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Abstract
Background: Previous studies have indicated that the wide variation in intron density (the number
of introns per gene) among different eukaryotes largely reflects varying degrees of intron loss
during evolution. The most popular model, which suggests that organisms lose introns through a
mechanism in which reverse-transcribed cDNA recombines with the genomic DNA, concerns only
one mutational force.

Hypothesis: Using exons as the units of splicing-site recognition, exon definition constrains the
length of exons. An intron-loss event results in fusion of flanking exons and thus a larger exon. The
large size of the newborn exon may cause splicing errors, i.e., exon skipping, if the splicing of pre-
mRNAs is initiated by exon definition. By contrast, if the splicing of pre-mRNAs is initiated by
intron definition, intron loss does not matter. Exon definition may thus be a selective force against
intron loss. An organism with a high frequency of exon definition is expected to experience a low
rate of intron loss throughout evolution and have a high density of spliceosomal introns.

Conclusion: The majority of spliceosomal introns in vertebrates may be maintained during
evolution not because of potential functions, but because of their splicing mechanism (i.e., exon
definition). Further research is required to determine whether exon definition is a negative force
in maintaining the high intron density of vertebrates.

Reviewers: This article was reviewed by Dr. Scott W. Roy (nominated by Dr. John Logsdon), Dr.
Eugene V. Koonin, and Dr. Igor B. Rogozin (nominated by Dr. Mikhail Gelfand). For the full reviews,
please go to the Reviewers' comments section.

Background
A brief introduction on intron loss during evolution
Spliceosomal introns are sequences that interrupt nuclear
genes and will be removed from the corresponding RNA
transcripts by spliceosomes. They are found in all eukary-
otic groups, but their density, i.e., the average number of
introns per gene, varies dramatically among eukaryotes
from 8.4 in humans to 0.0075 in the microsporidian Ence-

palitozoon cuniculi [1-4]. While the origin of spliceosomal
introns remains under debate [4-7], accumulating evi-
dence suggests that early eukaryotic ancestors had high
intron density (perhaps up to several introns per gene)
and that the diversity of intron density among eukaryotic
genomes largely reflects varying degrees of intron loss [7-
14]. However, the mechanism of the differential losses of
introns across eukaryotes has not been thoroughly
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explored. A popular model for intron loss is homologous
recombination between intronless cDNA and the corre-
sponding genomic DNA [1,15-18]. In this model, reverse
transcription proceeds from the 3' end to the 5' end of
template mRNA and often terminates prematurely. A high
frequency of cDNA fragments reverse-transcribed from
the 3' end of corresponding mRNAs results in the prefer-
ential loss of introns at the 3' side of genes via recombina-
tion. This model is supported by observations that the
introns in intron-poor genomes are biased toward the 5'
end of genes [1,2,15,19]. It is generally assumed that the
reverse transcriptases are provided by retrotransposons.
Organisms with a low level of retrotransposon activity are
expected to have low rates of intron loss in evolution [20].
Plasmodium species, which lack known transposable ele-
ments, have much lower rates of intron loss as compared
with other eukaryotic lineages, such as plants, fungi, and
nematodes [21]. However, the rates of intron loss in Plas-
modium species are comparable with those in vertebrates
[21], the genomes of which are abundant in retrotrans-
posons [22,23]. Another hypothesis is that segregation of
germ and soma during development makes germ line cells
express a lower proportion of genes than somatic cells in
lower eukaryotes; genes that are expressed only in somatic
cells are thus expected to be immune from mRNA-medi-
ated intron losses [24]. By analyzing the whole-genome
sequence alignments of human, mouse, rat, and dog,
Coulombe-Huntington and Majewski [25] found that
most of the intron-loss events occurred within housekeep-
ing genes. However, housekeeping genes still have more
introns than tissue-specific genes [26,27]. It seems that the
hypothesis involving mRNA-mediated intron loss does
not provide a sound explanation of the high density of
introns in vertebrates.

The second model of intron loss is genomic deletion via
unequal recombination between two copies of genomic
DNA [28-30]. To my knowledge, this model provides lit-
tle insight for the varying degrees of intron losses among
eukaryotic genomes. In this study, I propose that the
majority of spliceosomal introns in vertebrate genomes
may be maintained by a selective force against intron loss:
exon definition.

