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Abstract
Background: Oncolytic viruses that specifically target tumor cells are promising anti-cancer
therapeutic agents. The interaction between an oncolytic virus and tumor cells is amenable to
mathematical modeling using adaptations of techniques employed previously for modeling other
types of virus-cell interaction.

Results: A complete parametric analysis of dynamic regimes of a conceptual model of anti-tumor
virus therapy is presented. The role and limitations of mass-action kinetics are discussed. A
functional response, which is a function of the ratio of uninfected to infected tumor cells, is
proposed to describe the spread of the virus infection in the tumor. One of the main mathematical
features of ratio-dependent models is that the origin is a complicated equilibrium point whose
characteristics determine the main properties of the model. It is shown that, in a certain area of
parameter values, the trajectories of the model form a family of homoclinics to the origin (so-called
elliptic sector). Biologically, this means that both infected and uninfected tumor cells can be
eliminated with time, and complete recovery is possible as a result of the virus therapy within the
framework of deterministic models.

Conclusion: Our model, in contrast to the previously published models of oncolytic virus-tumor
interaction, exhibits all possible outcomes of oncolytic virus infection, i.e., no effect on the tumor,
stabilization or reduction of the tumor load, and complete elimination of the tumor. The parameter
values that result in tumor elimination, which is, obviously, the desired outcome, are compatible
with some of the available experimental data.
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Background
Mathematical modeling of virus-cell interaction has a
long history. Grounded in the vast and diverse theoretical
epidemiology field, these mathematical models serve as
valuable tools to explain empirical data, predict possible
outcomes of virus infection, and propose the optimal
strategy of anti-virus therapy [1,2]. The unquestionable
success of mathematical models of certain virus-host sys-
tems, in particular, HIV infection [3,4] provides for rea-
sonable hope that substantial progress can be achieved in
other areas of virology as well.

Equally extensive efforts have been dedicated over many
years to mathematical modeling of cancer development.
Stochastic models that take into account random muta-
tions and cell proliferation proved to be useful in the con-
text of epidemiology and statistical data [5] and for
modeling cancer initiation and progression in terms of
somatic evolution [6]. Deterministic models of tumor
growth have proved valuable as well. Many of these have
addressed avascular and vascular tumor growth taking
advantage of methods borrowed from physics [7,8] but
some use population ecology models to treat tumor as a
dynamic society of interacting cells [9-11]. A variety of
mathematical approaches contribute to modeling cancer
progression from different standpoints and take stock of
various factors affecting tumor growth ([12,13] and refer-
ences therein).

Here we address a complex process that involves both
virus-cell interaction and tumor growth, namely, the
interaction of the so-called oncolytic viruses with tumors.
Oncolytic viruses are viruses that specifically infect and
kill cancer cells but not normal cells [14-17]. Many types
of oncolytic viruses have been studied as candidate thera-
peutic agents including adenoviruses, herpesviruses, reo-
viruses, paramyxoviruses, retroviruses, and others [15,17].
Probably, the best-characterized oncolytic virus, that has
drawn a lot of attention, is ONYX-015, an attenuated ade-
novirus that selectively infects tumor cells with a defect in
the p53 gene [16]. This virus has been shown to possess
significant antitumor activity and has proven relatively
effective at reducing or eliminating tumors in clinical tri-
als [18-20]. Thus, in studies of patients with squamous
cell carcinoma of the head and neck the response rate was
significantly higher (78%) in patients who received the
combination of viral therapy and chemotherapy than in
patients who were treated with chemotherapy alone
(39%). Furthermore, a small number of patients who
were treated with the oncolytic virus showed regression of

metastases [15]. Although safety and efficacy remain sub-
stantial concerns, several other oncolytic viruses acting on
different principles, including tumor-specific transcrip-
tion of the viral genome, have been developed, and some
of these viruses have entered or are about to enter clinical
trials [15,21-23].

The oncolytic effect can result from at least three distinct
modes of virus-host interaction [15,17]. The first mode
involves repeated cycles of viral replication in the tumor
cells leading to cell death and, consequently, to tumor
reduction and, potentially, elimination. The second mode
consists in low-level virus reproduction that, however,
results in the production of a cytotoxic protein, which
then causes cell damage. The third mode involves virus
infection of cancer cells that induces antitumor immunity.
Cancer cells possess weak antigens for host immune sen-
sitization. Virus infection causes inflammation and lym-
phocyte penetration into the tumor, with the virus
antigens eliciting increased sensitivity to tumor necrosis
factor-mediated killing.

