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Abstract
Background: Many studies of biochemical networks have analyzed network topology. Such work
has suggested that specific types of network wiring may increase network robustness and therefore
confer a selective advantage. However, knowledge of network topology does not allow one to
predict network dynamical behavior – for example, whether deleting a protein from a signaling
network would maintain the network's dynamical behavior, or induce oscillations or chaos.

Results: Here we report that the balance between activating and inhibiting connections is
important in determining whether network dynamics reach steady state or oscillate. We use a
simple dynamical model of a network of interacting genes or proteins. Using the model, we study
random networks, networks selected for robust dynamics, and examples of biological network
topologies. The fraction of activating connections influences whether the network dynamics reach
steady state or oscillate.

Conclusion: The activating fraction may predispose a network to oscillate or reach steady state,
and neutral evolution or selection of this parameter may affect the behavior of biological networks.
This principle may unify the dynamics of a wide range of cellular networks.

Reviewers: Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by
Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.

Background
Many biological processes involve networks of interacting
proteins or genes. Examples include networks that control
the cell cycle, transcriptional regulation, cellular signaling,
and cell-fate determination in development. As more bio-
chemical networks are mapped, detailed analysis of net-
works has become possible. Many researchers have
analyzed the connections among nodes in the networks
[1-3]. Different studies have emphasized the importance

of network structure, motifs, or other properties [4-7].
While the topology of biochemical networks is informa-
tive – for example, feedback loops are necessary for oscil-
latory dynamics – topology does not fully describe
network behavior. The dynamic response to different
inputs is a key property that biological networks have
evolved; perturbing the network can alter the dynamics
[8], and the topological structure of the network may be a
byproduct of selection for dynamical behavior [9-11].
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Understanding the relationship between network topol-
ogy and dynamics can give insight into the evolution of
cellular oscillators and switches [12-14].

Using a simple model of biochemical network dynamics
[15], we show that the balance between activating and
inhibiting connections strongly influences whether net-
work dynamics reach steady state or oscillate. A high frac-
tion of activating connections predisposes network
dynamics to reach steady state. Tuning this parameter
alters the oscillation period. We found significant depend-
ence of the dynamics on the fraction of activating connec-
tions in random networks, optimized networks, and
examples of biological networks. Our work is related to
previous work on the sign of interactions in transcription
modules [16] and biological network subsystems [17].

Our model includes key features of a biochemical net-
work: interactions of varying strengths, strongly nonlinear
dynamics, and saturating response to inputs [15]. Variants
of the model have been used to study robustness in
genetic networks, with a focus on dynamics that reach
steady state [18-21]. The model describes interactions
among the nodes – which represent the genes, mRNA
transcripts, or proteins – and the activity of each node –
which represents the expression and/or activity level of
the molecule. (Activity of a molecule changes if its con-
centration changes, or because of chemical changes such
as phosphorylation.) The interaction strengths are given
by the matrix W, where Wij is the strength of the effect of
node j on node i (fig. 1). Each Wij can be positive (activat-
ing), negative (inhibiting), or zero (no interaction). The
activating fraction a is the fraction of nonzero interaction
strengths which are positive. Nodes can self-regulate, an
effect known to be important in biochemical networks
[22,23]. The activity vector is s, with si the activity of node
i. Each si is between -1 ("off") and 1 ("on"), where 0 cor-
responds to the basal activity of the node. This model is
similar to a class of models of neuronal networks [24],
where the balance of activating and inhibiting connec-
tions is also of interest [25-27].

The activity vector changes in time according to

s(t + 1) = tanh(rWs(t)). (1)

The hyperbolic tangent saturates the interactions among
nodes so that si ∈ [-1, 1]. We use r = 100 unless otherwise
specified. The dynamics can reach steady state (fig. 1e),
oscillate (fig. 1f) or change chaotically. The dynamics are
fully specified by eq. 1 and the initial condition. We ran-
domly assigned si(0) = 1 or -1 with equal probability. We
then determined whether the dynamics reach a steady
state and the period of oscillation.

Results and discussion
We first studied the dynamics of random Erdös-Renyi net-
works. We generated networks with specified size N, prob-
ability of nonzero connection between nodes c, activating
fraction connections a, and random Gaussian Wij.

For a wide range of conditions, the activating fraction a is
strongly correlated with the probability that the dynamics
of a random network reach steady state. For a near 1,
nearly all runs of the network dynamics reach steady state,
while for a near 0, few runs reach steady state; the network
dynamics typically oscillate (fig. 2). When a = 0, ~0.01%
to 10% of runs reach steady state, depending on network
degree. The probability of reaching steady state is only
weakly dependent on the size of the network, if the
number of connections per node is fixed (fig. 2). Altering
the typical magnitude of connection strengths has little
effect on the dynamics, because the dynamics are highly
saturated (see Methods).

The average period of oscillation varies strongly with a.
When a = 1, most runs reach steady state (period 1), while
for a = 0, period-2 oscillations are typical (the activity of
each node switches between -1 and 1). The longest aver-
age period occurs for a = 0.5, where activating and inhib-
iting connections are equally likely (fig. 2). Increasing N
or c tends to increase the period.

In random Erdös-Renyi networks, changing a has a strong
effect on the dynamics. We then studied how the activat-
ing fraction affects the ability of a mutation/selection
process to optimize the dynamical behavior. We numeri-
cally optimized 10-node networks to robustly reach
steady state or oscillate, using the great deluge algorithm
[28]. The convergence rate of the algorithm reflects the
density of networks in parameter space: optimization con-
verges more rapidly in regions of parameter space in
which desirable networks are dense. We found that the
number of mutations required to change a random graph
into a network with robust dynamics strongly varies with
a.