Exon definition places a length constraint on internal 
exons
Although most of the key components of spliceosomes
are present in all eukaryotic organisms [31], there are two
mechanisms of splicing-site recognition: exon definition
and intron definition [32-35]. In exon definition, splicing
machinery first searches for a pair of splicing sites in every
exon. By contrast, in intron definition, the intron itself
acts as the unit of recognition, and splicing machinery
directly searches for two intronic splicing sites. The splic-
ing machinery of exon definition imposes a length con-

straint on exons but does not affect intron size. By
contrast, the splicing machinery of intron definition lim-
its the size of introns, but not that of exons. Previous stud-
ies have shown that exon definition is the major splicing-
site-recognition mechanism for vertebrate genes that con-
sist of small exons separated by large introns, while intron
definition is common in lower eukaryotes, where small
introns are flanked by large exons [32-37]. In vitro,
expanding the small internal exons of vertebrate genes to
300 nt inhibits the assembly of spliceosomes [38]. Simi-
larly, in vivo analysis of a gene with long introns showed
that exon size turned out to be problematic when it was
expanded to 432 nt, and exon skipping became predomi-
nant when the exon was expanded to 526 nt [39].

Presentation of the hypothesis
Loss of an intron from a gene results in fusion of two
flanking exons. Multi-species comparisons of exon-intron
structures have shown that adjacent introns tend to be lost
in concert [16,20,40] and yield abnormally large exons.
Because experimentally expanding exon size results in
intron splicing failure or errors [38,39], it is logical to pro-
pose that intron loss mutations may affect the splicing of
retained adjacent introns if their splicing sites are recog-
nized by exon definition. As shown in Fig. 1, three inter-
nal introns are lost from a gene with five introns; four
previous exons merge into a large one. From previous
studies on intron definition and exon definition [32-39],
four patterns can be predicted.

1. In an organism in which exon definition is predomi-
nant and introns are very large, intron loss produces a
large exon (> 526 nt), which causes exon skipping because
exon 2 is improperly recognized, and splicing fails (Fig.
1). Only truncated mRNA products (transcript A) are syn-
thesized. Abnormal proteins will be produced if the
mRNA molecules are not degraded by mRNA surveillance
mechanisms. Thus, we are inclined to suggest that intron
loss notably affects fitness and is under strong negative
selection.

2. In an organism in which exon definition is predomi-
nant and introns are very large, intron loss produces a
middle-sized exon (432–526 nt); both truncated mRNA
products (transcript A) and normal mRNA products (tran-
script B) will be synthesized. Intron loss partially affects
fitness and thus is under weak negative selection.

3. Accumulating evidence indicates that both exon defini-
tion and intron definition are effective splicing-site-recog-
nition mechanisms in many eukaryotes [3,39,41,42],
although exon definition is prevalent in multicellular ani-
mals, whereas intron definition is common in lower
eukaryotes [3]. If the remnant introns (introns a and b)
that flank the newly formed large exon (exon 2) happen
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to be small, the splicing sites of intron a as well as b will
be recognized by means of intron definition [37,39] and
normal mRNA product (transcript B) will therefore be
synthesized. Loss of those three internal introns will not
affect the splicing of nearby introns. Thus, intron loss does
not reduce fitness.

4. In lower eukaryotes, in which intron definition is pre-
dominant, large exon size does not affect splicing; normal
mRNA molecules (transcript B) will be produced.

In summary, this hypothesis proposes that the fate of
intron loss depends on several factors: splicing-site-recog-
nition mechanisms, the size of the fused exon, and the
size of the flanking introns. Certainly, this is a simplified
model. Spliceosomal introns themselves may have vari-
ous functions; for example, they may act as signals for
nonsense-mediated decay, harbor regulatory elements, or
increase gene expression efficiency [4,43-52]. All of these
functions may act as selective forces against intron loss
during evolution. On the other hand, positive selection

for losing introns is also possible because transcription
and splicing of introns cost time and energy [53-55] (but
see [56]).

Testing the hypothesis
According to this hypothesis, the rate of intron loss in evo-
lution depends on the frequency of exon definition and
intron definition in a specific organism. Generally, verte-
brates that mainly use exon definition have overall lower
rates of intron loss than plant and fungi, which mainly use
intron definition [25,57]. Significant differences in the
rate of intron loss were observed between closely related
species, such as Fugu rubripes and Tetraodon nigroviridis
[57]. It will be helpful to study whether corresponding dif-
ferences exists in the frequency of exon definition and
intron definition between these species.

Although vertebrate genes mainly use exon definition,
there are still a number of splicing events initiated by
intron definition as shown by intron retentions in
humans [58]. The occasional intron-loss events through-

Intron loss and two different splicing productsFigure 1
Intron loss and two different splicing products. Squares represent exons, and lines represent introns.
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out vertebrate evolution may happen to flank intron-
defined splicing, so the length of remnant flanking
introns (introns a and b in Fig. 1) is not beyond the length
limit of intron definition [32,39]. According to our
hypothesis, the occasional intron-loss events in vertebrate
evolution may also fall into the following categories: 1)
the length of the resulting large exon happens to be within
the length limit of exon definition [32,39]; 2) the result-
ing large exon turns into the first or last exon, for which
the splicing-site-recognition mechanisms are different
from those of internal exons and do not impose size lim-
itations on exons; 3) genes that have lost introns are not
essential, and thus the negative selection against intron
loss was not efficient; or 4) the intron-loss event occurred
in only one copy of a recently duplicated gene, so selec-
tion for effective function of the coded protein is relaxed
[59]. All of the predictions above are testable.