Although the indirect modes of virus cancer therapy based
on production of cytotoxic proteins or antitumor immu-
nity may be promising, direct lysis of tumor cells by an
oncolytic virus is the current mainstream strategy. The
interactions between the growing tumor and the replicat-
ing oncolytic virus are highly complex and nonlinear.
Thus, to precisely define the conditions that are required
for successful therapy by this approach, mathematical
models are needed. Experiments on human tumor
xenografts in nude mice have shown that the effect of onc-
olytic virus infection on tumors can range from no appar-
ent effect, to reduction and stabilization of the tumor load
(i.e., the overall size of a tumor), to elimination of the
tumor [24]. Complete regression of tumors has been
reported also in some patients treated with oncolytic
viruses as part of clinical trials [25]. However, the simplest
mathematical models describing a growing tumor
infected with an oncolytic virus fail to incorporate all pos-
sible outcomes; in particular, these models do not allow
tumor elimination [12,26]. Here, we present a conceptual
model of tumor cells-virus interaction, which, depending
on system parameter values, exhibits various behaviors
including deterministic elimination of the cancer cells.

Several mathematical models that describe the evolution
of tumors under viral injection were recently developed.
Our model builds upon the model of Wodarz [12,26] but
introduces several plausible modifications. Wodarz
[12,26] presented a mathematical model that describes
interaction between two types of tumor cells (the cells that
are infected by the virus and the cells that are not infected
but are susceptible to the virus so far as they have the can-
cer phenotype) and the immune system. Here, we con-
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sider only direct killing of tumor cell by an oncolytic virus
and, accordingly, disregard the effects of the immune sys-
tem. The resulting model has the general form

where X(t) and Y(t) are the sizes of uninfected and
infected cell populations, respectively; fi(X, Y) i = 1, 2, are
the per capita birth rates of uninfected and infected cells;
and g(X, Y) is a function that describes the force of infec-
tion, i.e., the number of cells newly infected by the virus
released by an infected cell per time unit. Note that there
is no separate equation for free virions; it is assumed that
virion abundance is proportional to infected cell abun-
dance, which can be justified if free virus dynamics is fast
compared to infected cell turnover [2]. The model also
assumes that, upon division of infected cells, the virus is
passed on to both daughter cells. This is certain for viruses
that integrate into the tumor cell genome but this assump-
tion should also be appropriate for non-integrating
viruses because active virion production should result in a
very high probability that the virus is transmitted to both
daughter cells. The functions used by Wodarz [26] are

where r1, r2, d, a, b, K are non-negative parameters. The
assumptions are that the tumor grows in a logistic fashion
(possibly, with different rates of growth for the uninfected
and infected tumor cells), and the incidence of infection
is proportional to the product XY; the latter assumption is
based on an analogy with chemical kinetics, namely, the
law of mass action.

The main result of the analysis of model (1)-(2) consists
in defining conditions required for maximum reduction
of the tumor load. It has been suggested that "because we
used deterministic model, the tumor can never go com-
pletely extinct but can be reduced to very low levels";
elimination of the tumor then might occur through sto-
chastic effects which are not part of the model per se [26].
In contrast, here we show that a straightforward modifica-
tion of model (1)-(2) can lead to dynamical regimes that
describe deterministic elimination of the tumor cells.

Other mathematical models for tumor-virus dynamics
are, mainly, spatially explicit models, described by sys-
tems of partial differential equations (PDE) (which is an
obvious and necessary extension of ODE models inas-
much as most solid tumors have distinct spatial struc-

ture); the local dynamics, however, is usually modeled by
systems of ODE that bear close resemblance to a basic
model of virus dynamics [1]. Wu et al. modeled and com-
pared the evolution of a tumor under different initial con-
ditions [27]. Friedman and Tao (2003) presented a
rigorous mathematical analysis of a somewhat different
model [28]. The use of PDE for the virus spread is the
main feature that distinguishes the model of Friedman
and Tao [28] from the model of Wu et al. [27]. Recently,
Wein et al. [29] incorporated immune response into their
previous model [27]. In this new study, recent preclinical
and clinical data were used to validate the model and esti-
mate the values of several key parameters, and it has been
concluded that oncolytic viruses should be designed for
rapid intratumoral spread and immune avoidance, in
addition to tumor-selectivity and safety [29]. In a more
recent study, an analysis of an ODE system, which is a
simplified approximation to the previously described
PDE model and bears some similarities to the model of
Wodarz, has been described [30]. Tao and Guo [31]
recently extended the model of Wein et al. [29], proved
global existence and uniqueness of solution for the new
model, studied the dynamics of this novel cancer therapy,
and explored an explicit threshold of the intensity of the
immune response for controlling the tumor. Wodarz also
developed an extension of his previous model to study
advantages and disadvantages of replicating versus non-
replicating viruses for cancer therapy [32].