Although robustness is a key property of biological net-
works [11,29,30] there is no consistent definition of net-
work robustness. The choice of definition is important
because increasing one type of robustness can decrease
another type [31]. We considered three types of robust
dynamical behavior: topological robustness means the
dynamics are robust to alterations in the network wiring;
mutational robustness means the dynamics are robust to
alterations in the interaction strengths (with no changes
to which nodes are connected); and environmental robust-
ness means that the dynamics are robust to changes in the
initial conditions. We optimized for topologically and
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environmentally robust networks: we perturbed the net-
work topology and measured how the dynamics changed,
averaged over many initial conditions. To quantify robust-
ness, we measured changes in the steady state (if a steady
state is reached) or the oscillation period (see Methods).

Networks which robustly reach steady state were rapidly
found by our optimization for high a = 0.8: the optimiza-
tion required 26 iterations to converge, on average (fig.
3a). For lower a, the results depend on the network
degree: the increase in number of iterations to converge
was a factor of ~2 to 25 when a was decreased to 0.2. Small
increases occurred in a when selecting for steady state
behavior. The networks that were initialized with the low-
est value of a = 0.2 showed statistically significant
increases in the average a of 0.13–0.45.

Optimization for low-period oscillation converged most
rapidly for low a and for long-period oscillation at inter-

mediate a (fig. 3b–d). We note that robust period-2 oscil-
lation was found with fewer iterations of the optimization
procedure than robust steady state, while long-period
oscillation required many more iterations. For period-2
oscillation, the convergence slowed with a in a way that
depended on the network degree.

When we optimized for long-period oscillation, a non-
optimal a of 0.2 or 0.8 required 1.6–2 times more itera-
tions to converge than an optimal a of 0.5, for a degree of
8 connections per node (fig. 3c–d). When selecting for
long-period oscillation, we observed statistically signifi-
cant (see Methods) shifts in a of the selected networks: the
activating fraction shifted toward a = 0.5.

Both our network-optimization and random network
results suggest that high a promotes dynamics that reach
steady state, while intermediate and low a promotes oscil-
latory dynamics. Low a is correlated with short-period
oscillation; intermediate a is correlated with long-period
oscillation. To understand the connection between these
observations and the dynamics of biochemical networks,
we studied 5 relatively small, and therefore tractable, bio-
logical network topologies. While we did not attempt to
replicate biochemically realistic dynamics of these net-
works, we sought to understand how the network topol-
ogy and activating fraction together affect the dynamics.
For biochemical networks, the network topology is clearly
important, because these networks have been influenced
by billions of years of evolution. But are such networks
therefore insensitive to changes in a?

We studied two circadian oscillators and three signaling
networks: the 10-node Drosophila circadian clock [32], the
8-node Arabidopsis circadian clock [33], the 15-node core
Notch pathway [34], the 27-node Wnt/ -catenin signaling
pathway [35]; and the 22-node Nerve Growth Factor
(NGF) pathway [36] (see Methods for details). We expect
circadian clock networks to oscillate, and the signaling
networks to reach steady state. Consistent with this idea,
the circadian networks have an average a of 0.74, while
the signaling networks have a higher average a of 0.83.

We first studied the known topology of each network. On
average, the circadian clock network dynamics oscillate in
> 95% of trials, while the signaling network dynamics
reach steady state in 80% of trials. This result suggests that
our simple model captures features of the biological net-
work dynamics. Because numerical values for the connec-
tion strengths are not known, we averaged over randomly
chosen interaction strengths, drawn from a Gaussian dis-
tribution with unit mean and variance. Therefore, the bio-
logical networks we studied show high mutational and
environmental robustness because their dynamics are not
sensitive to the exact values of the interaction strengths or

Example networks and dynamicsFigure 1
Example networks and dynamics. A and B: sketches of 
3-node networks. Numbered points represent nodes and 
arrows interactions; blue/red arrows show activating/inhibit-
ing connections. The interaction strength is given next to 
each arrow. The two networks have the same topology but 
differ in connection strengths and activating fraction of con-
nections a; B shows a lower a. C and D: matrices W which 
represent networks A and B, where Wij is the interaction 
strength from node j to node i. E and F: Network dynamics 
with initial condition s(t = 0) = (1, -1, 1). Active/inactive 
nodes are represented by yellow/black squares The activity 
of network A reaches steady state after 2 iterations (E). The 
activity of network B undergoes period-3 oscillation (F).
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initial conditions. Two of the signaling networks' dynam-
ics (Wnt and Notch) always reach steady state; the net-
works have no feedback loops, which are required for
oscillations.

We then varied a from its natural value by changing the
sign of some interactions in the network, without chang-
ing which nodes are connected. For the circadian net-
works, the fraction of runs that reach steady state, while
always low, increases dramatically for unnatural values of
a. Increasing a to 1 by making all connections positive
increases the chance of reaching steady state from ~1% to
18% for the Drosophila circadian network. For the Arabi-
dopsis circadian network, this increase in a increases the
chance of reaching steady state from 0 to 8% (fig. 4). The
oscillation period for the circadian networks is longest
near the natural a. Both the topology and the pattern of
activating and inhibiting connections is important for cir-
cadian network dynamics.

The NGF network dynamics reach steady state much more
often than do the circadian-network dynamics. For the
natural a, ~50% of runs reach steady state. A decrease to a
= 0.5 decreased the chance of reaching steady state to 20%
(figure 4). The NGF network dynamics showed a non-
monotonic dependence of the steady state fraction on a,
for reasons not understood. The other two signaling net-
works have dynamics without feedback that reach steady
state for all values of a.

We note that the results presented here normalize the
baseline activation state of genes in a given organism to
zero, and thus a change of the default state of genes from

The activating fraction and dynamics of random (Erdös-Renyi) networksFigure 2
The activating fraction and dynamics of random (Erdös-Renyi) networks. A, C, E, G: Fraction of networks whose 
dynamics reach steady state, as a function of activating fraction a. B, D, F, H: Average oscillation period of network dynamics, 
as a function of a. The network size is 10 (A, B), 20 (C, D), 50 (E, F), or 100 (G, H). The number of connections per node is 1 
(black circle), 2 (blue square), 5 (red diamond) 8 (green +), or 10 (black triangle). For a near 1, the network dynamics are highly 
likely to reach steady state, independent of other parameters (A, C, E, G). For a near 0, the steady state fraction is between 7 
× 10-4 and 0.25, depending on the network degree. For a near 1, the average period is close 1, which corresponds to steady 
state (B, D, F, H). For a near 0, the period is close to 2, because the activity of network nodes oscillates between off and on. 
For a near 0.5, the period has a maximum. The maximum oscillation period increases with the size and degree of the network.

