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Abstract
Background.: This work was undertaken in response to a recently published paper by
Okoniewski and Miller (BMC Bioinformatics 2006, 7: Article 276). The authors of that paper came
to the conclusion that the process of multiple targeting in short oligonucleotide microarrays
induces spurious correlations and this effect may deteriorate the inference on correlation
coefficients. The design of their study and supporting simulations cast serious doubt upon the
validity of this conclusion. The work by Okoniewski and Miller drove us to revisit the issue by
means of experimentation with biological data and probabilistic modeling of cross-hybridization
effects.

Results.: We have identified two serious flaws in the study by Okoniewski and Miller: (1) The data
used in their paper are not amenable to correlation analysis; (2) The proposed simulation model is
inadequate for studying the effects of cross-hybridization. Using two other data sets, we have
shown that removing multiply targeted probe sets does not lead to a shift in the histogram of
sample correlation coefficients towards smaller values. A more realistic approach to mathematical
modeling of cross-hybridization demonstrates that this process is by far more complex than the
simplistic model considered by the authors. A diversity of correlation effects (such as the induction
of positive or negative correlations) caused by cross-hybridization can be expected in theory but
there are natural limitations on the ability to provide quantitative insights into such effects due to
the fact that they are not directly observable.

Conclusion.: The proposed stochastic model is instrumental in studying general regularities in
hybridization interaction between probe sets in microarray data. As the problem stands now, there
is no compelling reason to believe that multiple targeting causes a large-scale effect on the
correlation structure of Affymetrix gene expression data. Our analysis suggests that the observed
long-range correlations in microarray data are of a biological nature rather than a technological
flaw.

Reviewers: The paper was reviewed by I. K. Jordan, D. P. Gaile (nominated by E. Koonin), and W.
Huber (nominated by S. Dudoit).
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1. Background
Okoniewski and Miller [1] reported evidence they believe
to be in favor of the idea that spurious positive correla-
tions induced by the process of multiple targeting, i.e. the
competition of multiple probe sets for a common tran-
script, represent a mass phenomenon in high-density oli-
gonucleotide microarrays. They consider this
phenomenon as a serious handicap to the inference on
correlations in gene expression data analysis. In a way,
their conclusion was in conflict with our re-analysis [2] of
the Microarray Quality Control (MAQC) data [3] indicat-
ing that the level of technical noise in the contemporary
Affymetrix platform is quite low. For this reason, we did
not expect the effects of multiple targeting (MT) to be very
disturbing. In [2], we argued as follows: "Since the compe-
tition of different oligonucleotide probes for the same
transcript is random in nature, this process is expected to
ultimately manifest itself in the observed technical varia-
bility, the latter having proven to be low. However, the
proposed rationale is purely heuristic and cannot be inde-
pendently verified as no technical vehicle is currently
available for this purpose." This dissenting opinion drove
us to look more closely at the problem from experimental
and theoretical perspectives.

Another reason why we were unprepared to accept the
conclusion by Okoniewski and Miller was that the pro-
portion of problematic pairs of probe sets (among all
pairs) was expected to be low because only their non-over-
lapping pairs should be considered. This point is dis-
cussed more elaborately in Section 2.1. We carried out the
study reported in Section 2.1 to dispel our doubts. In
doing so, our focus was on the prevalence of MT, and not
on its significance in individual gene pairs. The latter
problem, and especially its multiple testing aspect, is
much more challenging from the statistical standpoint.
Useful methodological results on significance of changes
in correlation coefficients can be found in [4]. It is also
beyond the scope of the present paper to discuss the
potentially adverse effects of cross-hybridization on the
outcomes of testing for differential expression. While such
effects are plausible, we have no tools to investigate them
quantitatively. At the same time, the publication by Oko-
niewski and Miller motivated us to provide a more in-
depth analysis of the process of cross-hybridization based
on the stochastic modeling of this process. The results of
this endeavor, representing the most significant part of
our contribution to the problem under discussion, are
presented in Section 2.2.

Our initial intention was to faithfully reanalyze the same
data set as was used in [1].  However, it became clear that
the Novartis Gene Atlas data set is not amenable to corre-
lation analysis because it represents a mix of arrays
derived from diverse biological specimens, each being of

a different origin and each representing a single copy of
the corresponding set of expression measurements. In
other words, these data do not represent a random sam-
ple, defined as a sequence of independent and identically
distributed random vectors, which is required for a statis-
tically sound inference on correlation coefficients. If one
chooses to ignore this fact and produces sample correla-
tion coefficients from such data, the resultant estimates
will not be interpretable in probabilistic terms and their
statistical properties, such as consistency, will be uncer-
tain. Therefore, the histograms of pairwise correlation
coefficients presented in [1] are statistically invalid. It is an
observation drawn from the same (homogeneous) gen-
eral population that adds information on an unknown
parameter, and not an observation generated from a dis-
similar distribution. The Novartis Gene Atlas and like data
sets would have been amenable to statistical analysis had
they included multiple independent replicates of each tis-
sue type. Without this important feature, any inferences
from such data are not generalizable to the general popu-
lation and make little sense both statistically and biologi-
cally. Unfortunately, this aspect of the problem is
frequently neglected in the bioinformatics literature. The
mixture-based approach discussed by Dr. Gaile in his
review does not circumvent the obstacle because the
Novartis Gene Atlas typically provides only a single obser-
vation per each component of the underlying mixture of
distributions. In response to Dr. Jordan's comment, we
can only express our regret at the fact that statistical prin-
ciples are violated too often in this field of research.