A distinct aspect of all these models is the description of
the process of infection (or, if free virus dynamics is
explicitly modeled, the virus-cell contact as well) using the
law of mass action, which states that the rate of change of
the uninfected cell population is proportional (if no
demography effects are taken into account) to the product
XY (where X and Y are as before, or Y stands for virus pop-
ulation if the latter is included into the model). Under
mass-action kinetics and the assumption of infinitesi-
mally short duration of contact and homogeneous mixing
of the cell populations, the contact rate is proportional to
the product XY of the respective densities. There are situa-
tions when mass action can be a good approximation;
however, in many real-life cases, it is only acceptable
when X ~ Y, giving unrealistic rates when X >> Y or X <<Y.
In particular, for large populations of cells, finite and
often slow spread of the virus prevents it from infecting a
large number of cells per infected cell per unit of time such
that a more realistic approximation of the infection proc-
ess is required. The assumption underlying mass action is
that the contact rate is a linear function of density, N = X
+ Y. At the other extreme, the contact rate might be inde-
pendent of host density. Assuming that infected and unin-
fected hosts are randomly mixed, this would lead to
transmission function of the form bXY/(X + Y). This mode
of transmission is often called 'frequency-dependent'
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transmission [33]. This transmission function makes
sense when X >> Y or X <<Y because both extremely low
and extremely high rates of transmission are excluded
from the consideration. The mass action assumption,
which goes back to the pioneering work of Kermak and
McKendrick [34], has almost always been used for trans-
mission in host-pathogen models, in some cases, non-
critically. Other modes of transmission have been used
[33], and, importantly, can yield quite diverse results. We
emphasize that the mode of transmission determines
probable responses of the system to control, so it is vital
to identify the most appropriate approach to model trans-
mission. In particular, mathematically, 'frequency-
dependent' transmission, because of the non-analytical
vector field at the origin, yields a qualitatively different
outcome, compared to 'mass-action' transmission.

The model (1)-(2) is a version of the classical predator-
prey model of a biological community first developed by
Lotka [35] and Volterra [36] in 1925–1931; the term bXY
describes the simplest correspondence between prey con-
sumption and predator production similar to the law of
mass action. A crucial element in models of biological
communities in the form (1) is the functional response
g(X, Y), i.e., the number of prey consumed per predator
per time unit for the given numbers of prey X and preda-
tors Y. In the Volterra model and in model (1)-(2), this
function is bX. Another well-known model has been
developed by Holling [37] and has been widely applied in
epidemiology [38]. Under this model, g(X, Y) = bX/(1 +
abX), which takes into account the saturation effect. These
two types of possible functional responses (and many
others) do not depend on predator density, i.e., g(X, Y) =
g(X), and, accordingly, have been named 'prey-depend-
ent' by Arditi and Ginzburg [39]. In many cases, it is more
realistic to assume that the functional response is ratio-
dependent (g(X, Y) = g(z), where z = X/Y [39]). If we con-
sider a Holling-type function g(z) = bz/(1 + z), then we
again obtain

In (3), the meaning of b is the infection rate, i.e., the mean
number of infections an infected cell can cause per unit of
time. In the terminology of epidemic models, such a rate
term would be said to reflect proportional mixing as
opposed to homogeneous mixing [40].

The ratio-dependent models present a challenge with
regard to their dynamics near the origin due to the fact
that they are undefined at (0, 0). Berezovskaya et al.
showed that, depending on parameter values, the origin
can have its own basin of attraction in the phase space
[41], which corresponds to the deterministic extinction of

both species [40-43]. In the context of the interaction
between oncolytic viruses and tumors, it is clear that the
ratio-dependent models display original dynamic proper-
ties that could be directly relevant for the possibility of
tumor eradication by virus therapy.

Here, we show that a plausible change of the dynamical
system modeling the growth of two competing popula-
tions of cells, one of which is infected by a virus and the
other one is not infected, can result in a remarkable
change in the model dynamics. Moreover, the additional
dynamical regimes, which do not emerge in the original
model, might be particularly important with respect to the
underlying biological problem, the oncolytic virus ther-
apy for cancers.