The activating fraction a and optimization of dynamical prop-ertiesFigure 3
The activating fraction a and optimization of dynam-
ical properties. The number of iterations to convergence 
of the optimization algorithm, as a function of a. 10-node net-
works were optimized to robustly reach steady state (A) or 
oscillate (B-D). Different colors represent different levels of 
connectedness: from left, the degree is 1 (blue), 2 (cyan), 5 
(yellow), or 8 (red). Convergence to dynamics that (A) reach 
steady state or (B) oscillate with period 2 are most rapid for 
high or low a, respectively. Optimization for period-8 (C) 
and period-16 (D) oscillation converges most rapidly for 
intermediate a.
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on to off would change the overall network properties,
and hence the balance of activators to repressors. For
example, in eukaryotes, most genes are turned off by
default, and the ratio of positive to negative regulators in
S. cerevisiae is about 3:1 in favor of positive regulations
[37], whereas in bacteria, most genes are turned on by
default, and the Regulon database [38] accordingly sug-
gests that E. coli has a lower ratio, 3:2 in favor of positive
regulators. Determining whether networks with different
basal levels of expression but the same ratio of activators
to repressors relative to baseline would be a fascinating
topic for empirical studies, for example by changing the
properties of the nodes of the repressilator.

Conclusion
Our results suggest that the fraction of activating connec-
tions a is an important determinant of network dynamics.
In the biochemical networks we studied, the specific net-
work topology is clearly important. However, changing a
also significantly altered the network dynamics. The circa-
dian networks at their natural activating fraction almost
always oscillate; increasing the activating fraction
decreases the average oscillation period. The NGF signal-
ing network dynamics become half as likely to reach
steady state as a is changed from the natural value.

Much current research on biological networks focuses on
finding network features that determine the behavior of
the network, including network dynamics and the
response of the network to stimuli or perturbations
[39,40]. Our result that a strongly affects network dynam-
ics has implications for the evolution of biological clocks
and switching networks. An intermediate value of a = 0.5
increases both the chance of long-period oscillations (in
random Erdös-Renyi networks) and rate of convergence to
a network with long-period oscillation (in optimized net-
works). This suggests that a network with equal numbers
of activiating and inhibiting connections may be at an
advantage in evolving a circadian clock. When a is high,
random network dynamics are likely to reach steady state
and optimized networks that reach steady state are most
rapidly selected. Biochemical networks which reach
steady state are more likely to be robust when the fraction
of activating connections is high.

Methods
Model
We adapted the model of Wagner [15], as used by Siegal
and Bergman [18,19]. The network consists of nodes (rep-
resenting genes, mRNA transcripts, or proteins) and edges
(interactions between pairs of nodes). Each node poten-
tially has an effect on each other node. This effect is repre-
sented by a number, Wij, which describes the strength of
the effect of node j on node i. An interaction strength can
be positive (activating connection), negative (inhibiting

connection), or zero (no connection). The interactions
among the N nodes are collected in an N × N matrix W.
Note that nodes can regulate themselves; these terms are
the Wii entries of the matrix.

Each network node has an activity level, which represents
how activated or repressed the node is. The activity level
could represent the expression (if the node is a gene or
transcript) or activity level (if the node is a protein). The
relative activity of node i is represented by si, which lies
between -1 and 1. An activity level of 0 represents the
basal activity of the node, while an activity level of 1 or -1
describes a node which is maximally activated or maxi-
mally inhibited, respectively. The activity of each node
changes in time due to the effects of other nodes. The
activity levels of all N nodes are collected in an N-element
vector s. The activity vector changes in time; the dynami-
cal rule which describes this change is the most important
feature of the model. Given an activity vector s(t) at a spe-
cific time t, the activity vector at the next time, s(t + 1)
must be determined. For node i, we sum over j the product
of the activity level of node j times the interaction strength
of node j on node i. This models the idea that node j has
an effect on node i that depends both on the interaction
strength and the activity of node j. Multiplying the inter-
action strength by the activity of node j produces the
actual effect of j on i under current conditions. These
effects are summed over all nodes that regulate i. We then
transform the result by applying a nonlinear function f

s t f W s ti ij j

j

N

( ) ( ) .+ =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
∑1
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The activating fraction a and the dynamics of biochemical networksFigure 4
The activating fraction a and the dynamics of bio-
chemical networks. The probability the dynamics reach 
steady state (A) and the average period of oscillation (B) as a 
function of a. The networks are the Drosophila circadian 
oscillator (black circle), the Arabidopsis circadian oscillator 
(blue square) and the NGF signaling network (red diamond). 
The point corresponding to the natural a is green. The NGF 
network dynamics typically reach steady state. The circadian 
network dynamics have a low probability of reaching steady 
state, but the probability is increased 20-fold when a is high.
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The quantity ∑Wijsj may lie outside the range (-1, 1), and
so therefore may not be a valid activity level for node i.
The nonlinear function enforces the saturation of interac-
tions among nodes: this models the idea that no matter
how strong the activating (repressing) influence on a
node, there is a maximum (minimum) activity level that
can be attained. We use the nonlinear function f(x) =
tanh(rx) with r = 100.

The dynamical rule describing the time evolution of the
interacting genes is given in eq. 1.