The second problem has to do with data normalization.
We have discussed adverse effects of normalization in
conjunction with single-color microarrays in several pub-
lications [2,5-7]. Leaving aside the question of whether or
not the currently used normalization procedures achieve
their promulgated goal, it is a well-known fact that they
distort to various degrees the correlation structure of
microarray data [5,8], the latter being the main concern in
reference to the results reported in [1]. The popular view
that the observed correlations between gene expression
levels are solely attributable to an array-specific random
effect caused by the technical noise is demonstrably false
[2,9,10]. Recall that, in accordance with our analysis of
the MAQC data set, the level of random fluctuations of
gene expression signals attributable to the technical noise
in the contemporary Affymetrix platform is too low to
cause a tangible bias in estimated correlation coefficients
[2]. There is also independent evidence that normaliza-
tion procedures distort the joint distribution of the true
expression signals quite dramatically, even affecting their
marginal distributions [6]. Every known normalization
procedure resorts to pooling (heavily dependent)
observed signals across different probes (probe sets),
thereby producing surrogate variables whose distributions
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differ from those of the true biological signals. In the con-
text of testing for differential expression, this distortion of
the true signal may induce an uncontrollable number of
false discoveries, an effect especially pronounced in large
sample studies where control of type 1 errors may be
entirely lost. The adverse effects of normalization proce-
dures will be addressed more comprehensively in a forth-
coming paper. We find it beyond reason to resort to
normalization when assessing the effects of cross-hybridi-
zation on the correlation structure of microarray gene
expression data.

We respectfully disagree with Dr. Jordan that normalized
data can be of some utility in correlation analysis. The
popular belief that normalization should be universally
applied to microarray data has already caused a great deal
of harm to numerous biological and methodological
studies. The idea of normalization was initially offered as
an ad hoc expedient to improve significance testing for dif-
ferentially expressed genes in two-sample comparisons.
Even in this setting, the universal benefits of normaliza-
tion are questionable (see above). The situation is more
obvious when the main focus is on correlation coeffi-
cients. Destroying correlations before studying them
quantitatively does not make any sense to us. This is
exactly the pitfall biologists should be aware of in order to
avoid false biological conclusions. Therefore, we maintain
the opinion that normalization should not be used when
making inferences about the correlation structure of
microarray data.

For the reasons presented above, we turned to two other
data sets that meet the requirements of correlation analy-
sis. The choice of data sets was governed by the quest for
larger sample sizes and the need for the same array type
(HG_U133A) as was used in [1]. Our analysis of the cho-
sen data sets appeared to be in conflict with the observa-
tions reported in [1]. Yet another conflict became
apparent when comparing our stochastic description of
cross-hybridization (Section 2.2.1) with the simulation
model employed by Okoniewski and Miller.

Unlike Ploner et al. [8], we see no reason to swiftly accept
the conjecture that the majority of gene pairs must be
composed of independent genes, while trying to explain
the actually observed strong and long-range correlations
in the majority of gene pairs [9-12] by "non-biological"
causes. (The term long-range correlation refers to the situ-
ation where a given gene displays large correlation coeffi-
cients, say, greater than 0.8, with thousands of other
genes). In view of our study of the random component of
technical noise [2], we find it much more plausible that
the observed positive correlations reflect the true biologi-
cal correlations, whether it be a manifestation of tran-
scriptional regulation or confounding due to

heterogeneity of cell populations [13,14]. There is some
additional evidence to support this opinion. In particular,
such evidence is provided by the phenomenon of type A
dependence described in [9]. This mass phenomenon
manifests itself beyond a very conservative estimate of the
level of technical noise. Our updated estimate suggests
that the proportion of type A pairs with very high positive
correlation coefficients is close to 50% [10]. In accordance
with a mathematical argument given in [10], the abun-
dance of this type of stochastic dependence leads us to
conclude that positive true correlations dominate the cor-
relation structure of microarray data. Yet another argu-
ment in the context of cross-hybridization will be given in
Section 2.

The term "cross-hybridization" refers to a complex physi-
cal/chemical process and is not entirely reducible to the
concept of "multiple targeting" in its simplistic form ame-
nable to probabilistic modeling. In the context of this
paper, however, the two terms will be used interchangea-
bly. The present paper attempts to illuminate the follow-
ing two questions:

(1) Can the process of cross-hybridization lead to strong
positive correlations in families of those probe sets that
are known to have the potential for multiple targeting?

(2) If the answer to the previous question is "yes", is this
effect prevalent enough to manifest itself in a tangible pro-
portion of gene pairs so that, e.g., the average (over all
gene pairs) is affected?

The authors of [1] gave a positive answer to both ques-
tions. In view of the results reported in the present paper,
we are inclined to a positive answer to the first question
and to a negative answer to the second one. Furthermore,
we see no serious evidence to support concerns about the
utility of estimated correlation coefficients in microarray
data analysis. The understanding of cross-hybridization
yielded by our study is much more complex than Ques-
tion 1 implies. There is a diversity of effects that are theo-
retically possible, including a substantial increase in the
strength of positive correlation. Therefore, we do not dis-
pute the statement by Okoniewski and Miller that MT can
alter the estimates of correlation coefficients constructed
from microarray data, albeit the problem is definitely not
as extreme as presented by these authors (see Section 2.1
for details). It is also worth noting that the capacity of
cross-hybridization to induce negative correlations has
been overlooked in previous publications.

The results of data analysis and an alternative theoretical
model are presented and discussed at length in the next
section.
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2. Results and discussion
2.1. Experimentation with biological data
We begin by testing the results reported in [1]. We used
the following two data sets for this purpose:

(1) A set of data on breast cancer cells cultured in vitro
[15]. Only "vehicle" control samples treated with the
medium used to solubilize the inhibitor were included in
our analysis. The sample size equals n = 48 in this study.
In what follows we will refer to this collection of data as
Data Set 1.

