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Abstract

: The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but
four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-
branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less
specialized along their primary body axis. As such, they present an attractive outgroup from which
to investigate how evolutionary changes in the genetic toolkit may have contributed to the
emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date
glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa.
Specifically, we examine these data in the context of how they may explain the evolutionary
development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate
the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal
by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes
may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-
opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians.

Open peer review: Reviewed by Pierre Pontarotti, Gaspar Jékely, and L Aravind. For the full
reviews, please go to the Reviewers' comments section.

Background

The thirty-plus metazoan phyla are each characterized by
a distinct "Bauplan" (or body plan; see [1,2]). A major
challenge facing evolutionary biologists lies in under-
standing the evolution of major animal features such as
body symmetry, germ layers, body cavities, skeletal sys-
tems, and nervous systems that comprise these disparate
metazoan body plans [3]. In approaching these questions,
it is especially useful to consider the earliest-branching
metazoan phyla - specifically, Porifera (sponges), Cteno-
phora (ctenophores), Placozoa (Trichoplax), and Cnidaria
(e.g., sea anemones, corals, and jellyfish) (Figure 1). The
origin of animals dates back to over 600 million years ago

and perhaps much earlier [4]. Fossil evidence and molec-
ular evidence suggest bilaterian animals radiated during
the Cambrian period some 500-550 million years ago
[5]. In the interval between these two events, the Sym-
plasma and the Cellularia (both sub-phyla within Porif-
era), the Ctenophora, the Cnidaria, and the Placozoa
emerged in succession as independent lineages (see Figure
1; see also Table 1 and references therein). Each of these
early branching lineages offers a unique perspective into
early animal evolution.

One key morphological feature that has contributed to the
traditional super-phyletic relationships of animals is sym-
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Table I: Summary of results from ribosomal phylogenetic analyses. Only studies that included sequences from at least one species of
Porifera, Ctenophora, Placozoa, Cnidaria, and Bilateria were considered. Not all the studies included data from both major clades of
poriferans, so a single "Po" entry in the result column does not necessarily indicate a monophyletic Porifera. Modeled after Table | of

[991-
Authors Year Meth Result Hypoth
Wainright et al. [79] 1993 ML (Po,(Ct,((Tr, Cn), Bi)))
Katayama et al. [80] 1995 DI ((((Po, Ct), Tr), Cn), Bi)
Katayama et al. [80] MP ((((Po, Ct), Tr), Cn), Bi)
Katayama et al. [80] ML ((Po,(Ct, Tr)),(Cn, Bi)) CnBi
Hanelt et al. [81] 1996 DI ((((Po, Ct), Tr), Cn), Bi)
Van de Peer & Wachter [82] 1997 DI (((Po,(Po, Ct)),(Tr, Cn)), Bi)
Abouheif et al. [83] 1998 MP (Po,(Ct,(Tr,(Cn, Bi)))) CnBi
Colins [84] 1998 MP (Po,(Po, Ct,(Tr,(Cn, Bi))) CnBi
Colins [84] ML (Po,((Po, Ct),(Tr,(Cn, Bi)))) CnBi
Halanych [85] 1998 MP (Po,(Tr,((Cn,(Ct, Cn)), Bi)));
Halanych [85] MP (Po,(Tr,(Ct, Cn, Bi))))
Lipscomb et al. [86] 1998 MP (Po, Po, Ct,((Tr, Cn), Bi));
Littlewood et al. [87] 1998 DI (Tr,((Po,(Po, Ct)),(Cn, Bi)))* CnBi
Winnepenninckx et al. [88] 1998 DI ((Po,(Po, Ct)),(Cn,(Tr, Bi))) TrBi
Zrzavy et al. [89] 1998 MP ((Po,(Po, Ct)),(Tr,(Cn,(Cn, Bi)))) CnBi
Kim et al. [90] 1999 DI (Po,(Po,(Ct,(Tr,(Cn, Bi))))) CnBi
Kim et al. [90] ML (Po,(Po,(Ct,(Tr,(Cn, Bi))))) CnBi
Giribet et al. [91] 1999 MP (Po,(Ct,(Cn,(Tr, Bi)))) TrBi
Siddall & Whiting [92] 1999 MP ((Po, Ct),(Cn,(Tr, Bi))) TrBi
Peterson & Eernisse [93] 2001 MP (Po,(Po, Ct,(Tr,(Cn, Bi)))) CnBi
Podar et al. [94] 2001 ML (Po,(Ct,(Tr,(Cn, Bi)))) CnBi
Collins et al. [95] 2002 MP (Po,(Po,(Ct,(Cn,(Tr, Bi))))) TrBi
Jondelius et al. [96] 2002 ML (Po,(Po,(Ct,(Cn,(Tr, Bi))))) TrBi
Martinelli & Spring [97] 2003 ML (Po,(((Ct, Tr), Cn), Bi))
Zrzavy & Hyp3a [98] 2003 MP (Po,(Ct,((Tr, Cn), Bi)))
Zrzavy & Hypsa [98] MP (Po,(Ct,(Tr,(Cn, Bi)))) CnBi
Zrzavy & Hypsa [98] MP (Po,((Ct, Tr),(Cn, Bi))) CnBi
Wallberg et al. [99] 2004 MP (Po, Po,(Ct,(Cn,(Tr, Bi)))) TrBi