Results and discussion
The model
We introduce our model through the incorporation of
ratio-dependent process of infection (3) into the model of
Wodarz [26] (system (1)-(2)). The model based on (1)
and (3), which considers two types of cells growing in
logistic fashion, has the following form:

where X is the size of the uninfected cell population; Y is
the size of the infected cell population; r1 and r2 are the
maximum per capita growth rates of uninfected and
infected cells correspondingly; K is the carrying capacity, b
is the transmission rate (this parameter also includes the
replication rate of the virus); and a is the rate of infected
cell killing by the virus (cytotoxicity). All the parameters
of the model are supposed to be nonnegative. Model (4)
is subject to initial conditions X(0) = X0 > 0 and Y(0) = Y0
> 0. We do not include a separate equation for the virus in
model (4), and the initial conditions are given for unin-
fected and infected cells, assuming that, at the initial
moment, the system already contains some cells infected
by the virus; this should be taken into account when the
results of analysis of (4) are compared with clinical or
experimental data.

With an appropriate change of variables (X(t), Y(t), t) →
(x(τ), y(τ), τ), the model can be simplified to a dimen-
sionless form with a reduced number of independent
parameters. This simplifies the mathematical analysis
while preserving the essential properties of the model.
There exist several formally equivalent dimensionless
forms of the model with three parameters (which is, in the
present model, the smallest possible number of parame-
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ters). The choice of the form and the specific combination
of the new model parameters for the transition to the
dimensionless form are defined by the biological goal of
the study.

Here, our goal is to analyze system (4), mainly, with
respect to its dependence on the cytotoxicity of viruses
and on the force of infection, so the two parameters we are
particularly interesting in are b and a, which represent the
virus characteristics that, to some extent, can be control-
led. We proceed to examine the qualitative behavior of
model (4) as a function of parameters. The goal is to con-
struct the phase-parameter portrait of system (4), i.e., to
divide the parameter space into domains of qualitatively
(topologically) different phase behaviors.

Phase-parameter portrait of the initial model with mass-
action kinetics of the infection process
For the sake of completeness and convenience of compar-
ison, we present a full phase-parametric portrait of system
(1)-(2) with d = 0, noting that the original paper of
Wodarz [26] does not present such a full analysis. We let
d = 0 in (2), to keep the number of independent parame-
ters as small as possible, but still preserving their non-neg-
ativity. It can be shown that the system with explicit
natural mortality (i.e., d ≠ 0) can be put into form without
this additional parameter, and both of the systems have
topologically equivalent phase-parametric portraits.

Rescaling model (1)-(2) by letting

x(τ) = X(t)/K, y(τ) = Y(t)/K, τ = r1t

leads to the system

where γ = r2/r1, β = bK/r1, δ = a/r1. There exist six topolog-
ically different domains in the parametric space (γ, β, δ)
(Fig. 1). The bifurcation boundaries of the domains in Fig.
1 are α1 = {(δ, γ, β) : δ = β}, α2 = {(δ, γ, β) : γ = δ}, and α3
= {(δ, γ, β) : γ = δ (β + 1)/β}.

Fig. 1 shows that there are four different regions of param-
eter values in which the biological interpretation differs.
These are: i) domains I and II where the asymptotic state
of the system is characterized by absence of infected cells;
ii) domain III where, depending on the initial conditions,
the system can find itself either in the state where all the
cells are infected or in the state where all the cells are unin-
fected; iii) domain IV where the final state of the system
corresponds to the absence of uninfected cells (all cells are
infected); and iv) domains V and VI where there is a glo-
bally stable inner equilibrium that corresponds to coexist-
ence of both cell populations.

Possible biological implications of this analysis are dis-
cussed below; here, we only point out that all possible
behaviors yielded by system (5) are also present in model
(4) (together with additional dynamical regimes).

Exponential growth of the cell populations
Prior to analyzing model (4) in full, it is worth examining
its particular case when both cell populations grow
unbounded under the exponential law, i.e., formally, 1/K
= 0. The relevance of such a system is twofold. First, cancer
cells are characterized by high proliferation ability, and
the exponential growth of tumors is biologically realistic,
at least, at early stages of tumorigenesis. Second, as shown
below, the system with unlimited cell growth is the sim-
plest mathematical model that possesses the property of
having the elliptic sector (in biological terms, the simplest
model that allows for elimination of both cell popula-
tions), and can serve as a building block to formulate and
analyze more complex mathematical models.