(2) A subset of the data published in [16]. This subset
refers to n = 61 untreated patients with breast cancer. RNA
samples were obtained at the John Radcliffe Hospital
(Oxford, UK) and processed at the Jules Bordet Institute in
Brussels, Belgium. Patients with all grades and ER status
were included in the sample under study. In this set of
microarray data, referred to as Data Set 2, correlations
between gene expression levels tend to be weaker than in
Data Set 1, as well as in all other data sets we have interro-
gated so far [10]. We selected Data Set 2 as a sort of
extreme example to make our case stronger.

Both studies were carried out with HG_U133A Affymetrix
arrays for which Okoniewski and Miller [1] identified
3859 non-overlapping families containing MT probe sets
with an average number of 2.56 probe sets per family. The
total number of MT probe sets is 9875. Each such probe
set contains off-target reporters suggested by sequence
analysis. For simplicity, we will refer to all MT probe sets
as "bad" probe sets. By contrast, the probe sets other than
those included in the families will be referred to as "good"
probe sets. For the same reason, the terms "probe set" and
"gene" will be used interchangeably. A total of 12340
probe sets are not considered problematic (bad) on the
grounds of sequence analysis.

Since the required computations for all (i.e., ~ 2.5 × 108)
probe set pairs are quite time-consuming, a subset of size
5000 was randomly drawn (without replacement) from
the set of bad probe sets. The Pearson correlation coeffi-
cients were computed for all pairs of genes contained in
this subset. A subset of the same size was randomly drawn
(without replacement) from the set of good probe sets,
yielding the pair-wise correlation coefficients in the same
manner. Figure 1 presents the histogram of correlation
coefficients for good and bad probe sets in Data Set 1. This
histogram is intended to show the abundance of gene
pairs with different correlation coefficients; it does not
have any statistical meaning, of course. No tangible differ-
ence between bad and good probe sets is seen when com-
paring the two histograms shown in Figure 1. This is
obvious from their numerical characteristics such as mean
and standard deviation. The mean (across genes) value of

correlation coefficient equals 0.841 for bad probe sets
while it is equal to 0.847 for good probe sets. The corre-
sponding standard deviations are equal to 0.133 and
0.132, respectively. The situation is similar in Data Set 2
(Figure 2) with a more pronounced tendency for bad
probe sets to have even smaller correlation coefficients
than their good counterparts. In this case, the mean values
are 0.488 for bad probe sets and 0.550 for good ones,
while the respective standard deviations are 0.216 and
0.238. The irregular shape of the histogram in Figure 2A
(reflecting heterogeneity of this particular data set) does
not affect our conclusion because both the mean value
and the variance tend to be smaller for bad probe sets.

The above-described experimentation with microarray
data does not prove that the effects of cross-hybridization
are non-existent in the Affymetrix GeneChip platform. On
the contrary, the process of multiple targeting is expected
to affect the true correlation between genes in accordance
with the theoretical considerations presented in Section
2.2. A more practical question, however, is whether such
effects are strong and abundant enough to change the esti-
mates of correlations coefficients in a large subset of
genes. That the process of cross-hybridization restricted to
the families of MT probe sets cannot be considered a mass

Histogram of correlation coefficients for pairs of good (A) and bad (B) probe setsFigure 2
Histogram of correlation coefficients for pairs of good (A) 
and bad (B) probe sets. Data Set 2.
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phenomenon follows from the mere fact that the abun-
dance of bad pairs is low. Indeed, the total number of all
gene pairs is of order 108. Given the pairs of bad probe sets
overlap only within each family, the total number of such
pairs is of order 104, a very small portion in the ocean of
all pairs. This shows that the results of our comparison of
"bad" versus "good" probe sets are reasonably expected.

While the above experimentation does not support the
conclusion by Okoniewski and Miller [1] drawn from
huge numbers of correlation coefficients, it is worth con-
sidering more local effects restricted to individual families
of MT probe sets. This is exactly the point made by Dr. Jor-
dan in his review. In many instances, we were unable to
detect any perceptible effect of cross-hybridization in
terms of correlation coefficients. A typical example is pre-
sented in Table 1. Shown in Table 1 is the correlation
matrix for all pairs of probe sets from two problematic
families, each consisting of two MT probe sets. These esti-
mates indicate little dissimilarity between the intra-family
and inter-family pairs. Unfortunately, no formal statistical
test can be applied to compare the estimated correlation
coefficients because the expression levels in the pairs of
probe sets under consideration are stochastically depend-
ent. Nonetheless, this example demonstrates that the
potential for cross-hybridization may remain untapped
even if the presence of some off-target reporters is sug-
gested by the analysis of transcript sequences.

While our analysis does not support concerns about
adverse effects of cross-hybridization on the correlation
structure of microarray data, this cannot be considered a
conclusive proof because a certain degree of non-specific
binding for good probe sets cannot be completely ruled
out. Estimating the contribution of this conceivable effect
to the correlations observed in microarray data is a diffi-
cult and probably impracticable task because the proc-
esses of cross-hybridization cannot be observed directly.
Using theoretical modeling, however, some simpler ques-
tions seem approachable. They are loosely formulated as
follows:

1. What effects of cross-hybridization on the correlation
structure of microarray data are theoretically possible?
What are the probabilistic characteristics of transcripts tar-
geted by multiple probe sets that drive such effects?