Network dynamics
Starting from a random initial condition, we iterate the
dynamics (eq. 1) to determine the activity vector as a func-
tion of time. We then compute the difference between a
given s(t) and the expression vectors at the previous time
steps, s(t - 1), s(t - 2), and so on. To determine whether a
steady state has been reached, we examine whether the
Hamming-like distance

between the vectors at time points t and t - 1 is below
some threshold . Then the vectors are considered equal,
and the dynamics have an oscillation with period 1, a
steady state. (Typically we use the value  = 10-4, although
we verified that varying  between 10-2 and 10-10did not
change the results.) To determine the period of oscilla-
tion, we examine whether the last n values of s are equal
(within error) to the next-to-last n values for any value of
n. Note that a steady state is equivalent to an oscillation
with period n = 1, because at steady state we have s(t) = s(t
- 1).

When determining the oscillation period, we iterate the
dynamics a fixed number of times, typically 100. There-
fore we cannot distinguish between chaotic dynamics and
oscillations with period longer than 100.

Network sampling
To develop a sample of networks with given properties,
we specify the network size N, the probability of
(nonzero) connection between nodes c, the fraction of
activating connections a, and the distribution of connec-
tion strengths. Each characteristic is separately controlled.
In this work we used a classical Erdös-Renyi random net-
work model, where a connection between any two nodes
is made with probability c. Therefore the average number
of nodes that affect any given node in the network is cN.
The activating fraction 0 ≤ a ≤ 1 determines the probability
that two connected nodes have a positive (activating)
interaction strength. The remaining nonzero connections

have a negative interaction strength, which corresponds to
an inhibiting interaction. We varied these parameters to
study networks with N between 10 and 100, connection
probability between 0.01 and 1 and activating fraction
between 0 and 1.

The absolute value of the connection strength is randomly
chosen according to a specified distribution. We used a
wrapped Gaussian distribution, where the values are cho-
sen from a Gaussian distribution but any negative values
are made positive. The mean  and standard deviation  of
the Gaussian distribution were varied in our simulations.
We used distributions with mean between 0 and 1 and
standard deviation between 0.03 and 1. Altering parame-
ters which control the magnitude of connection strengths
has little effect on the dynamics, on average: neither the
fraction of runs which reach steady state nor the average
period is sensitive to alteration in the mean or standard
deviation of the connection strength distribution. The
connection strength parameters have little effect because
the nonlinear function used in our dynamics is nearly
always saturated.

We implemented the graphs using arrays in the Python
Numeric [41] package. The graph topology and the edge
weights were generated separately, allowing us to vary the
topology and the connection strengths and signs inde-
pendently.

Robustness measures
We consider three different types of robustness: topological
robustness, which means network dynamics are robust to
alterations in the network wiring; mutational robustness,
which means the network dynamics are robust to altera-
tions in connection strength; and environmental robustness,
which means that the network dynamics are robust to
changes in the initial condition.

In our model, each type of robustness requires a different
perturbation to the network and measure of the change in
behavior. We implement the perturbations corresponding
the three types of robustness as follows: (i) Topological per-
turbation: we alter the network by randomly deleting one
connection and then randomly adding a connection
between two previously unconnected nodes, with random
strength. The value of the strength of the connection is
drawn from the same distribution used to originally make
the network. This model preserves the total number of
connections in the network. (ii) Mutational perturbation:
we randomly select one (nonzero) connection and alter
its strength. The strength of the connections is drawn from
the same distribution used to originally make the net-
work. (iii) Environmental perturbation: we alter one node of
the vector of initial conditions.

d s s N
Ni i

i

( , ) ( ) /( )
( )

s s
s s′ = − ′ = − ′∑ 2 4

2

4
(3)
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To quantify robustness, we use different measures,
depending on whether the network dynamics reach steady
state or oscillate with period > 1. The robustness measure
for dynamics which reach steady state is the mean pheno-
typic distance [18]. This measure assumes that both the
original and perturbed networks reach a steady-state activ-
ity vector. We determine the steady-state activity vector sr

of a reference matrix and initial condition s0. Then we

alter the matrix and/or initial condition M times, and
determine a set of M steady-state vectors sp(j) that result

from the perturbation (here j = 1, 2, < M). The mean phe-

notypic distance  is the average Hamming-like distance

(eq. (3)) between each perturbed activity vector and the
reference activity vector

If the perturbations to the network tend to lead to the
same steady state activity levels, the mean phenotypic dis-
tance will be low. In this case we say that the network is
robust to the alteration. Typically we use M = 100.

For networks that oscillate, we measure robustness either
using the mean absolute change in period or the mean
change in period distribution. To determine the mean
absolute change in period, we first determine the period
of oscillation pr of a reference matrix and initial condition.
We then perturb the matrix and/or initial condition M
times, and determine a set of M oscillation periods pp(j)
for each perturbed network (here j = 1, 2, < M). Then the
mean absolute change in period is

For a more detailed measure of robustness of oscillatory
networks, we study the mean change in period distribu-
tion. This measure allows us to study the effects of both
varying initial conditions and alterations in the interac-
tion network, and assess both steady-state and oscillating
network dynamics. We consider a reference network and
a set of M perturbed networks. For each network, we sam-
ple k different initial conditions. Each initial condition
leads to a period of oscillation (where period 1 represents
steady state). For a given network, we determine the
period distribution: the number of times that the different
initial conditions lead to oscillations of period 1, period
2, and so on. The vectors of counts are vr for the reference

matrix and vp(j) for the perturbed networks (here j = 1, 2,
< M). The mean change in period distribution is

If the alterations in the network or initial condition tend
to lead to the same period of oscillation, the mean change
in period distribution will be low. In this case we say that
the network was robust to the alteration.

Network optimization
We used the great deluge algorithm (GDA) [28] to test
whether graphs with specific properties are more abun-
dant in some regions of parameter space than others. At
each step in the optimization, one edge of the graph was
randomly changed to a new value, drawn from the same
distribution used to create the graph (which was a Gaus-
sian with unit variance "wrapped" by taking the absolute
value of all values, so all draws have the same sign). The
optimization was repeated for starting populations of
graphs with different values of a and c, as shown in table
1.