Meth = Method, Hypoth = Hypothesis, ML = Maximum Likelihood, MP = Maximum Parsimony, DI = Distance, Po = Porifera, Ct = Ctenophora, Tr
= Placozoa, Cn = Chnidaria, Bi = Bilateria, CnBi = sister relationship between Cnidaria and Bilateria, TrBi = sister relationship between Placozoa and

Bilateria.

metry about a primary body axis. A comprehensive analy-
sis of animal anatomy produced by Beklemishev
concluded that all animals are organized by a primary
body axis (alternatively referred to as "anterior/posterior",
"apical/basal", and "oral/aboral") [6]. This axis is espe-
cially evident during embryogenesis and larval stages. It is
debated though whether this monaxonal symmetry is
homologous throughout the Metazoa and at what point
(or points) in animal evolution bilateral symmetry
emerged.

Axial symmetry and the porifera

Sponges are often described as being asymmetric or con-
taining imperfect radial symmetry [6]. While it is true that
adult sponges are often asymmetrically shaped by their
environment, sponge larvae are usually symmetrical
about their primary body axis, especially in the Hexactine-
lida and Calcarea classes [6,7] (Figure 2A). Moreover,
many of the hallmark features of metazoan ontogeny
(that is, cleavage, blastulation, and gastrulation) occur in

sponges [8]. This fact is of critical importance when trying
to reconstruct the body plan of the crown ancestor to
metazoans. Recent reports have revealed that the phylum
Porifera is genetically more complex than was anticipated
[9-11]. They possess many of the signaling pathways and
transcription factors that are involved in patterning the
axes of bilaterians. There has yet to be extensive in situ
hybridization assays involving sponges, but early results
from the demosponge Amphimedon queenslandica suggest
that transcription factors have the potential to specify dis-
tinct regions of the developing sponge [11]. Further
insight into the processes responsible for patterning the
sponge primary body axis will be essential in understand-
ing the evolution of animal body plans.

Axial symmetry and the "radiata"

The superphyletic designation Radiata was originally pro-
posed by Cuvier to encompass the so-called radially-sym-
metric animals (for example, jellyfish, polyps, starfish, sea
urchins, and some Protozoa) [12]. As new evidence has
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Evolutionary relationships of early-diverging metazoan lineages (Symplasma, Cellularia, Ctenophora, Placozoa, Anthozoa, and
Medusozoa) with Bilateria and outgroups (Plantae, Fungi, and Choanoflagellata). Tree topology is based on [77]. Dotted line
indicates uncertainty as to the placement of the placozoan branch. Arrows indicate the earliest known appearance of the spec-

ified group of genes.