2. Can the observed long-range correlation structure of
microarray data be attributed solely to non-specific bind-
ing of multiple ("bad" and "good" alike) probe sets to a
putative common transcript, assuming that this transcript,
if it exists, is highly abundant and capable of affecting the
correlations between expression measures even if its affin-
ity to probe sets is low?

The utility of model-based inference on cross-hybridiza-
tion effects is considered in the next section.

2.2. Theoretical considerations
2.2.1. The case of two competing probe sets
In this section, we consider the simplest case of two probe
sets targeting the same transcript. Much like the micro-
array technology in general, our theory will be based on
the following assumption:

Assumption 1. No saturation effects are present and the true
signal intensity (disregarding the technical measurement
error) is proportional to the amount of RNA bound to a
given probe set with a constant (non-random) coefficient
of proportionality. The coefficients for different probe sets
do not have to be the same.

Remark 1. We tested Assumption 1 using the data set on
various spiked-in probes (GeneChip HG_U133A) pro-
vided by the file HG_U133A_tag_Latin_Square.zip on the
Affymetrix website. For some spiked-in probes, the
dependence of the fluorescence intensity on the molar
concentration was indeed linear, but deviations from lin-
earity were also noted. The small sample size (n = 3) in
this study and its sub-optimal design that uses a non-lin-
ear scale for the independent variable still leave room for
speculations. A more rigorous metrological study is
required to validate Assumption 1 governing the overall
usefulness of modern high-density oligonucleotide
microarray technology.

Proceeding from Assumption 1, suppose that two probe
sets compete for the same (common) transcript so that the
first probe set binds to this transcript with probability p,
and, given the transcript remains unbound, the second
probe set binds to it with probability 1 - p. Denote the
amount of the common transcripts (RNA molecules) by ν.
The model considered by Okoniewski and Miller [1]
assumes that the signal intensities Z1 and Z2 for the two
probe sets can be represented as Z1 = pν, Z2 = (1 - p)ν,
which is why its simulation counterpart always displays a
positive covariance. In mechanistic terms, these relation-

Table 1: Correlation coefficients in all pairs of probe sets from 
two problematic families. Probe sets 1 and 2 pertain to the first 
family while probe sets 3 and 4 to the second. Since the 
correlation matrix is symmetric, only the elements above its 
diagonal are presented. The within-family elements are given in 
italics. Data Set 1.

Probe sets 1 2 3 4

1 - 0.955 0962 0.942
2 - - 0.946 0.927
3 - - - 0.983
4 - - - -
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ships imply that each probe set "knows" exactly what pro-
portion of the random amount ν it must "catch" in the
course of hybridization, thereby making this essentially
deterministic model highly implausible.

A more natural model can be constructed if one proceeds
from a stochastic nature of cross-hybridization and repre-
sents the first probe set signal as

where ξj are independent and identically distributed
(i.i.d.) indicator variables taking on values 1 and 0 with
the probabilities p and 1 - p, respectively. For the second
probe set we have

The mutually dependent random variables (r.v.s) Z1 and
Z2 satisfy the condition: Z1 + Z2 = ν. It is easy to verify that
the covariance between Z1 and Z2 can be of any sign under
this model. Indeed,

so that the sign of Cov (Z1, Z2) depends on the relation-

ship between Var{ν} and {ν}, both parameters being
unobservable, of course. In particular, Cov (Z1, Z2) = 0 if

ν has a Poisson distribution. We find it very interesting
that the sign of correlation is entirely determined by prob-
abilistic characteristics of the common transcript and not
by its affinity to the competing probe sets, the latter being
quantified by the probability p.

We agree with Dr. Gaile that one can easily derive the cor-
relation coefficient between Z1 and Z2 by the same
straightforward argument. However, we resort to another
derivation based on the notion of probability generating
function (p.g.f.), which is instructive to obtain the needed
results in Section 2.2.2. Introduce the p.g.f. of the random
variable (r.v.) ν:

Then the Laplace transform f(s, t) of the joint distribution
of the vector (Z1, Z2) assumes the form

Differentiating log f(s, t) twice (with respect to both s and
t), one can derive the covariance between Z1 and Z2. The
variance of Z1 can be obtained by differentiating log f(s, t)
twice with respect to s. In like manner, one obtains the
variance of Z2 by differentiating log f(s, t) twice with
respect to t. This leads to the following formula for the
correlation coefficient between Z1 and Z2:

Introducing the notation κ = Var{ν}/ {ν} and taking
into account that

formula (3) assumes the form:

Figure 3 shows the behavior of Corr(Z1, Z2) as a function
of p for different values of the parameter k. We thank Dr.
Gaile for this figure that illustrates the parametric family
given by formula (4). The right-hand side of (4) attains a
maximum at p = 0.5 and consequently
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For example, if the model is valid for a particular pair (Z1,

Z2) and Corr(Z1, Z2) ≥ 0.9, then it follows from inequality

(5) that Var{ν} ≥ 19 {ν}. In Data Set 1, 53.6% of bad
probe sets and 39.4% of good probe sets satisfy this con-
dition. However, this does not mean that the process of
cross-hybridization plays a substantial role in the correla-
tion structure of microarray data for the following rea-
sons:

1. Inequality (5) provides a necessary but not a sufficient
condition for the correlation Corr(Z1, Z2) to exceed a cer-
tain level.

2. Condition (5) applies only to those isolated gene pairs
where the total amount of the target transcript is eventu-
ally bound to one of the two probe sets and no other tran-
scripts can contribute to their ultimate expression
measures (recall Section 2.1).