The resulting system is

where r1 and r2 are per capita growth rates of uninfected
and infected cells, respectively (since all the parameters of
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Phase-parameter portrait of system (5) given as a cut of the positive parameter space (γ, β, δ) for an arbitrary fixed value of β > 0Figure 1
Phase-parameter portrait of system (5) given as a cut of the 
positive parameter space (γ, β, δ) for an arbitrary fixed value 
of β > 0. The boundaries between domains correspond to 
changes in behavior; the corresponding equations are listed 
in the text. Dots represent the model equilibria.
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the model are supposed to be nonnegative, we keep
parameter a). Choosing another time-scale τ = r1t, we
obtain the system

where x(τ) = X(t), y(τ) = Y(t), β = b/r1, γ = r2/r1, and δ = a/
r1. In the nondegenerate case γ - δ + β - 1 ≠ 0, system (7)
has the only equilibrium O(0, 0), and this equilibrium is
singular.

The important mathematical peculiarity of system (7) is
that the origin is a nonanalytical complicated equilibrium
point. The structure of the neighborhood of point O(0, 0)
in the first quadrant of the plane (x, y) and the asymptotes
of trajectories for x, y → 0 substantially depend on param-
eter values.

It is natural to continuously extend the determination of
system (7) into the origin by changing the independent
variable: τ → (x + y)τ. The structure of the point O as well
as the asymptotes of trajectories with x, y → 0 are shown
in Fig. 2 and described in Lemma 1.

Lemma 1. For different positive values of parameters δ, β, and
γ, there exist three types of topologically different generic struc-
tures of the neighborhood of point O (and, accordingly, three
topologically different phase portraits of system (7)):

1) a repelling-node sector (domain I in Fig. 2) for the parame-
ter values δ <γ. The phase curves of the system which tends to
O are of the form

y = Cxγ + β - δ (1 + o(1))  (8)

if β > δ + 1 - γ,

y = Cx(γ + δ)/(1 - β) (1 + o(1))  (9)

if β <δ + 1 - γ, where C ≠ 0 is an arbitrary constant;

2) an elliptic sector (domain II in Fig. 2) composed by trajecto-
ries tending to O as t → ∞ (with asymptotic given by (9)), as
well as with t → -∞ (with asymptotic given by (8)) if δ > γ and
β > δ + 1 - γ (which necessarily yields β > 1)

3) a saddle sector (domain III in Fig. 2) for the parameter val-
ues δ > γ and β <δ + 1 - γ;

An elliptic sector is defined as a family of homoclinics that
contains no inner equilibrium (see domain II in Fig. 2).
Lemma 1 is proved in the Appendix (see Additional Files
1 and 2) by using the version of the blow-up method asso-
ciated with the Newton diagram [44,45]. The phase-
parameter portrait of (7) is given in coordinates (δ, β).

Thus, in spite of its apparent simplicity, system (7) dem-
onstrates three different types of dynamic behavior,
including the possibility to completely eliminate both cell
populations in parameter domain II (Fig. 2). We use the
results obtained for system (7) for analysis of a tumor cell-
virus interaction model with the logistic growth law.

Main properties of the system
If 1/K ≠ 0 in (4) and there are no infected cells (Y0 = 0),
then the tumor grows logistically, X(t) → K when t → ∞;
the applicability of this model to some tumors has been
demonstrated experimentally [46]. Other mathematical
forms, such as Gompertzian growth and power-law
growth, also have been considered in the context of tumor
growth and can be made to fit empirical data [47]. In gen-
eral, there is no simple universal law to describe tumor
growth [48]; we chose logistic growth because it is the
simplest form whose predictions agree with the empirical
data.

Re-scaling model (4) by letting

x(τ) = X(t)/K, y(τ) = Y(t)/K, τ = r1t

leads to the system
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where β = b/r1, γ = r2/r1, and δ = a/r1. We proceed to study
the qualitative behavior of model (10) as a function of
parameters.

Let us consider the triangular region of 

Ω = {(x, y) ∈  : 0 ≤ x + y ≤ 1}.

By examining the direction of the vector field of system
(10) on the boundary of Ω, it can be verified that Ω is pos-
itive invariant. Furthermore, if we assume that x(τ) + y(τ)
> 1 with x(0) + y(0) > 1 is true for all τ > 0, then

Equation (11) leads to

Lemma 2. Any trajectory of system (10) starting within

but outside Ω will enter Ω in a finite time.

Hence, not only is Ω positive invariant, but it also is attrac-

tive to . Lemma 2 also states that any global stability in

Ω is, essentially, the global stability in . We henceforth

perform our mathematical analysis within the feasible

domain Ω.

If we choose D(x, y) = 1/(xy) as a Dulac function, then

rules out the possibility of oscillations.

Lemma 3. For any positive parameter values of δ, β, and γ,
there is no closed trajectory to system (10).