surfaced, the composition of this group has been modi-
fied several times (c.f. [13,14]). The term Radiata has also
been frequently used to describe only the phyla Cnidaria
and Ctenophora (for example, [15]). The rotating mem-
bership and the polyphyletic nature of these phyla (see
Figure 1) contribute to the obvious confusion surround-
ing this term. However, the most confounding aspect of
the term Radiata is that few species within Cnidaria and

Ctenophora (the two consistent members of this group)
actually exhibit true radial symmetry (that is, indefinite
multiradiate symmetry), with many species within the
group (particularly anthozoans) instead exhibiting bilat-
eral symmetry.

Multiple examples of asymmetry, bilaterality, biradiality,
and tetraradiality can be found collectively within the
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Sponge Larvae

radial symmetry

Ctenophore
biradial symmetry
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Earth Worm

bilateral symmetry

Phylogenetic framework of primary body axis symmetry. (A) Radial symmetry of a sponge larva. (B) Top down view of Pleuro-
brachia (Ctenophora). The tentacles and anal pores of the ctenophore disrupt the octoradiate symmetry established by the 8
ciliary combs. (C) Bilateral symmetry of Actinia as seen through a cross-section of Actinia. The decemradiate symmetry defined
by the septa is broken by a single siphonoglyph. (D) Bilateral symmetry defined by numerous structures as seen through the
Cross-section of an earthworm. Abbreviations: ms = mesenteries, rm = retractor muscle, dbv = dorsal blood vessel, mwi =
muscular wall of intestine, fiw = fold of intestinal wall, ct = cuticle, gc = gland cell, ep = epidermis, cm = circular muscles, Im =
longitudinal muscles, sbv = subneural blood vessel, vnc = ventral nerve chord, vbv = ventral blood vessel, cf = ciliated funnel,
exp = excretory pore, np = nephridium, br = bristle (only two of the 4 pairs of bristles are shown), pr = peritoneum, cc =
chloragen cells. lllustrations in A, B, and D are after [78] with permission from University of Chicago Press. lllustration in C

after [6].
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Cnidaria and Ctenophora (reviewed in [3,15-17]). In par-
ticular, many species within the Anthozoa (representing
all three subclasses) and several within the Hydrozoa
show clear signs of bilateral symmetry [6,18]. It is possible
that this bilateral symmetry derived independently within
these lineages, as suggested by Hyman and Beklemishev
[6,19]. However, these authors were basing their conclu-
sions on an animal phylogeny that placed the biradial
ctenophores sister to the Bilateria. Furthermore, their
understanding of cnidarian evolution was substantially
different. Evidence based on both genomic content [20]
and mitochondrial structure [21] suggest that the antho-
zoan biphasic lifestyle may be more primitive than medu-
sozoans; this is in contrast to the more popular view at
that time, a view put forth by Hyman that advocated the
reverse scenario [19]. This recent shift in phylogenetic per-
spective supports the turbellarian theory, developed by
Hadzi [22] and advocated by both Hand [23] and Willmer
[3]: that radial symmetry is a derived feature within the
Cnidaria, and suggests that bilateral symmetry evolved
prior to the cnidarian-bilaterian ancestor. Data from the
sea anemone Nematostella vectensis show that similar
molecular mechanisms, including Hox, Dpp and Wnt
genes [24-28], are involved in patterning the primary and
secondary axes of bilaterians and cnidarians further sug-
gesting that bilateral symmetry is plesiomorphic with
respect to the Bilateria.