While the above model, designed for a single pair of probe
sets competing for the same transcript, is instructive to
study general regularities in the process of cross-hybridi-
zation, it is obviously of limited utility in studying proba-
ble causes of the observed long-range correlation that
extends over thousands of genes. A more general model of
the non-specific binding process for arbitrary pairs formed
from multiple probe sets is considered in the next section.

2.2.2. Multiple probe sets
In Section 2.2.1, we confirmed that the process of cross-
hybridization can induce spurious positive correlations
within certain families of probe sets whose potential for
multiple targeting is suggested by the analysis of transcript
sequences. At the same time, our analysis of Section 2.1
shows that the overall correlation structure of gene expres-
sion data cannot be driven by the minority of non-over-
lapping pairs of such problematic probe sets. The analysis
of transcript sequences and homologies, however, is only
suggestive and we have to consider the case where the
event of non-specific binding is admissible for virtually all
probe sets, even if its probability for each of them is low.
Presented below is a simplistic model that attempts to
describe the process of massive cross-hybridization
involving all probe sets.

Suppose there exists a large pool of common RNA mole-
cules that have the ability to bind to any of the k probe sets
under consideration. Under the proposed model, each
probe set binds first to its own highly specific transcript

without any competition with other probe sets (i.e., with
probability 1) and then it binds to a portion of the com-
mon transcript in the competitive fashion. More specifi-
cally, each molecule of the common transcript is bound to

the jth probe set with probability pj ≥ 0, j = 1,...,k, and the

probabilities pj satisfy the condition: 

Denote the amount of a specific transcript bound to the
jth probe set with probability 1 by Xj. To make our model
identifiable, we need additionally the following basic
assumption: 

Assumption 2. The r.v.s Xj, j = 1,...,k, are mutually inde-
pendent.

Assumption 2 is not intended for a realistic description of
gene expression signals but rather as a reference for meas-
uring cross-hybridization effects. Recall that Question 2
posed at the end of Section 2.1 explicitly refers to this
assumption. Therefore, the results that follow should be
interpreted under a hypothetical scenario attributing all of
the observable correlation to the competition between
multiple probe sets for the above-postulated common
transcript.

Assuming the same mechanism of competition for the
common transcript, and invoking the same independence
assumptions as in Section 2.2.1, we write

where Zj is the total RNA amount bound to the jth probe

set,  are indicators taking on a value of 1 with probabil-

ity pj and of 0 with probability 1 - pj, , and the

random vectors  and  are independ-

ent for l1 ≠ l2. The r.v. ν represents the total number of

molecules of the common transcript available for the
competition between different probe sets. To convert the
quantity Zj into the corresponding expression intensity in

accordance with Assumption 1, one needs to account for
the fact that the specific and common transcripts may vary
in size (mass). Without any loss of generality, this can eas-
ily be accomplished if the unit of measurement of the var-
iables Xj is taken to be the molecular weight of the

common transcript.
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Recalling the definition of the p.g.f.  (Section 2.2.1), the
joint characteristic function g of the random vector Z1

,...,Zk can be represented as

where gj is the marginal characteristic function of Xj, j =
1,...,k. The covariance between two r.v.s equals a minus
mixed second order log-derivative of their characteristic
function evaluated at zero. From expression (7), we have

for r = 1,...,k, s = 1,...,k, r ≠ = s. Here  is the variance of

the r.v. ν. Using the condition

from (8) we obtain the formula

Note that the right-hand side of formula (9) can be esti-
mated from observed expression measures. Minimizing

 with respect to pj under the constraint

, we have

The latter inequality allows us to estimate a lower bound

for .

To use inequality (10), one needs to compute covariances
for all gene pairs. For the GeneChip HG_U133A, this
means conducting such computations for all pairs formed
from 12340 genes, which is computationally prohibitive.
For this reason, we used the St. Jude Hospital Children's
Research Hospital Database produced with U95 arrays
[17]. Specifically, we used a subset of data that reports
expression levels of k = 7084 genes in n = 79 patients with
childhood leukemia (TELL type). In this data set, probe
sets with dubious definitions [18] were removed using the

custom CDF file from [19], which gives reason for us to
believe that our analysis refers predominantly to "good"

probe sets. The estimated value of the lower bound γ in
inequality (10) for these probe sets is  = 8.74 × 1011.

There are two ways of interpreting the estimate  resulted

from our analysis. First, we proceed from the obvious ine-

quality: . The average (across genes) vari-

ance of gene expression levels in this data set is 3.5 × 104,
which is at least seven orders of magnitude lower than
that of the common transcript given by the above inequal-

ity. This huge variance of ν seems quite implausible if the
common transcript is thought of as being produced by
one of the typical protein-encoding genes such as those
that are measured by the standard microarray technology.
Second, we can gain some insight into the magnitude of

the mean value of ν. Introducing the notation μ = ν, we
represent inequality (11) in the form

where v = σν/μ is the variation coefficient of the r.v. ν. Fig-
ure 4 displays the histogram of variation coefficients in
the TELL data. The histogram is extremely narrow, indicat-
ing that the variation coefficient is effectively constant
across genes. The same fact was documented by Wu and
Irizarry [20]. In the TELL data set, the mean variation coef-
ficient is equal to 0.235. Using this value as an estimate of
v and solving the quadratic inequality (11) with respect to
μ, we have μ > 3.98 × 106. This lower bound for μ is quite
close to the mean total expression, i.e., the sum of the
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Variation coefficients for gene expression levels in the TELL data setFigure 4
Variation coefficients for gene expression levels in the TELL 
data set.
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mean values of all gene expressions, the latter being equal
to 4.22 × 106.