Discussion and conclusion
Contrary to what is expected by this hypothesis, the Plas-
modium species generally splice their introns via intron
definition and have low rates of intron loss throughout
evolution [20,21]. Besides selective forces, mutation rate
and population size also affect the fixation of a mutation.
Even if we limit our examination to a selective force, there
are many possibilities that affect the rate of intron loss
(See "Presentation of the hypothesis"). We could not
hope that this simple hypothesis would explain every-
thing in the complex pattern of intron loss in evolution
[60]. As suggested by Dr. Koonin, this hypothesis may be
applied primarily to chordates (See Reviewers' com-
ments).

If this hypothesis is proved to be true, spliceosomal
introns could be maintained in eukaryotes where exon
definition is predominant even if they have not any spe-
cific function. Spliceosomal introns may recruit adventi-
tious regulatory elements for gene expression; but the
recruitments are not necessary for their maintenance in
evolution [61]. Further evidence is required to check
whether exon definition is a dominant force for maintain-
ing the high intron density of some eukaryotic lineages in
evolution. It could be only one of many potential forces
that shape the evolution of introns in eukaryotic genomes
or even a consequence of the high intron density in some
lineages.
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Reviewers' comments
Reviewer 1: Scott W. Roy, National Center for 
Biotechnology Information, National Library of Medicine, 

National Institutes of Health, Bethesda, USA (nominated 
by John Logsdon)
In this paper, Dr. Niu continues his history of welcome
outside-the-box thinking on intron evolution. He points
out that intron loss may be more disruptive to splicing of
transcripts in the context of exon definition than with
intron definition. Consistent with a relationship between
exon/intron definition and intron loss rates, he reports
that among characterized species, those with more exon
definition tend to have more exons overall.

I am unconvinced by this argument. The comparison here
is largely between vertebrates – the only lineage known to
extensively utilize exon definition – and everything else.
Insofar as this is true, this result only restates something
that is already known – that vertebrates are unlike most
sampled eukaryotes both in their very high intron density
and utilization of exon definition. Given the large number
of other vertebrate genomic and organismal characteris-
tics that differ from many eukaryotic lineages – large
genomes and introns, high content of transposable ele-
ments, high degree of alternative splicing, large body size,
multicellularity, small population size, etc. – all of which
can (and have) been argued to make a difference in both
of the traits compared by Dr. Niu, I am unconvinced that
this is good evidence for a causal relationship. In addition,
since (apparently) simultaneous loss of adjacent introns
creates much longer exons than single intron losses, in the
context of Dr. Niu's argument it is surprising that such
multiple losses seem to account for a relatively large frac-
tion of overall intron losses in many lineages in which
such losses are rare (Stajich and Dietrich's work in Crypto-
coccs is the clearest example, but multiple losses are also
seen in Plasmodium and vertebrates). Finally, it seems very
unlikely to me that arguments relying on vague selective
differences that are expected to vary considerably across
exons within a genome (for instance, the argued effects
will presumably be smaller for short exons?) could
explain the nearly complete lack of intron loss in, for
instance, mammals or Theileria. That is, whereas I think
Dr. Niu's argument could indeed explain a fewfold reduc-
tion in intron loss, I cannot see how it could completely
stem intron loss (and gain, for that matter) as seen in
some lineages.

Author response
As a hypothesis, this paper just presents a possibility. On the
basis of the helpful comments from Dr. Roy and other reviewers
(see below), I have revised the manuscript and clarified that
this hypothesis is applied primarily to chordates.

Dr. Niu highlights yet another chicken-and-egg relation-
ship between characteristics of vertebrate genomes: high
intron density is likely to favor emergence of exon defini-
tion, but the reverse may also be true. Dr. Niu adds
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another strand to the complex web of cause and effect in
genome evolution, and his hypothesis is worthy of con-
sideration for future research.

Author response
I agree with this comment.

Reviewer 2: Eugene V. Koonin, National Center for 
Biotechnology Information, National Library of Medicine, 
National Institutes of Health, Bethesda, USA
This is an elegant hypothesis that strives to explain, with
one unifying idea, two rather puzzling observations: i) the
extremely low rate of intron loss in the course of evolution
of some groups of animals, particularly, vertebrates, and
ii) the typical small size and narrow size distribution of
exons in those same organisms. Of course, the two trends
are likely to be related as introns loss results in fusion of
exons and the formation of a new, long exon, so if intron
loss rate is low, there will be fewer long exons. However,
the connection needs not be deterministic because exons
could expand by other mechanisms as well. Dend-Ke
Niu's hypothesis is that exon expansion, by any mecha-
nism, be intron loss, duplication or insertion, is deleteri-
ous because splicing in the respective organisms occurs,
mostly, via the exon definition.