Since closed trajectories do not exist, equilibria play the
key role in determining the dynamics of the model and
will be analyzed below. There are four possible equilibria
O(0, 0), A1(1, 0), A2(0,(γ - δ)/γ), and A3 = (k(βγ - δ), k(δ -
β)) where

k = (β - 1 + γ - δ)/(β (γ - 1)2). Equilibrium O(0, 0) always
exists. However, because neither P(x, y) nor Q(x, y) in (10)

are analytic at this point, the linearization approach that
is commonly employed to analyze the structure and the
stability of this equilibrium fails. This issue received con-
siderable attention in dynamical analysis of ecological
models [39,40]. In spite of the fact that many epidemio-
logical models with demography processes possess the
same feature [38], only recently the existence and impor-
tance of this peculiarity were emphasized [40,41,43].

The standard approach to the analysis of this class of mod-
els involves the system

which is obtained from (10) with the change dτ → (x +
y)dτ. Noting that the main part of (12), i.e., in this case,
the terms of the second order, coincides with system (7),
we can use the results described above for the latter system
to obtain the structure of a positive neighborhood of the
origin of system (10). Accordingly, the possible topologi-
cally nonequivalent cases are shown in Fig. 2.

The second equilibrium A1(1, 0) also always exists. The
local stability of A1(1, 0) can be examined by the regular
linearization approach. The Jacobian around A1(1, 0) is

hence the analysis of the corresponding linear system
leads to proposition 1.

Proposition 1.

1) If δ > β, equilibrium A1(1, 0) is a stable node whereas, if δ
<β, it is a saddle;

2) The phase curves of the system which tend to A1(1, 0) are of
the form

y = k(x - 1)(1 + o(1)), k = -(β - δ + 1)/(β + 1).  (13)

If A1(1, 0) is a saddle, then formula (13) and the two positive
sections of the x-axis produced by A1(1, 0) determine its separ-
atrices.

Equilibrium A2 exists and belongs to Ω if γ > δ. The Jaco-
bian around A2 is
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hence the analysis of the corresponding linear system
leads to proposition 2.

Proposition 2.

1) If γ > δ, equilibrium A2 belongs to Ω. It is a saddle if δ > βγ
and a stable node if δ <βγ ;

2) The phase curves of the system which tend to A2 are of the
form

y = kx(1 + o(1)) + (γ - δ)/γ, k = -γ (β - γ + δ)/(γ (β - γ + δ) -
δ).  (14)

If A2 is a saddle, them formula (14) and the two positive sec-
tions of the x-axis produced by A1(1, 0) determine its separa-
trices.

The fourth potential equilibrium is A3 = (x*, y*) where

A3 belongs to Ω if one of the following two sets of condi-
tions is satisfied:

Indeed, if (15) holds:

The local stability of A3 can be examined by noting that
the determinant and trace of the Jacobian around A3 are of
the form

If the first set of conditions in (15) is satisfied, then
detJ(A3) < 0, tr J(A3) < 0, and if the second set of condi-
tions in (15) is satisfied, then detJ(A3) > 0, tr J(A3) < 0;
hence we have the following proposition.

Proposition 3. If one of the two sets of conditions (15) holds,
equilibrium A3 belongs to Ω. If β > δ, then A3 is an asymptoti-
cally stable topological node, and if β <δ, it is a saddle

The global stability of A3 in case of β > δ follows from
Proposition 3, Lemma 2, and Lemma 3.

Proposition 4. The positive equilibrium A3 of system (10) is

globally asymptotically stable in if the second set of condi-

tions (15) holds.

Phase-parameter portraits
In this section, we focus on the (x, y) -phase and (δ, β, γ) -
parameter portrait of system (10). This phase-parameter
portrait is obtained from the cuts on the (δ, γ) -plane gen-
erated by fixed values of β. Four lines partition the param-
eter space. Their equations are listed in the caption to Fig.
3 and in Theorem 1 below. The cut of the parameter por-
trait on the (δ, γ) -plane and the corresponding phase por-
traits critically depend on the value of β and are different
for β < 1 and β > 1. The phase-parameter portrait in (δ, γ)
-plane for the case β < 1 is almost exactly the same as for
system (5) (Fig. 1). The minor difference comes from the
equation for line α3 which, in case of system (10), is α3 =
{(δ, β, γ) : γ = δ/β}, and, consequently, the intersection
point of lines α1 and α3 has coordinates (β, 1) instead of
(β, 1 + β). The phase-parameter portrait of system (10) in
the case β > 1 is shown in Fig. 3.

The main mathematical result of the present work is for-
mulated in Theorem 1.