The unrealistically huge mean and variance of the hypo-
thetical common transcript targeted by multiple probe
sets make it very unlikely that a massive cross-hybridiza-
tion manifests itself at the probe set level. Put another
way, if such a putative transcript exists and induces the
observed long-range correlation between gene expression
signals by binding to multiple probe sets, it cannot be a
typical protein-encoding transcript, irrespective of
whether its affinity to the probe sets is high or low. Nor
can the random technical noise cause this kind of correla-
tion between gene expression levels as follows from our
analysis of the MAQC data [2]. This leads us to conclude
that the observed correlation structure of microarray data
is of a biological nature. There are several conceivable bio-
logical causes of correlations between gene expression sig-
nals such as regulatory processes engaged in gene
function, composite cellular make-up of tissues, and
latent heterogeneity of subjects. We see no way to estimate
their contributions from microarray data because of iden-
tifiability problems.

Remark 2. Regulatory interactions between genes partici-
pating in biochemical pathways or networks may (or may
not) cause only a short-range correlation or the so-called
clumpy dependence [21]. Superimposed on this causal
dependence are the effects caused by different species of
noncoding RNA implicated in regulation of large sets of
genes. The global term "noncoding RNA" (ncRNA) refers
to a large class of transcripts that do not encode a protein
product. An important subclass of functional ncRNAs is
represented by microRNAs (miRNAs). These small, typi-
cally 21-25nt long, transcripts have been subject of
intense studies in recent years. Using either miRNA trans-
fection into cultured cells [22] or miRNA antagonists in
vivo [23], it has been shown that a particular miRNA may
affect hundreds of genes by interfering with their tran-
scripts. This is a large-scale effect but it is still doubtful
whether the observed long-range correlation between
gene expression levels, involving thousands of genes, can
be exhaustively explained by this mechanism. The two
major modes of miRNA action are mRNA cleavage and
translational inhibition. In the latter case, all untranslated
mRNAs are eventually fated to degradation as well. While
there is some similarity between such effects and those of
cross-hybridization (binding to a common transcript),
they call for a different stochastic model that would allow
for the cognate mRNA degradation. Nevertheless, it is
interesting to see whether the expression levels of miRNA
are subject to a much higher variation than those mRNAs
presented in Figure 4. Figure 5 displays variation coeffi-
cients of expression levels for different miRNA in SKBr3
breast cancer cells (untreated controls, n = 38) produced

by spotted oligonucleotide microarrays. The data were
retrieved from the Gene Expression Omnibus Database
(see [24], GSE3798). It is clear that some classes of miRNA
are much more variable than any of the protein-coding
mRNAs in Figure 4, despite the fact that the inter-sample
variability is generally expected to be lower in vitro than in
vivo. This suggests that, when trying to explain the nature
of long-range correlations in gene expression data involv-
ing gigantic sets of genes, one should look more closely at
the "dark matter" of ncRNAs and confounding effects
caused by heterogeneity of biological tissues or/and sub-
jects [13,14,25] rather than at technical flaws of micro-
array technology.

The above characteristics of the putative common tran-
script were obtained from a set of 7084 genes. It is con-
ceivable that numerous genes outside of this set may also
contribute to the effect of cross-hybridization even if they
are not physically present on the array. The question arises
as to whether our estimates can be extrapolated to the
whole totality of genes. There is no definitive answer to
this question. On the one hand, if the covariances
between gene expression levels are expected to be pre-
dominantly positive, the right hand sides of inequalities
(11) and (12) may only increase when additional pairs
are formed from the complementary genes. In this special
sense, the estimates given by inequalities (10) and (11)
are conservative. It is also important that they are inde-
pendent of specific values of pj. On the other hand, it can-
not be entirely ruled out that a heretofore unknown gene
(probe set) with the above-described peculiar features or
a formidable number of negatively correlated gene pairs
will emerge from future data sets. Therefore, the result
reported here is intermediate by nature as it relies on the
present-day knowledge and plausibility arguments.

3. Conclusion
It is now a well-known fact that numerous probe sets have
the potential for multiple targeting in accordance with the
results of sequence analysis. While it is theoretically pos-

Variation coefficients for expression levels of miRNAs in SKBr3 breast cancer cellsFigure 5
Variation coefficients for expression levels of miRNAs in 
SKBr3 breast cancer cells.
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sible that multiple targeting may lead to both negative
and positive correlations between expression signals in
gene pairs, the observed correlations in families of such
problematic probe sets are typically positive and strong.
However, they are also overwhelmingly positive and
strong in pairs of those probe sets with a high specificity
to the corresponding unique transcripts. Our experimen-
tation with microarray data produced by high-density oli-
gonucleotide microarray technology leads us to conclude
that the observed long-range positive correlation in the
majority of gene pairs cannot be attributed to the presence
of problematic probe sets with the potential for cross-
hybridization. Some aspects of the problem of cross-
hybridization are aproachable by means of probabilistic
modeling despite the fact that this process is not directly
observable in microarray data.

4. Methods
The statistical methods employed in this paper are inter-
twined closely with the reported results and cannot be
presented in a separate section. All the necessary technical
details of data analysis and data sources are given Section
2.