Graded morphological complexity

It has been recognized previously that in terms of cell
types and tissue types along the primary body axis,
sponges are much simpler than bilaterians (i.e., sponges
lack true tissues and organs) and that cnidarians occupy
an intermediate level of axial complexity [29]. If the bilat-
eral symmetry exhibited in anthozoans is considered the
ancestral cnidarian condition, a pattern emerges of
increasing morphological complexity along the primary
body axis at each phyletic divergence point leading to the
last common ancestor of bilaterians (Figure 2). Because of
its uncertain phylogenetic position, Trichoplax is not con-
sidered in this model. Still, Placozoa is either the earliest
diverging metazoan lineage (see [30]), in which case its
asymmetry appropriately fits the model, or it is secondar-
ily reduced (see Table 1 and references therein), in which
case its asymmetry would not be appropriate to consider
in this context. Sponges lack the complex organs and
organ systems that are found in other Metazoa and are
instead comprised of a series of asymmetric water current
channels that define their (often imperfect) radial symme-
try. The biradial nature of ctenophores is defined by the
pharynx, the gastrovascular canals, and two sets of dia-
metrically opposed structures: the anal pores and tentacles
(Figure 2B). These structures break up the underlying mul-
tiradiate symmetry of these animals. Most bilaterally sym-
metrical anthozoans have underlying biradiate symmetry,

http://www.biology-direct.com/content/2/1/37

defined by the pharynx and mesenteries; this symmetry is
disrupted by a single structure, the siphonoglyph (and
sometimes, the arrangement of the retractor muscles that
attach to the mesenteries), which defines their bilateral
symmetry (Figure 2C). In contrast to anthozoans, bilateri-
ans have many structures that define their bilateriality. For
example, bilaterial symmetry is defined in the earthworm
by the dorsal and ventral blood vessels, the ventral nerve
chord, and the intestine, to name a few (Figure 2D). Given
that a limited set of developmental genes are responsible
for patterning the body axis of most animals, a better
understanding of the evolutionary history of these gene
families will contribute greatly to our understanding of
this tendency towards axial complexity in early metazoan
history.

Developmental genes in early-diverging phyla
Studies from early-branching metazoans hold much
promise towards furthering our understanding of the
genetic and developmental basis of morphological
change. The first step in this process involves establishing
reliable phylogenetic classifications of gene families that
highlight orthologous relationships, as well as identifying
novel genes within each lineage. The next step entails
identifying functional parallels (if they exist) between
developmental genes in these early-branching taxa and
their corresponding orthologs in Bilateria.

Hox and homeobox evolution near the base of the
metazoa

Studying the homeobox superclass of transcription factors
has yielded significant insight towards the goal of under-
standing basic developmental processes. Homeobox
genes play critical roles in development in plants, fungi,
and animals. A recent report showed that the common
ancestor of bilaterians possessed at least 88 homeobox
genes [31]. A subsequent study showed that at least 56 of
these homeobox genes were likely present in the cnidar-
ian-bilaterian ancestor [26]. This analysis demonstrates
that many important genetic components in the bilaterian
developmental toolkit were present in the last common
ancestor of cnidarians and bilaterians.

The representation of Nematostella homeoboxes within
the Hox families was conspicuously deficient when com-
pared to the normal distribution of Nematostella to bilate-
rian genes within multi-family clades [26]. The Hox genes
are essential for patterning the primary body axis of bilat-
erians, and mutations in these genes have homeotic
effects on the developing embryo [32]. Evidence from the
sequenced genome of the demosponge Amphimedon sug-
gests that Hox genes emerged after the metazoan crown
ancestor [33]. Furthermore, it seems unlikely that Cteno-
phores have Hox genes, given that there has been no
report of the presence of Hox genes despite two EST
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sequencing projects [34,35] and several degenerate PCR-
based fishing projects [36-38].

Several previous studies have shown that Hox homo-
logues existed in a wide range of cnidarians (reviewed in
[39,40]). However, the homeobox survey in Nematostella
was the first report of a full repertoire of Hox genes from
a cnidarian [26]. Subsequent studies have since demon-
strated that Nematostella has at least seven Hox genes
belonging to three distinct families [20,41,42]. In addi-
tion, genes from two of these families are organized in a
cluster reminiscent of (but distinct in arrangement to) the
Hox cluster of bilaterians [20,42]. Furthermore, two addi-
tional genes from Nematostella were shown to be related to
the three ParaHox genes of bilaterians [20,41,42]. These
genes are also found in an independent cluster in many
bilaterians, and this ParaHox cluster is believed to be a sis-
ter cluster to the Hox complex [43] (but see [42] for an
alternate theory on the origin of the ParaHox cluster).