Theorem 1. The space of non-negative parameters (δ, β, γ) for
system (10) is subdivided into 8 domains of topologically differ-
ent phase portraits belonging to Ω. The cuts of the parameter
space corresponding to fixed values of β are given in Fig. 1for β
< 1 and in Fig. 3 for β > 1. The boundary surfaces between
domains correspond to the following bifurcations for system
(10):

α1 = {(δ, β, γ) : δ - β = 0} specifies the appearance/disappear-
ance of equilibrium point A3 and the change of the topological
type of point A1 (transcritical bifurcation);

α2 = {(δ, β, γ) : γ - δ = 0} specifies the change of the topological
structure of equilibrium point O with the appearance/disap-
pearance of point A2;

α3 = {(δ, β, γ) : γβ - δ = 0} for β < 1 specifies the appearance/
disappearance of equilibrium point A3 and the change of the
topological type of point A2(transcritical bifurcation).

α4 = {(δ, β, γ) : γ - δ - 1 + β = 0} for β > 1 gives rise to the
change of the topological structure of equilibrium point O with
the appearance/disappearance of point A3.

All boundary surfaces correspond to bifurcations of co-
dimension one (the total number of "connections"
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between parameters) in system (10) [49]. Figures 1 and 3
represent the two-dimensional cross-sections of the
parameter portrait of the system for β < 1 and β > 1,
respectively. Our theoretical analysis is confirmed by
numerical simulations as shown in Fig. 4 where the typi-
cal phase portraits of system (10) can be seen. The param-
eter values used in these simulations are listed in Table 1.
Of particular interest is the occurrence of a family of
homoclinics trajectories, which appear when the parame-
ters are in domains VII and VIII in Figs. 3 and 4.

Let us list the order of bifurcations that appear in system
(10) for typical parameter values. First, assume that β > 1
and we start in domain I in Fig. 3 and move counter-clock-
wise such that each domain is visited. In domain I, there
are two equilibria, O (saddle) and A1 stable node) (Fig. 4).
On crossing α4, equilibrium A3 (saddle) breaks off O,
which is accompanied by the appearance of an elliptic sec-
tor (Fig. 4, domain VII in Fig. 3). On line α2, the stable

node A2 breaks off O, and the elliptic sector disappears
(Fig. 4, domain III in Fig. 3). On line α1, a transcritical
bifurcation occurs, with A3 coalescing with A1, and A1
changing its type to a saddle (Fig. 4, domain IV in Fig. 3).
The next bifurcation occurs on α2 and is accompanied by
the appearance of an elliptic sector; A2 coalesces with O
(Fig. 4, domain VIII in Fig. 3). On line α4, the elliptic sec-
tor disappears, A3 (a stable equilibrium) breaks off O (Fig.
4, domain VI in Fig. 3). Finally, on α1, a transcritical bifur-
cation occurs where A3 coalesces with A1, and A1 changes
its type to a stable node.

If β < 1 and we start from domain I in Fig. 1 and move
counter-clockwise crossing every domain, the order of
bifurcations is different. On α2, a saddle equilibrium A2
breaks off the origin, and O changes its type (domain II in
Fig. 1). On α3, saddle equilibrium A3 breaks off from A2,
and A2 changes its type to a stable node, which corre-
sponds to a transcritical bifurcation (domain III in Fig. 1).
On α1, A3 coalesces with A1. On α3, the globally stable
equilibrium A3 breaks off A2, and A2 changes its type
(domain V in Fig. 1). Finally, on α2, the saddle equilib-
rium A2 coalesces with the origin.

Interpretation of the phase-parameter portraits
Various behaviors of model (10) in response to changes of
the initial dimensional parameters can be easily inter-
preted in terms of the outcome of the oncolytic virus ther-
apy. We use the bifurcation diagram shown in Figs. 1 and
3 and, for convenience, present the bifurcation diagram
for a fixed arbitrary value of γ (Fig. 5) because the two
parameters we are, mostly, interested in are a and b (δ and
β in the dimensionless form). The bifurcation diagram
(Figs. 1, 3, 5) demonstrates 8 types of system dynamics
depending on the values of δ, β and γ. This reflects 6 bio-
logically distinct types of behavior because domains I and
II as well as domains V and VI are indistinguishable from
the biological standpoint. The results of the present anal-
ysis permit us to completely describe the parametric
domains where the tumor is eliminated, the domains in
which virus infection stabilizes or reduces the tumor load,
and the domains in which viral therapy fails to prevent
tumor growth. Using the bifurcation diagram, it is easy to
predict what happens when the system crosses the bound-
aries of the domains.