Regions of parameter space in which desirable networks
are dense converge in few iterations, whereas regions
where they are sparse require more iterations for conver-
gence. Therefore, the convergence rate of the algorithm
discriminates between parameters where a desired
dynamical behavior is common or uncommon. The GDA
is a nonlinear optimization algorithm that performs well
on a range of highly nonlinear problems and converges
more rapidly than simulated annealing or genetic algo-
rithms [28]. When used for maximization (seeking the
largest value of a fitness function), the fitness surface is
imagined as a landscape where higher values (peaks) are
better. The GDA uses the concept of a "water level", below
which changes are unacceptable. A random walk is per-
formed on the landscape of possibilities, and the fitness is
evaluated at each step. If the fitness at the new location is
higher, the new location is accepted and the water level
rises by a constant value based on the initial cost. (This
value was selected after trial runs; we attempted to balance
the convergence rate with the quality of the solution
found.) If the fitness at the new location is lower but
above the water level, the change is accepted. If the fitness
at the new location is below the water level, the change is
rejected.

The great deluge algorithm is less sensitive to local optima
than is hill-climbing (always accepting the solution if it is
better) or gradient methods, and is typically faster and less

dp
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parameter-dependent than algorithms such as simulated
annealing (for which temperature parameters and gradi-
ents must be selected) or genetic algorithms (for which a
large population of solutions and a number of parameters
are required). In our simulations, a random step in the fit-
ness landscape was performed by a single perturbation to
the network. The fitness function we used is the sum of the
phenotypic distance and the mean change in period dis-

tribution, so . An increase in fitness as a

result of a perturbation means that the new graph is more
robust (to both changes in the network wiring and
changes in the initial condition) than the previously pro-
posed graph. We measured the number of iterations
required for the GDA to converge, and we discarded runs
in which no convergence was obtained after 10,000 steps.

To test whether the connection probability and the acti-
vating fraction had changed, we compared the known
means for the starting population to the sample means for
the selected population using one-tailed, one-sample t
tests (n was approximately 50 in each sample). Because
each t test is an independent test of the hypothesis that the
sample means had changed in the direction predicted, we
used Fisher's method of combining independent tests of a
hypothesis [42] to test whether the overall level of change
was significant. We compared mean convergence times
between each pair of parameter settings using two-sample
t tests assuming unequal variances.

The results of the network selection are shown in detail in
table 1.

Biological network topologies
We studied five network topologies: the 10-node Dro-
sophila circadian network sketched in reference [32], fig-
ures 4/6; the 8-node Arabidopsis circadian network
sketched in reference [33], figure 4; the 15-node core
Notch pathway sketched in reference [34]; the 27-node
WNT/ -catenin signaling pathway sketched in reference
[35]; and the 22-node Nerve Growth Factor (NGF) signal-
ing pathway sketched in reference [36], figure 3. Details of
the size and number of activating connections for these
networks are given in table 2. The representation of net-
work topologies in our model is given in tables 3, 4, 5, 6,
7.

In our simulations, we generated networks with topology
corresponding to the biological network. Keeping this
topology constant, we varied A, the number of activating
connections, from 0 (producing a network that contains
no activating connections, i.e., all connections are inhib-
iting connections) to Am, the number of edges in that net-

work (all connections are activating connections). Since
the network has Am edges, the activating fraction is a = A/
Am. Note that we did not change which network nodes
were connected, only the sign of the interaction (activat-
ing or inhibiting). We chose to pick the inhibiting connec-
tions to match the network to the biological network as
much as possible. Therefore, as the number of inhibiting
connections was increased, we first randomly selected
from the inhibiting connections that occur in the real bio-
logical network, then (once all of those inhibiting connec-
tions were made) we randomly selected from the
remaining connections in the network. For each choice of
the number of inhibiting connections, we generated k =
103 networks with randomly chosen interaction strengths
and random initial conditions. The signs of the connec-
tions of each of these networks were chosen independ-
ently. For example, if there were originally 5 inhibiting
connections, each of the k = 103 networks generated for 3
inhibiting connections was independently assigned one

of the  = 10 ways of choosing which edges remained

inhibiting. For each of the k graphs and initial conditions
we determined the period of oscillation. Summing over
all k networks and initial conditions gave us a period dis-
tribution for the graph with A activating connections. The
mean of this distribution is the average period for the net-
work with A activating connections.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
DM wrote the code, ran simulations and interpreted
results. LW ran preliminary simulations, participated in
programming and interpreted results. RK directed the cod-
ing, participated in programming, and interpreted results.
MB directed the project, analyzed results, and wrote the
manuscript. All authors read and approved the final man-
uscript.

Reviewers' comments
Reviewer's report 1
Reviewer 1: Sergei Maslov, Department of Condensed Matter
Physics and Materials Science, Brookhaven National Labora-
tory

Reviewer's comment: The manuscript reports an interest-
ing study of how the balance between positive and nega-
tive regulatory interactions affects the dynamics of
regulatory networks. This subject definitely deserves a
careful analysis and (to the best of my knowledge) was
not explored before. Authors use a simple dynamical
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Table 1: Network selection results

Period a c 7a8 Std error Change in a P value Iterations to converge Std error

1 0.2 0.1 0.227 1.6 × 10-3 13.61% 1.5 × 10-06 33.5 1.9
0.2 0.255 2.6 × 10-3 27.41% 6.9 × 10-30 131.0 5.8
0.5 0.270 6.3 × 10-3 35.21% 3.8 × 10-32 367.2 21.1
0.8 0.290 7.8 × 10-3 45.06% 4.5 × 10-33 722.4 46.1

0.5 0.1 0.525 1.4 × 10-3 5.07% 9.0 × 10-06 21.4 0.9
0.2 0.533 1.8 × 10-3 6.64% 1.7 × 10-14 47.7 1.6
0.5 0.517 2.9 × 10-3 3.43% 1.5 × 10-06 102.7 4.2
0.8 0.518 3.3 × 10-3 3.62% 4.8 × 10-07 153.4 7.9