If we assume modest and uniform gene loss in the human,
Drosophila, and Nematostella homeobox superfamilies,
then the Hox subclass, more than any other subclass of
homeobox genes besides Dux (which encode "double
homeodomain" proteins), has underwent extensive inde-
pendent radiation in the bilaterian lineage compared to
the cnidarian lineage [26]. A conservative estimate is that
the last common ancestor of cnidarians and bilaterians
had three Hox and two ParaHox genes that likely radiated
into seven Hox and three ParaHox genes in the crown
bilaterian ancestor. The Hox gene radiation coincided
with a significant increase in axial specificity (compare
Figures 2C and 2D). This, combined with the fact that Hox
genes likely arose after the divergence of Ctenophora from
the rest of Metazoa, is consistent with the hypothesis that
complexity and the number of Hox genes in a genome are
positively correlated [44-48]. It has previously been
observed that within the Bilateria, the level of complexity
of a species does not necessarily correlate with the number
of Hox genes in its genome [49]. Nevertheless, the pattern
seen in these early branching lineages may offer insight
into the early evolution of bilateral symmetry and its
molecular underpinnings.

Hox, Wnt, and the evolution of the primary body
axis

Does the Hox system define metazoans?

An influential review by Slack and coworkers hypothe-
sized that Hox genes and their coordinated spatial expres-
sion along the primary body axis are metazoan
synapomorphies [50]. Early reports of cnidarian Hox
genes set off a debate as to whether or not this zootype
hypothesis was valid, in light of these new findings
[44,51-53]. With the recent release of genomic data from
Nematostella [54] and other species from early-diverging
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phyla, there is substantially more information from which
to reevaluate the zootype hypothesis.

The evidence suggesting that the last common cnidarian-
bilaterian ancestor had a Hox system is consistent with the
zootype hypothesis. However, the apparent absence of
Hox genes from Ctenophora and Porifera suggests that a
Hox system was not in place in the earliest animals. In
light of this evidence, the zootype hypothesis must be
rejected sensu stricto. It is possible that the specification of
regional identity along the primary body axis by a set of
genes is a synapomorphy of the animal kingdom, and that
the Hox genes were not the original set of genes responsi-
ble for this specification. If this is the case, then there must
have been other genes responsible for patterning the pri-
mary body axis of the last common metazoan ancestor. It
may be that this ancestral patterning system is still opera-
tional in sponges and ctenophores and that traces of the
system in cnidarians and bilaterians might perhaps be
detected.

Whnt pathway components in the early-diverging phyla

It has been postulated that the Wnt pathway may be the
ancestral metazoan axial patterning system [55]. Several
lines of evidence support this hypothesis. Firstly, compo-
nents of the Wnt pathway have been found in two species
of demosponge [9,56] and, a recent study showed the Wnt
expression pattern in the demosponge Amphimedon
queenslandica to be consistent with a role in patterning the
primary body axis during development[57]. Furthermore,
Wnt signaling is involved in axial patterning in bilateri-
ans. In vertebrates, hemichordates, and echinoderms, Wnt
signaling is essential for posterior patterning (reviewed in
[58]). In protostomes, there is evidence of expression in
the posterior terminus of several insects and the posterior
hindgut of polychaete annelids [59]. Similarly, the Dick-
kopf (Dkk) family of Wnt antagonists are required for for-
mation of anterior structures in vertebrates (reviewed in
[60]).