Reviewers' comments
Review 1 (I.K. Jordan)
Klebanov and colleagues revisit the effect of oligonucle-
otide microarray design on the inference of correlation
coefficients used to detect coexpression between genes.
The authors of this study had previously concluded that
the level of technical noise in the widely used Affymetrix
oligonucleotide microarray platform was low and thus
did not present any major obstacle for the analysis and
interpretation of experimental results (Klebanov and
Yakolev Biology Direct 2007 2: 9). A corollary of this find-
ing was the fact that the effects of cross-hybridization
between probes and targets would be random and insub-
stantial. However, a recently published paper reached a
very different conclusion. Okoniewski and Miller (BMC
Bioinformatics 2006 7: 276) published an analysis of
widely used microarray datasets and conclude that oligo-
nucleotide microarrays are prone to false positives corre-
lations due to multiple targeting. If this were to be the
case, it would have implications for hundreds of studies.
Accordingly, this issue is both timely and highly relevant.

Klebanov et al. dispute the findings of Okoniewski and
Miller based on the appropriateness of the dataset ana-
lyzed and the adequacy of the simulation model used.
Since I am not a statistician, I am not qualified to evaluate
the nuances of the simulation models proposed. I will
confine my comments and questions to the more biolog-
ical aspects of the manuscript. The analysis presented here
is quite sound and convincing in a strict sense. For the
data analyzed by Klebanov et al., there is no systematic

bias in correlation coefficient calculations introduced by
multiple targeting. However, in a more general sense, it
seems that the some of the differences between the two
studies Klebanov et al. versus Okoniewski and Miller -
have to do with different methodological approaches that
are necessitated by statistical versus biological questions.
Of course, this is not to say that statistics and biology are
mutually exclusive; clearly, sound biological conclusions
require robust statistical inferences. Nevertheless, choices
about the structure of data sets to be analyzed can be quite
different for a statistician versus a biologist. This episte-
mological reality should be addressed by Klebanov et al.
before dismissing out-of-hand the relevance of the results
of Okoniewski and Miller. I go into more detail on this
issue below.

1. It would help to set the stage for the results that are pre-
sented if what is meant by the "process of multiple target-
ing in short oligonucleotide microarrays" is precisely
defined at the outset of the introduction. For instance, the
relationship between the terms multiple targeting and
cross-hybridization could be clarified for the naive reader.

2. Klebanov et al. point out two problems with the
Novartis Gene Atlas dataset and analysis used by Oko-
niewski and Miller to assess the effects of multiple target-
ing on correlation analysis. The first problem is that this
dataset does not represent a random sample as defined in
statistical terms, i.e. "a sequence of independent and iden-
tically distributed random vectors, which is required for
statistically sound inference of correlation coefficients."
Accordingly, it will not be possible to statistically (proba-
bilistically) interpret correlation coefficients computed
from such data. This may be statistically undeniable, but
the particular structure of the Novartis Gene Atlas, "a mix
of arrays from diverse biological specimens", is exactly
what makes it interesting and relevant from a biological
perspective. Biologists will be most interested in learning
which genes are coexpressed across similar sets of tissues
in such a dataset, and in fact the two Novartis Gene Atlas
papers have been cited over 800 times. Therefore, the sta-
tistical properties of inferences made on such data will be
biologically germane.

3. The second problem the authors have with the analysis
of Okoniewski and Miller has to do with the normaliza-
tion procedure used. They cite several reports, which indi-
cate that normalization distorts the correlations obtained
from microarray datasets. They go on to state unequivo-
cally that "We find it beyond reason to resort to normali-
zation when assessing the effects of cross-hybridization
on the correlation structure of microarray expression
data." While this may indeed be the case from a statistical
perspective, the fact is that the vast majority of microarray
analyses do employ a normalization step prior to the cal-
Page 10 of 13
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culation of correlation coefficients. This may be statisti-
cally problematic for the reasons the authors point out but
it represents the modus operandi of microarray studies.
Therefore, for a biologist who is interested in understand-
ing potential pitfalls in the analysis of his or her data, it
may not be unreasonable at all to investigate the correla-
tion properties of normalized data.

4. The good versus bad probe-set correlation coefficient
histograms do indeed look indistinguishable in Figure 1
as the authors claim but the 'good' histogram in Figure 2
looks different with a distinct second peak as r approaches
a value of 1. This is only alluded to as a higher average r
for the good set. Can the authors further explain and clar-
ify this trend for the reader?

5. The point about the relatively small size of bad probe-
set pairs, ~ 104 versus ~ 108 total pairs, is not entirely con-
vincing. This relatively small size may mean that the over-
all statistical properties of the inferred correlations are not
substantially affected as the authors point out. However,
if the observations that are of particular interest to the
biologist are included in this set then the confounding
effects of cross-hybridization could still be relevant. 6. Is
the computation of correlation coefficients really so time
consuming as to require the use of a random subset of
5,000 probes instead of the analysis of all the data? Anal-
ysis of the entire data set, or at least a bootstrapping type
of procedure, would be more convincing.

The e-mail exchange between I. K. Jordan and A. Yakovlev
that followed this review is given below:

I. K. Jordan: Attached please find my review of your
paper. As you will see, I find your statistical results entirely
convincing. However, I think there needs to be some
acknowledgement and discussion of the relevance of dif-
ferent datasets and analytical approaches of biologists ver-
sus statisticians. A discussion of this kind will strengthen
your paper and make your conclusions more relevant to
biologists. I go into detail on this matter in my review.

A. Yakovlev: Thank you very much. Your review is very
thoughtful as usual. We disagree on only one issue. In my
opinion, no inference based on invalid statistical infer-
ence can be biologically meaningful. I will try to address
your concerns to the extent possible for a statistician.