I find this to be an interesting, credible hypothesis with
considerable explanatory power. This being said, there are
several issues that deserve some criticism or at least aware-
ness. First, I would suggest that the paper should make it
clearer that the hypothesis applies, primarily, to chor-
dates, as intron loss is pretty extensive in other animals
like nematodes or arthropods. This does not really detract
from the hypothesis but there is no need to claim more
generality than justified.

Author response
I agree with this comment and have revised the manuscript
accordingly. 

Second, it should be noticed that that test of the hypothe-
sis illustrated in Figure 2 is weak, and indeed, rather
ambiguous because the ratio of the   numbers of exon
skipping to intron retention events is a very indirect proxy
of exon definition, and intron density is not intron loss
either. With regard to the latter, I think that it is possible
to use estimates of actual intron loss rates from: Carmel et
al. Genome Res. 2007 Jul; 17(7):1034-44, to at least
diminish the uncertainty associated with the use of intron
density. This is, in a sense, not a crucial issue because the
paper is a   hypothesis, and the decisive test in any case
remains to be done.

Author response
I thank Dr. Koonin for pointing out this flaw. The related text
and figure have been removed from the main article. However,
to aid readers' understanding of the reviewing process for this
paper, I included them as an online supplementary file (see
Additional File 1).

Third, and perhaps, somewhat more disturbingly, I find
the logic in the Discussion regarding exon definition
being the ancestral mode of splicing to be weak, at best,
and rather hard to follow. First, there is no need to postu-
late "forces" preventing intron loss at any stage of evolu-
tion. Yes, the fact that there was, to our knowledge,
virtually, no loss throughout chordate evolution does
require a very specific explanation but this does not neces-
sarily apply to the ancestor of multicellular animals. Weak
purifying selection owing to a small effective population
size would suffice. Accordingly, I do not think there is any
reason to believe that exon definition is ancestral. On the
contrary, I would maintain that intron definition is the
ancestral modality whereas exon definition came to be of
major importance in lineages where a massive increase in
intron size became possible, e.g., as the result of expan-
sion of mobile elements. Of course, chordates present the
prime example. Once many introns became large, the
"invention" of exon definition became the only way for
these organisms to survive.

Author response
I agree with this comment. The paragraph has been moved to
an online supplementary file (see Additional File 1) to aid
readers' understanding of the reviewing process for this paper.

I would like to emphasize that the above criticisms do not
invalidate Dend-Ke Niu's hypothesis which, on the whole,
I find interesting, stimulating, and plausible.

Reviewer 3: Igor B. Rogozin, National Center for 
Biotechnology Information, National Library of Medicine, 
National Institutes of Health, Bethesda (nominated by 
Mikhail Gelfand)
The author suggested a hypothesis that exon definition is
a potential negative force against intron losses. This is an
interesting hypothesis, however I have certain reservations
regarding this paper.

1) N. vectensis and Arabidopsis are among the most intron-
rich species that contain a lot of ancient introns. However,
splicing in N. vectensis is largely consistent with the exon
definition (the fraction of exon skipping [CE fraction] =
0.87; I hope that I understood correctly this variable sug-
gested by McGuire et al., 2008) whereas splicing in Arabi-
dopsis is more consistent with the intron definition (CE
fraction = 0.17). This result immediately suggests that the
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hypothesis is not able to explain the extreme cases of high
intron density.

2) Correlation coefficient is a measure of the linear
dependence between two random variables. It is obvious
that these variables are not random. Many species (e.g.
fungi, land plants or deuterostomes) are closely related.
Thus the correlation coefficient might simply reflect the
non-randomness of the analyzed variables. Removal of
closely related species may substantially change results of
the correlation analysis (taking into account a huge vari-
ance of the CE fraction [see Table 3 in McGuire et al.,
2008] and decrease in the size of the dataset).

3) Even if the correlation is significant, this does not mean
that there is a true connection between two variables.
Pearson correlation coefficient (0.49) is not exciting.
There might be some other variables (e.g., some proper-
ties of different EST libraries used by McGuire et al., 2008)
which would produce a stronger correlation and explain
larger fraction of variation in the data.

Author response
I agree with these comments and thank Dr. Rogozin for point-
ing out these flaws. The relevant text and figure have been
deleted from the main text and are now included as an online
supplementary file (see Additional File 1) to aid readers'
understanding of the reviewing process for this paper.

Additional material
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