Lastly, phylogenetic and expression analyses from several
cnidarians show that Wnt signaling plays a significant role
in patterning the cnidarian primary body axis [27,55,61-
66]. Genomic data show that there are at least 13 Wnt
orthologs in Nematostella representing 11 of the 12 bilate-
rian Wnt subfamilies indicating that the Wnt family had
extensively radiated prior to the last common cnidarian-
bilaterian ancestor [27,55]. Strikingly, in situ hybridiza-
tion experiments reveal overlapping expression domains
of these 13 Wnt genes at the oral end of the developing
planula, encompassing roughly 75% of the animal in
both germ layers. Furthermore, ectodermal expression of
Dkk1/2/4, a gene whose vertebrate orthologs are major
antagonists of Wnt ligands, is seen in the aboral region of
the Nematostella planula, bringing the total Wnt-related
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signaling coverage of the developing planula close to
100% [27,55].

Co-option of Hox genes

If a more primitive mechanism responsible for patterning
the primary body axis of metazoans than the Hox system
exists, then it is likely that the Hox genes were co-opted
into this pathway sometime between their origin and the
last common ancestor of cnidarians and bilaterians.
Recent evidence from both protostomes and deuteros-
tomes suggests that Wnt signaling partitions Hox and
ParaHox domains to specify unique cell fates during
development [67-71]. Additionally, Wnt genes are known
to induce the expression of certain Hox genes under cer-
tain conditions in vertebrates [72]. Finally, evidence sug-
gests that Wnt signaling works together with the ParaHox
gene Cdx to regulate posterior Hox gene patterning in the
mouse embryo (reviewed in [73]). These mounting data
suggest that Wnt and Hox genes work together during
axial specification.

It is possible, then, that the coordination of these two sys-
tems seen in modern-day bilaterians are traces of an
ancient co-option event that occurred early in metazoan
evolution. If the Hox genes were truly co-opted into the
Wnt pathway, it is difficult to say whether the they were
co-opted prior to the last common ancestor of cnidarians
and bilaterians or subsequently, in the lineage leading to
the last common ancestor of bilaterians. The expression
patterns of Hox genes in the anthozoan Nematostella [42]
and the hydrozoan Eleutheria [41] show that, while the
cnidarian Hox genes are expressed in restricted regions
along the primary body axis, the contiguous striped pat-
tern that is seen in the bilaterian Hox genes is not
observed. This could be an indication that the co-option
process had began prior to the last common ancestor of
bilaterians and cnidarians, but became more pronounced
later, in the bilaterian lineage.

Speculation on the mechanisms underlying this co-option
event might be premature. However, one possibility could
be that a single Hox or ParaHox gene, which was high in
the Hox/ParaHox cascade, was co-opted into the Wnt net-
work. The Cdx genes (ParaHox) have been shown to be
direct targets of Wnt signaling [74,75] and thought to be
direct regulators of Hox genes in vertebrates (reviewed in
[73,76]). At some point (perhaps prior to the cnidarian-
bilaterian ancestor), the ortholog to Cdx could have come
under the regulatory control of one or more Wnt genes. As
the Hox/ParaHox family expanded through duplication,
existing auto-regulatory mechanisms may have been
transformed into an axial specifying network controlled
initially by the Cdx ParaHox gene, which was under con-
trol of a smaller number of Wnt genes. This is only one of
many other possible scenarios involving Wnt and/or

http://www.biology-direct.com/content/2/1/37

other axial patterning networks. Nonetheless, these sce-
narios are testable and, on the surface, seem more likely
than a scenario in which the Hox genes produced an inde-
pendent primary body axis patterning network de novo.
The initial wave of data from these early branching line-
ages is not yet at the stage where we can draw more defin-
itive evolutionary scenarios, but they do provide a
jumping-off point from which to generate testable
hypotheses.

A better understanding of these evolutionary processes
will come from more-strongly establishing the relation-
ship between Hox, ParaHox, and Wnt genes in cnidarians,
while refining those same relationships in bilaterians. A
first step with respect to the Cnidaria would involve estab-
lishing the spatial and temporal relationships of the
expression of these genes relative to each other. The next
step would be to determine the effect of Wnt expression
when Hox expression is perturbed and vice versa. If the co-
option hypothesis holds, these data might help to reveal
the progression of this co-option event relative to the cni-
darian-bilaterian divergence as well a better understand-
ing of the molecular mechanisms underlying bilaterian
complexity and diversity.