0.8 0.1 0.823 1.3 × 10-3 2.83% 1.3 × 10-07 15.7 0.5
0.2 0.828 1.7 × 10-3 3.47% 3.5 × 10-18 27.5 0.7
0.5 0.818 2.3 × 10-3 2.31% 8.6 × 10-18 32.3 0.7
0.8 0.813 1.8 × 10-3 1.65% 1.0 × 10-14 28.8 0.7

2 0.2 0.1 0.247 5.3 × 10-3 23.65% 0.064 6.5 1.2
0.2 0.192 7.6 × 10-3 -3.92% 0.66 7.3 1.5
0.5 0.207 9.4 × 10-3 3.50% 0.51 7.6 1.0
0.8 0.199 8.7 × 10-3 -0.30% 0.94 8.0 1.3

0.5 0.1 0.465 5.2 × 10-3 -7.01% 0.25 14.9 3.1
0.2 0.505 7.3 × 10-3 1.01% 0.82 8.1 1.2
0.5 0.497 9.7 × 10-3 -0.50% 0.86 13.5 1.8
0.8 0.500 6.6 × 10-3 -0.07% 0.97 27.1 4.1

0.8 0.1 0.752 5.2 × 10-3 -6.05% 0.0063 38.9 5.5
0.2 0.778 8.5 × 10-3 -2.76% 0.1 33.5 6.4
0.5 0.753 1.0 × 10-3 -5.93% 1.4 × 10-06 55.8 6.9
0.8 0.767 8.6 × 10-3 -4.15% 9.7 × 10-07 115.8 13.5

8 0.2 0.1 0.229 4.4 × 10-3 14.74% 0.071 123.8 17.1
0.2 0.231 5.5 × 10-3 15.59% 0.0013 103.7 7.3
0.5 0.244 1.1 × 10-3 22.23% 9.3 × 10-09 296.2 25.9
0.8 0.273 7.3 × 10-3 36.60% 3.2 × 10-23 527.0 47.6

0.5 0.1 0.459 4.3 × 10-3 -8.15% 0.062 111.8 14.4
0.2 0.486 6.5 × 10-3 -2.70% 0.42 90.5 7.8
0.5 0.485 8.5 × 10-3 -3.00% 0.11 174.1 14.1
0.8 0.498 4.7 × 10-3 -0.50% 0.60 253.7 11.6

0.8 0.1 0.800 5.9 × 10-3 0.01% 0.99 102.3 10.9
0.2 0.785 7.1 × 10-3 -1.84% 0.18 141.6 19.0
0.5 0.747 8.6 × 10-3 -6.66% 5.4 × 10-12 325.3 2.04
0.8 0.732 6.9 × 10-3 -8.53% 9.2 × 10-15 540.2 34.1

16 0.2 0.1 0.210 4.3 × 10-3 5.11% 0.47 483.9 52.8
0.2 0.221 5.6 × 10-3 10.38% 0.017 406.1 32.7
0.5 0.245 9.9 × 10-3 22.72% 4.4 × 10-09 416.9 36.1
0.8 0.273 6.7 × 10-3 36.72% 1.6 × 10-20 676.9 44.9

0.5 0.1 0.503 6.5 × 10-3 0.50% 0.89 327.9 29.6
0.2 0.497 7.3 × 10-3 -0.56% 0.84 386.9 34.4
0.5 0.501 7.6 × 10-3 0.16% 0.92 333.0 23.5
0.8 0.502 4.6 × 10-3 0.46% 0.63 379.1 15.0

0.8 0.1 0.754 4.4 × 10-3 -5.75% 0.0014 514.2 78.4
0.2 0.793 4.8 × 10-3 -0.93% 0.42 429.9 37.6
0.5 0.754 8.6 × 10-3 -5.74% 6.4 × 10-08 473.5 36.7
0.8 0.739 8.2 × 10-3 -7.65% 3.6 × 10-18 625.0 36.3

Column 1: period optimized for. Column 2: activating fraction used to generate the network. Column 3: connection probability. Column 4: average activating fraction in 
optimized networks. Column 5: standard error of average activating fraction. Column 6: average change in activating fraction. Column 7: P value for the change in 
activating fraction. Column 8: number of iterations for the GDA to converge. Column 9: standard error of iterations to convergence.
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model introduced by Andreas Wagner in 1996 and later
used in a number of publications. The most appealing
property of this model is its simplicity: the genes (or their
protein products) exist in either "active", "on" state (+1)
or "inactive", "off" state (-1). While this boolean property
is somewhat relaxed in this manuscript, it still (approxi-
mately) applies to the majority of nodes. The dynamical
rules of the model remind the threshold activation rules
in model neural networks, where contributions of multi-
ple inputs weighted by their connection strength Wij are
simply added up and compared with the activation
threshold of a node. As such they cannot model an arbi-
trary logical function of input variables (one of the many
simplifications of the model).

My main concern about this model is that it represents
inactive genes/proteins by -1 (instead of simply 0). As a
consequence even inactive genes keep sending negative/
positive signals to their targets which they are positively/
negatively regulating. This property of the model is rather
artificial since in most cases genes/proteins that are not
active *send no signal* instead of sending a *negative*
signal. This can be easily rectified by the simultaneous
change of si variables (si → (si + 1)/2) and activation
thresholds (equal to 0 in the present model). However, as
a result of this transformation the activation thresholds
become non-trivially (and unrealistically) coupled to
magnitudes and *signs* of regulatory interactions Wij. As
a consequence, I am not sure which of this study's conclu-
sions about positive-to-negative ratio would survive in the
more realistic scenario of arbitrary activation thresholds.

Authors' response: This simplification is noted by Wag-
ner [15]: "For reasons of computational simplicity... ",
and, as the reviewer notes, has been widely used in subse-
quent work (e.g. Siegal and Bergman 2002 [18]). It is pre-
cisely for the reason that the reviewer notes (that a large
number of arbitrary activation thresholds must be intro-
duced) that the variable transformation to a scale of 0 – 1
is not typically used. We would argue that our results
show that in a widely used model of gene expression, we
are able to identify key parameters related to network
dynamics and to relate them to biological networks: there
are many other restrictions of this admittedly simplified
model that could be relaxed, and exploring which of these

features is most influential for the results would be a fas-
cinating topic for future work.