I. K. Jordan: Your point is very well taken. It can only be
true, as you say, that "no inference based on invalid statis-
tical inference can be biologically meaningful." I think
you will find little (reasonable) disagreement on that
issue. The point I was trying to make may not be quite so
straightforward though. Biologists may well be interested
in the behavior, or properties, of sets of correlation coeffi-

cients drawn from sets of experiments that, when consid-
ered as an ensemble, do not make up a true set of random
variables. While it may be difficult (impossible?) to eval-
uate the behavior of such a set of observations in a formal
probabilistic framework, it may still be relevant, or at least
useful, to consider how the correlations behave with
respect to properties of the experimental system such as
'good' versus 'bad' sets of probes. Thus, the use of formal
models to capture the behavior may not be justified, but
simple observations could still provide some insight.
Does that make any more sense? None of this in any way
invalidates your own analysis or model. It only provides
some common ground for statisticians and biologists to
appreciate their different, but not mutually exclusive, per-
spectives.

A. Yakovlev: While biologists and statisticians are equally
interested in the truth, they have different perceptions of
the scientific rigor as far as data analysis is concerned.
Consider the following real story. Suppose a paper pub-
lished some 10 years ago suggests that all microarray data
be normalized by dividing the expression level of each
gene on a given array by the arithmetic mean taken over
all genes on the same array. Sounds familiar, is it not? The
author claims (without any theoretical proof) that this
will remove the systematic bias and increase the power of
two-sample tests. At first glance, it looks like a reasonable
way to go. If you are a biologist, you will or will not ask:
why? Most likely, you will just follow the advice out of
your respect to mathematics. After a short time, this pro-
cedure becomes a dogma and you have to apply it rou-
tinely even if you have begun experiencing serious
reservations based on your practical experience. You know
that refraining from data normalization may bring you
trouble with your reviewers. If you are a statistician, you
must ask where this claim follows from and how it can be
underpinned by a theoretical argument or at least by sim-
ulations. If simulations are provided, you must question
their realism and look for possible side effects that may
devalue the benefits, if any, of the proposed procedure. If
the procedure is beneficial only under a certain condition,
a natural question would be how to test the presence of
such a condition with real data, because, in the absence of
a reliable test, the procedure may still be too risky to
apply. For example, the above-mentioned normalization
procedure replaces one bias with another, which may or
may not have serious consequences depending on other
factors such as the effect and sample sizes. This procedure
also reduces correlations in gene pairs, which may some-
times be beneficial in two-sample settings but much less
so where the main focus is on correlations. If the proce-
dure has been tested using artificial spiked-in probes, you
should ask whether this is a legitimate test from the statis-
tical standpoint (by the way, it is not). I can go on and on,
but even this simple example demonstrates very well that
Page 11 of 13
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biologists put too much of their trust in ad hoc methods
that have no or little theoretical justification. They should
have been much tougher on their "methodological" col-
leagues, requiring that the proposed statistical (or other
analytical) method be substantiated and tested much
more rigorously. Biologists need to know what the pro-
posed methodologies do and what they do not do. In my
opinion, a formidable amount of false biological knowl-
edge has been accumulated over the years and this is the
most serious problem faced by modern bioinformatics
and computational biology.

Other responses are provided in the text.

Review 2 (D. P. Gaile)
This manuscript addresses open (and important) research
questions regarding the effects of cross hybridization
(CH) on gene by gene correlation estimates. The authors
argue that the effects of multiple targeting on correlation
based inference may not be as serious/prevalent as is sug-
gested in a recent paper by Okoniewski and Miller. To that
end and beyond, two models are developed to promote a
better understanding the effects of cross hybridization.
The first model is developed to address questions related
to multiple targeting and the second model is developed
to address the hypothesis that all probe sets may compete
(to varying extents) for a common transcript. Data from
two gene expression array datasets are used to obtain
empirical estimates for the unknown model parameters
and several conclusions are drawn. These conclusions are
well reasoned and justified provided one is willing to
accept the clearly stated assumptions. Unfortunately, the
adequacy of the proposed models can not be directly eval-
uated due to limitations in current technologies and
experimental practices and so the results of these analyses,
while of value, are admittedly speculative.

1. Klebanov et al. claim that the data used by Okoniewski
and Miller are not amenable to correlation analysis. This
criticism is warranted as Okoniewski and Miller failed to
identify and properly characterize which samples were
used in their analyses. Although the sample array data
were generated as part of the Gene Atlas project, Oko-
niewski and Miller do not identify exactly which samples
were used. Their simulation studies were based on a sub-
set of 50 arrays yet, surprisingly, no details are provided
regarding the identity and method of selection of said
array data. Perhaps one could think of the data as an
approximately random sample on a mixture population.
Namely, one could consider the transcript quantities for

the I samples ν1, ..., ν1 to be (approximately) a random

sample from , where gk(ν) represents

the distribution of transcript counts for the kth tumor
population. Under this model,

which can provide values that are larger than .

[Note: , μk correspond to the variance and mean,

respectively, of a random variable with distribution gk(ν)].

This highlights the fact that the heterogeneous collection
of samples can lead to inflated values of the variation
coefficient and hence can produce pronounced (and pos-
sibly atypical) CH effects on correlation estimates. So,
even if one is willing to accept that the correlation esti-
mates provided by Okoniewski and Miller have meaning,
than there is still the issue of whether or not the magni-
tude and nature of the CH effects observed in that data set
should be considered typical.

2. The inclusion of a figure to illustrate equation 4 would
be helpful. An example is provided (Figure 3). The plotted
lines are labeled according to the kappa value used to gen-
erate them. 3. The use of conditional expectations pro-
vides a much clearer (and shorter) derivation of equation
(4). For example,

. Expressions for  and  are also

easy to derive using this approach.

The authors' responses are provided in the text.

Review 3 (W. Huber)
This reviewer provided no comments for publication.
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