Conclusion

It is becoming clear that combinatorial regulation plays a
large part in cell fate specification [68]. A variety of tran-
scription factors and signaling pathways active in a partic-
ular cell play a critical role in determining the fate of that
cell. During embryogenesis, this combinatorial system is
used to impart complexity into the developing embryo. It
seems reasonable to postulate that an expansion of gene
families involved in cell determination (akin to what is
seen in the Wnt and Hox genes during the major transi-
tions in metazoan history) would lead to an increase in
cell types and tissue types available to embryogenesis; this
would, in turn, lead to more complexity and variety in
body plans. Characterizing the dynamics of gene family
radiation, gene loss, and co-option is key to understand-
ing these important metazoan transitions. By relating
these data with morphological and developmental data in
a phylogenetic context, we can begin to understand how
changes in ontogeny have led to the burst of morpholog-
ical diversity that occurred in the early Cambrian.

Reviewer's comments

Reviewer I: Pierre Pontarotti, Université d'Aix Marseille,
Marseille, France

Review of the article Hox, Wnt and the evolution of the
primary body axis: insights from the early divergent phyla.

This article shed some light on the understanding and the
evolution of the bilaterian animals using knowledge from
non bilaterian phyla.
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Two main important insights come out from this exegesis
of the current literature: 1) the revaluation of the zootype
hypothesis and 2) the putative role of the Wnt genes in the
partitioning of the body axis in urbilateria.

I think that this review article will help experimental
design for the "evo/devo" scientific community.

Specific comments:

"Early divergent phyla and the primary body axis" para-
graph:

1) The single cell ancestor hypothesis

What really are the evidence that animals descent from
several single cell ancestors? Multicellularity occurred sev-
eral times independently in the history of life, see for
example Fungi. I do not understand why the hypothesis of
convergent multicellularity should not be considered in
the case of animal.

Authors' response:The relationship of animals to single-
celled eukaryotes is tangential to our thesis, so we have removed
the reference to animal origins in the paper. Please also see the
response to Comment 2.

2) The dating of the occurrence of animal multicellularity

I would be careful about the dating; the fact that we can-
not witness older multicellular fossil than the one found
in the Ediacaran fauna does not mean that they did not
exist.

Authors' response:We reworded a couple of sentences to
make it clear that these dates are only estimates based on pub-
lished studies. The following sentences were changed:

"All animals descended from a single-celled ancestor (most
likely a choanofagellate) over 600 million years ago[4]. Bilate-
rian animals radiated during the Cambrian explosion 544-
525 million years ago."

The text now reads:

"The origin of animals dates back to over 600 million years ago
and perhaps much earlier [4]. Fossil evidence and molecular
evidence suggest bilaterian animals radiated during the Cam-
brian period some 500-550 million years ago [5]."

"Graded morphological complexity" paragraph:
The authors wrote: "sponges are much simpler than bilat-

erians and that cnidarians occupy an intermediate level of
axial complexity". What is the objective parameter of

http://www.biology-direct.com/content/2/1/37

complexity. The authors should explain it (even if this is
evident for most of our colleague).

Authors' response:The following sentence was changed:

"It has been recognized previously that in terms of complexity
along the primary body axis, sponges are much simpler than
bilaterians and that cnidarians occupy an intermediate level of
axial complexity [29]."

The text now reads:

"It has been recognized previously that in terms of cell types and
tissue types along the primary body axis, sponges are much sim-
pler than bilaterians (i.e., sponges lack true tissues and organs)
and that cnidarians occupy an intermediate level of axial com-
plexity [29]."

Concerning the phylogeny of Animal

Do the authors think that Bilaterian and Cnidarians form
a monophylogentic group, do they think the hox where
co-opted in the most common ancestor of these two
phyla? It should be helpful if the authors discuss this pos-
sibility.