Reviewer's comment: Another simplification of the
model is the synchronous update rule in which the states
of all nodes are modified simultaneously with each other.
In reality regulatory networks are characterized by a broad
distribution of timescales of gene activation/deactivation
corresponding to a more complicated (and generally
asynchronous) update rule. Can authors comment on
how sensitive are their results with respect to update rules?

Authors' response: Wagner (1996) also noted this limita-
tion and cited the need for computational simplicity
again. We did not model different update rules in this
study, so we are unable to comment on the sensitivity. The
simplicity of this model is sufficient to capture basic
dynamics of a network and the model is further supported
by its ability to represent "biological networks" as well as
the repressilator. The total runtime was over 100,000 CPU
hours, and the work itself is algorithmically complex. The
bottleneck is thus not the hardware, and the simplifica-
tions required in 1996 are still needed today despite
Moore's Law. However, again we agree that testing which
model assumptions affect the result will ultimately be
important for establishing the generality of the work.

Reviewer's comment: My final remark on this study is
that in its present form it does not reveal which network
property is being optimized by the empirically observed
ratio of positive and negative regulations. Perhaps,
authors could use the following observation: the ratio
between positive and negative regulations in the genome-
wide regulatory network of baker's yeast appears to be
around 3:1 in favor of positive regulations (S. Maslov, K.
Sneppen, Physical Biology, 2005). This is consistent with
the ratio authors observed in their examples of real-life
small subnetworks/pathways (except for the NGF signal-
ing network). On the other hand, according to the data
from the Regulon database, the regulatory network in E.
coli has fewer positive regulations (the empirical ratio is
only 3:2 in favor of positive regulations). This could be
due to the fact that the default state of most bacterial genes
is "on". That is to say, they are being expressed at a consid-
erable rate even in the absence of any positive regulatory

Table 2: Activating connections in biological network topologies.

Network Nodes Connections Activating connections Activating fraction

Drosophila circadian clock 10 13 10 0.77
Arabidopsis circadian clock 8 10 7 0.70
Nerve Growth Factor signaling 22 28 26 0.93
WNT/ -catenin signaling 27 30 23 0.77
Notch signaling 15 15 12 0.8

This table summarizes characteristics of the topologies of several biological networks.
Page 10 of 14
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signals. Hence, they require fewer positive and more neg-
ative inputs than comparable networks in eukaryotes such
as S. cerevisiae whose default state is typically off. Could
authors comment on what are their assumptions about
the default state of genes and how the change of the
default state would affect the results?

Authors' response: This is a very interesting point, and we
have incorporated this suggestion into the discussion as
shown below. We thank the reviewer for the suggested ref-
erences.

"We note that the results presented here normalize the
baseline activation state of genes in a given organism to
zero, and thus a change of the default state of genes from
on to off would change the overall network properties,
and hence the balance of activators to repressors. For
example, in eukaryotes, most genes are turned off by
default, and the ratio of positive to negative regulators in
S. cerevisiae is about 3:1 in favor of positive regulations
[37], whereas in bacteria, most genes are turned on by

default, and the Regulon database [38] accordingly sug-
gests that E. coli has a lower ratio, 3:2 in favor of positive
regulators. Determining whether networks with different
basal levels of expression but the same ratio of activators
to repressors relative to baseline would be a fascinating
topic for empirical studies, for example by changing the
properties of the nodes of the repressilator."

Reviewer's report 2
Reviewer 2: Eugene V. Koonin, National Center for Biotech-
nology Information

Reviewer's comment: The paper uses simulations to
explore network dynamics and reaches a clear and inter-
esting conclusion: that the fraction of activating (as
opposed to inhibitory) connections determines the
dynamical regime, that is whether the network arrives at a
steady state of goes into an oscillating regime. As interest-
ing as these findings are, I am somewhat uncomfortable
with the conclusion: "The activating fraction may be a
control parameter that cells use to predispose a network to
oscillate or reach steady state." I am not sure that this
(seemingly) adaptationist interpretation is justified or
that the uncovered principle is as general as implied here.
In particular, the oscillatory regime certainly is natural in
the case of the circadian clock but its wider relevance
remains to be proven.

Authors' response: We agree with the reviewer that the
adaptationist language may be too strong here, and have
changed the sentence to read "The activating fraction may
predispose a network to oscillate or reach steady state, and
neutral evolution or selection of this parameter may affect
the behavior of biological networks."

Table 3: Drosophila circadian clock.

Upstream node Downstream node Sign of interaction

Tim mRNA Tim +
Per mRNA Per +
Vri mRNA Vri +
Pdp1e mRNA Pdp1e +
Clk mRNA Clk +
Clk Tim mRNA +
Clk Per mRNA +
Clk Vri mRNA +
Clk Pdp1e mRNA +
Pdp1e Clk mRNA +
Per Clk -
Tim Clk -
Vri Clk mRNA -

This table shows the connections that comprise the topology of the 
Drosophila circadian network.

Table 4: Arabidopsis circadian clock.

Upstream node Downstream node Sign of interaction

X mRNA X +
X Lhy mRNA +
Lhy mRNA Lhy +
Toc1 mRNA Toc1 +
Toc1 X mRNA +
Y mRNA Y +
Y Toc1 mRNA +
Lhy Y mRNA -
Lhy Toc1 mRNA -
Toc1 Y mRNA -

This table shows the connections that comprise the topology of the 
Arabidopsis circadian network.

Table 5: Notch signaling network.

