations are highly reliable but
they cannot reach statistical significance because they
contain very few relations. From this consideration it is
not surprising that MetaCore, which contains a large
number of relations, appears to do so much better than
the other databases. I hope the authors can address this
issue carefully in their revision.
Authors’ response
We agree with the reviewer that the statistical methodol-
ogy has to incorporate odds ratios in order to account for
differences in sizes of pathway databases. As a matter of
fact, our statistical methodology is based on odds ratios

and thus is appropriate for the study. We admit that this
was not clearly explained in the original paper, and we
have clarified this issue in the revised manuscript. Speci-
fically, we made changes to the subsection “Statistical
comparison of gene sets” and added Figure 2.

Reviewer’s comments
The authors have not addressed my previous comment:
“One unsatisfactory aspect of the statistical analysis

presented in this paper is the over-reliance of test of sig-
nificance as opposed to quantification of the degree of
overlap by appropriate indexes such as odds ratio or
enrichment fold-changes. For example, it may be that
TransFac and KEGG annotations are highly reliable but
they cannot reach statistical significance because they
contain very few relations. From this consideration it is
not surprising that MetaCore, which contains a large
number of relations, appears to do so much better than
the other databases. I hope the authors can address this
issue carefully in their revision.”
In their response they stated that odds ratio is used in

their statistics. However this is used only to compute
the hypergeometric p-value. As pointed out in my origi-
nal review, such p-values are very sensitive to the sam-
ple size so the databases with a small smaller number of
annotations will not be able to reach the threshold of
statistical significance. Thus the comparison between
the databases, such as the conclusion that MetaCore is
more reliable than the other ones, will be biased by this
effect. At the very least, the authors should provide in
their various tables, the enrichment fold change which
is the observed number in the intersection, divided by
the expected number (given fixed marginal counts for
each factor) under the null hypothesis.
Authors’ response
We agree with the reviewer that databases with a very
small number of reported targets might not reach the
threshold of statistical significance, even though their
data could be highly reliable. We improved the manu-
script accordingly and provided an alternative enrich-
ment fold change metric suggested by the reviewer.
Please see the last paragraph of the Methods section,
Figure 2b, and Figure 4.
Reviewer #2: Dr. Thiago Motta Venancio (nomi-

nated by Dr. L Aravind)
Computational Biology Branch, NCBI, NLM, NIH,

Bethesda, MD, USA

Reviewer’s comments
In this paper Shmelkov et al. analyze the targets of 7
important human transcription factors. They found that
the data obtained from different databases and direct
experimental works are not well correlated, which could
raise important concerns given the widespread use of
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such data repositories by the scientific community. I
have some critical points that should be addressed in
order to improve clarity and coherence of the
manuscript.
1) The authors extracted data from different databases

and datasets. How did they handle the problem of dif-
ferent identifier to name genes (e.g. Entrez GeneID,
Ensembl)? In addition, what is the impact of different
genome versions between databases/datasets in this ana-
lysis? These problems could easily give the low overlap
found in the manuscript.
2) Many (if not all) of the databases used in the pre-

sent study import data from the literature. Are the data-
sets used present in any of the datasets? If yes, this
could be an artificial explanation for the MetaCore large
overlap would be expected. If not, why are they not
there and why the method used by the authors is better
than the ones used by the database teams to identify the
real transcription factor targets?
3) I think the T-test and the significance level used to

define gold standards are inappropriate for genome-
scale analysis, due to multiple testing. Did the authors
do any statistical analysis to circumvent such problems
(e.g. p-value correction)?
4) Some databases have very low numbers of genes.