Authors' response:Figure 1shows the prevailing view that
Cnidaria and Bilateria are sister taxa and form a monophyletic
group. Most of the ribosomal RNA phylogenies support this
relationship as shown in Table 1.

We've inserted the following into the text to address the second
part of this comment:

"If the Hox genes were truly co-opted into the Wnt pathway, it
is difficult to say whether the they were co-opted prior to the last
common ancestor of cnidarians and bilaterians or subsequently,
in the lineage leading to the last common ancestor of bilateri-
ans. The expression patterns of Hox genes in the anthozoan
Nematostella [42]and the hydrozoan Eleutheria [41]show
that, while the cnidarian Hox genes are expressed in restricted
regions along the primary body axis, the contiguous striped pat-
tern that is seen in the bilaterian Hox genes is not observed.
This could be an indication that the co-option process had
began prior to the last common ancestor of bilaterians and cni-
darians, but became more pronounced later, in the bilaterian
lineage."

Reviewer 2: Gaspar Jékely, Max Planck Institute for
Developmental Biology, Tiibingen, Germany

Reviewed by: Gadspar Jékely, Max Planck Institute for
Developmental Biology, Spemannstrasse 35, Tiibingen,
72076 Germany, Tel: +49 7071 601 1310,
gaspar.jekely@tuebingen.mpg.de
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This paper gives a good overview of the early evolution of
axial symmetry and the patterning along the AP axis in
Metazoa. The paper is well written and I only have a few
comments and suggestions for potential improvement.

The authors propose that the Hox system was probably
co-opted into the more ancestral Wnt system for pattern-
ing along the AP axis. This is an interesting idea and it
would be worth spelling it out in a bit more detail. How
could it have happened? Did Hox genes intercalate
between Wnt signalling and the target genes of Wnt etc.?
Why did it allow more precise axial patterning? An extra
figure showing the steps of the evolution of the Wnt-Hox
axial patterning system in Metazoa would also help (e.g.
schematic embryos with the expression domains).

Authors' response:We've inserted the following paragraph
into the text to address these questions:"Speculation on the
mechanisms underlying this co-option event might be prema-
ture. However, one possibility could be that a single Hox or
ParaHox gene, which was high in the Hox/ParaHox cascade,
was co-opted into the Wnt network. The Cdx genes (ParaHox)
have been shown to be direct targets of Wnt signaling
[74,75)and thought to be direct regulators of Hox genes in ver-
tebrates (reviewed in [73,76]). At some point (perhaps prior to
the cnidarian-bilaterian ancestor), the ortholog to Cdx could
have come under the regulatory control of one or more Wnt
genes. As the Hox/ParaHox family expanded through duplica-
tion, existing auto-regulatory mechanisms may have been
transformed into an axial specifying network controlled initially
by the Cdx ParaHox gene, which was under control of a smaller
number of Wnt genes. This is only one of many other possible
scenarios involving Wnt and/or other axial patterning net-
works. Nonetheless, these scenarios are testable and, on the sur-
face, seem more likely than a scenario in which the Hox genes
produced an independent primary body axis patterning network
de novo. The initial wave of data from these early branching
lineages is not yet at the stage where we can draw more defini-
tive evolutionary scenarios, but they do provide a jumping-off
point from which to generate testable hypotheses. "

Wnt expression was also analysed recently in the sponge
Amphimedon queenslandica (PLoS ONE 2007 vol. 2 pp.
e1031) and was found to be expressed at the posterior
pole of larvae. This is in agreement with the idea that Wnt
signalling plays an ancestral role in patterning the AP axis.
These findings should also be discussed.

Authors' response:We inserted the following into the text:

"...a recent study showed the Wnt expression pattern in the
demosponge Amphimedon queenslandica to be consistent with
a role in patterning the primary body axis during develop-
ment[57]."

http://www.biology-direct.com/content/2/1/37

Reviewer 3: L Aravind, Computational Biology Branch,
NCBI, NLM, NIH, Bethesda, USA
This reviewer provided no comments for publication.
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