Upstream node Downstream node Sign of interaction

Fringe Notch +
Dvl Notch -
Numb Notch -
Notch Deltex +
-Secretase complex Notch +
TACE Notch +
Serrate Notch -
Delta Notch +
Notch CSL +
SKIP CSL +
MAML/HATs CSL +
CSL O DNA +
Co-repressor complex CSL -
O DNA Hes1/5 +
O DNA PreT +

This table shows the connections that comprise the topology of the 
Notch signaling network.
Page 11 of 14
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Reviewer's report 3
Reviewer 3: Yu (Brandon) Xia, Bioinformatics Program and
Department of Chemistry, Boston University (nominated by
Mark Gerstein, Department of Molecular Biology and Biophys-
ics, Yale University)

Reviewer's comment:1. You correlated the simulated
dynamics with biological function for five biological net-

works. I am wondering how much of the correlation can
be teased out by simple static topological measures, such
as number and percentage of feedback loops, and fraction
of activation links?

Authors' response: We believe that the value of the
present work is that we are able to show a link between
even these static topological properties and the dynamics.
Explaining the fraction of the variance in the behavior of
real biological networks that is explained by these meas-
ures, as opposed to other properties, awaits both the
development of more realistic models and the measure-
ment of network dynamics in far more detail. However, it
will be fascinating to explore these relationships in future.

Reviewer's comment:2. It will useful to illustrate some of
these networks. For example, it will be useful to have one
figure for a random network, one figure for an optimized
network, and one figure for an actual biological network.
It will be easier for the readers to see the similarities and
differences between these networks.

Authors' response: We considered adding a few example
networks, but in the end decided that it would be better to
provide a recipe that allows interested readers to generate
these networks with any arbitrary parameter settings,
including those used throughout the paper. Accordingly,
the following code snippet can be used to generate and
display such networks:

>>>from networkx import XDiGraph, draw

>>>from numpy.random import normal

>>>from random import random

>>>from pylab import show

>>>def f(n, p):

... g = XDiGraph( )

... g.add_nodes_from(zip(range(n), [choice([-1,1]) for i
in range(n)]))

... for n1 in g.nodes( ):

... for n2 in g.nodes( ):

...  if random( ) < p:

... g.add_edge(n1, n2, normal(0,1))

... return g

...

Table 6: WNT/ -catenin signaling network.

Upstream node Downstream node Sign of 
interaction

WNT WNT-Frizzled complex +
DKK WNT-Frizzled complex -
WIF-1 WNT-Frizzled complex -
WNT-Frizzled complex pDSH +
NAKED pDSH -
pDSH PP2A +
pDSH pAXIN-pAPC-

p -catenin complex
-

CK-I/CK-II complex pDSH +
DSH pDSH +
PP2A pAXIN +
PP2A p -catenin +
pAXIN-pAPC-p -
catenin complex

pAXIN +

pAXIN-pAPC-p -
catenin complex

-catenin +

pAXIN-pAPC-p -
catenin complex

p -catenin/ -TRCP 
complex

+

p -catenin p -catenin/ -TRCP 
complex

+

-TRCP p -catenin/ -TRCP 
complex

+

Ubiquitin pathway p -catenin/Ubiquitin 
complex

+

p -catenin/ -TRCP 
complex

p -catenin/Ubiquitin 
complex

+

p -catenin/Ubiquitin 
complex

-catenin fragments +

Proteasome -catenin fragments +
GSK3B pAXIN-pAPC-

p -catenin complex
+

FRAT1 pAXIN-pAPC-
p -catenin complex

-

AXIN/APC/ -catenin 
complex

pAXIN-pAPC-
p -catenin complex

+

AXIN/APC/ -catenin 
complex

-catenin/GROUCHO/
Smad4 complex

+

-catenin/GROUCHO/
Smad4 complex

c-MYC/CYCLIN D1/
PPAR d complex

+

GROUCHO complex c-MYC/CYCLIN D1/
PPAR d complex

-

HDAC GROUCHO complex +
GROUCHO complex -catenin/GROUCHO/

Smad4 complex
+

TAK1/TAB1 complex NLK +
NLK -catenin/GROUCHO/

Smad4 complex
-

This table shows the connections that comprise the topology of the 
WNT/ -catenin signaling network.
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>>>g = f(20,0.1) #this is just an example: any value of n
and p can be used

>>>draw(g)

>>>show( )

This can be used to generate random graphs equivalent to
those used in the study. The dependencies are the Net-
workX, numpy, and matplotlib packages.
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Table 7: NGF signaling network.

Upstream node Downstream node Sign of 
interaction

Ras Raf +
Raf MEK1/2 +
MEK1/2 Erk1/Erk2 +
Erk1/Erk2 Rsk +
Rsk CREB +
CREB FasL/Bcl-2/Bax/Egr-1 mRNA +
p38 FasL/Bcl-2/Bax/Egr-1 mRNA +
Akt1/2 FasL/Bcl-2/Bax/Egr-1 mRNA +
Forkhead FasL/Bcl-2/Bax/Egr-1 mRNA +
NF B FasL/Bcl-2/Bax/Egr-1 mRNA +
Trk receptor PLC +
PLC IP3/DAG complex +
IP3/DAG complex PKC +
PKC MEK1/2 +
Frs2/Crk/DOCK-
180/SH2B/Grb2 
complex

Rac +

Trk receptor IRS-1 +
IRS-1 Shc/Grb2/SOS/Gab/PI3k 

complex
+

Shc/Grb2/SOS/
Gab/PI3k complex

1 +

Shc/Grb2/SOS/
Gab/PI3k complex

Akt1/2 +

PDKs Akt1/2 +
Akt1/2 p38 -
Akt1/2 Forkhead -
Akt1/2 NF B +
Akt1/2 BAD/Bcl-2 complex +
BAD/Bcl-2 
complex

Bad/14-3-3 complex +

Ras Shc/Grb2/SOS/Gab/PI3k 
complex

+

Shc/Grb2/SOS/
Gab/PI3k complex

MEK1/2 +

Trk receptor Frs2/Crk/DOCK-180/SH2B/
Grb2 complex

+

This table shows the connections that comprise the topology of the 
NGF signaling network.
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