Wouldn’t this result in non significant results regardless
of the size of the overlap?
5) The human genome has more than 1500 transcrip-

tion factors. Due to data availability, the authors
assessed 7 of them in this study. In my opinion this far
from being “genome wide” in the transcription factor
landscape.
Minor point: In the abstract the authors say: “and tar-

gets reported in transcriptional regulatory pathways is
surprisingly small”. Are you referring to transcriptional
regulatory pathways databases?
Authors’ response
The point-by-point response follows:
1) As described in the revised manuscript, we have

transformed all gene identifiers from different studies/
databases to the HUGO Gene Nomenclature Committee
approved gene symbols and names (see the first sentence
in the subsection “Statistical comparison of gene sets”).
We also ensured that we used the same version of the
reference genome as used in the original studies when we
generated gene lists (e.g., from ChIP-Seq studies).
2) We agree with the reviewer that the above ques-

tions can facilitate understanding the results of our
study. Indeed, if some database used all recent available
data in the literature and analyzed it using appropriate
statistical and bioinformatics methodologies, it would
have a significant overlap with our gold-standards. As
we have found, this was not the case for most tested
databases. Knowing how databases obtained their

knowledge bases would potentially allow to delve deeper
and address the questions posed by the reviewer. How-
ever, these questions are outside the scope of our manu-
script; its main purpose was to evaluate pathway
databases and identify ones that mostly correlate with
the experimental data. Finally, it is also worthwhile to
mention that most of used databases use proprietary
algorithms and do not disclose how they extract under-
lying knowledge.
3) In this study we build gold-standards by intersect-

ing the list of binding targets (from ChIP-seq/ChIP-
chip/Chip-PET data) with the list of differentially
expressed downstream targets (from gene expression
data). Indeed, we used t-test for analysis of gene expres-
sion data with the 5% alpha level. In general this would
entail 5% of false positives which can be a fairly large
number. Notice however that our criterion for a gene to
participate in the gold-standard is not only that it has p-
value <0.05 according to the t-test in the gene expres-
sion data, but also that it is bound by the transcription
factor of interest, as determined from an independent
analysis of the ChIP-seq/ChIP-chip/Chip-PET data.
Thus, we reduce the number of false positives in the
resulting gold-standards. In order to further clarify this
in the revised manuscript, we added a sentence in the
last paragraph of the subsection “Generation of the
gold-standards” of “Methods”.
4) We have clarified this issue in the revised manu-

script in the subsection “Statistical comparison of gene
sets”. In summary, the statistical test is based on odds
ratios and thus accounts for different number of genes
in pathway databases.
5) We used the term “genome-wide” to denote that

the gold-standard for each transcription factor was
obtained on a genome-wide scale, i.e. it was based on
chromatin immunoprecipitation coupled with the entire
genome sequencing or microarray gene expression ana-
lysis versus focusing on a selected subset of genes. We
have improved the third paragraph of the Background
section in the revised manuscript to clarify this issue.
Reviewer’s Minor point: We agree with the reviewer

and have modified the abstract accordingly.
Reviewer #3: Prof. Geoff J McLachlan
Department of Mathematics, The University of

Queensland, Brisbane, Australia
This reviewer provided no comments for publication.

Additional material

Additional file 1: Supplementary Information. Table S1: Functional
gene expression data. Table S2: Transcription factor-DNA binding data.
Table S3: Most confident direct transcriptional targets of each of the
four transcription factors. These targets were obtained by overlapping
several gold-standards obtained with different datasets for the same
transcription factor. Table S4: Genes directly regulated by two or more
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of the three transcription factors: MYC, NOTCH1, and RELA. Figure S1:
Comparison of gene sets of transcriptional targets derived from ten
different pathway databases by Jaccard index. In case, where Jaccard
index of an overlap could not be determined due to comparison of two
empty gene lists, we assigned value 0. Cells are colored according to the
Jaccard index, from white (Jaccard index equal to 0) to dark-orange
(Jaccard index equal to 1). Each sub-figure gives results for a different
transcription factor: (a) AR, (b) BCL6, (c) MYC, (d) NOTCH1, (e) RELA, (f)
STAT1, (g) TP53.
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