Table 1: Parameter values in phase portraits in Fig. 4

Parameter\do
main

I II III IV V VI VII VIII

β 1.5 0.5 1.5 1.5 0.5 1.5 1.5 1.5
δ 2 1 2 1 0.3 1 2 1
γ 1 1.8 2.5 2.5 0.5 0.3 1.8 0.7

Phase-parameter portrait of system (10) given as a cut of the positive parameter space (γ, β, δ) for an arbitrary fixed value of β > 1Figure 3
Phase-parameter portrait of system (10) given as a cut of the 
positive parameter space (γ, β, δ) for an arbitrary fixed value 
of β > 1. The dots represent the equilibria of the model. The 
cross-sections of the full three-dimensional parametric por-
trait are different for β < 1 (see text and Fig. 1) and β > 1 
(the presented figure). The boundaries of the domains are α1 
= {(δ, β, γ) : δ = β}, α2 = {(δ, β, γ) : γ = δ}, and α4 = {(δ, β, γ) : 
γ = δ + 1 - β}.
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(i) Failure of viral therapy
Viral therapy fails if the eventual outcome of model
dynamics is the globally asymptotically stable equilib-
rium A1 (domains I and II in Figs. 1, 3 and 5, see also Fig.
4). In terms of the dimensional parameters, the condi-
tions for completely ineffective treatment are as follows:

It has to be emphasized that the result of viral treatment
in this case does not depend on the initial conditions. For
any initial values of X(0) > 0 and Y(0) > 0, the trajectories
of system (4) as well as system (10) tend to the same
asymptotical state that also would have been reached
without virus administration. This suggests that, under
given parameter values, even multiple, high-dose local
administration of the virus to accessible tumors (a usual
clinical practice) will be ineffective.

Note that, for this outcome, it is necessary (but not suffi-
cient) to have a > b, i.e., the infection rate should be less
than the death rate of infected cells caused by the virus'
cytotoxicity. Under these conditions, the infected cells die
without having time to infect other cells. In the frame-
work of the present model, this situation, in part, could be
a consequence of the assumption that virus dynamics is
much faster than cell dynamics, which allows us not to
model viral population dynamics explicitly. If virus
dynamics is not fast compared to the turnover of the cells,
explicit modeling of the virus population is required.

(ii) The bistable situation: potential success of viral therapy
For some parameter values, we can observe a situation
when the final outcome of the therapy crucially depends
on the initial conditions. This is the case for domains III
and VII in the bifurcation diagram (Figs. 1, 3, 4 and 5).
Depending on the initial conditions, the overall tumor
cell population tends either to the maximum possible
tumor load X(t) = K when t → ∞), or to the equilibrium A2
in which all cells are infected but survive (domain III), or
to the origin, i.e., complete elimination of the tumor cells
(domain VII, the elliptic sector). The exact conditions for
the bistable situation are as follows:

0 <a - b <r2 - r1 <a - r1

for the tumor elimination (domain VII); and

for stabilization of the tumor load at the equilibrium A2
(Y(t) = K(r2 - a)/r2 <K, X(t) = 0 when t → ∞).

Several points are worth noting with regard to the bistable
situation. First, the necessary condition to have a bistable
situation is r2 > r1, i.e., the maximum per capita birth rate
of infected cells should exceed the maximum per capita
birth rate of uninfected cells which seems to be highly
unlikely unless the virus triggers cell mechanisms that
favor proliferation of infected cells over uninfected cells.
Second, we again have the condition a > b, which indi-
cates that viruses that kill cells with high efficiency but are
poorly infective would have only a limited use in anti-
tumor therapy (clearly, a biologically plausible conclu-
sion).

Formally, domains III and VII differ significantly in the
possible outcomes of virus therapy because, when param-
eters belong to domain III, it is only possible to stabilize
the tumor size at the value y = (γ - δ)/γ = (r2 - a)/r2. In con-
trast, if the parameter values belong to domain VII, it is
possible to eradicate the tumor (see Fig. 4), as indicated by
the existence of the elliptic sector. Let us assume that there
is a possibility to infect tumor cells instantaneously. Then,
if the tumor size at the detection moment is x, the initial
conditions for (10) are x(0) = x - kx, y(0) = kx, where 0 <k
< 1. We can find a threshold value of x such that, if the
tumor size at detection is larger than x, virus therapy
becomes completely ineffective unless all tumor cells are
infected (Fig. 5). The boundary in the phase space that
divides the initial conditions into dangerous (we end up
in x = 1) and favorable (we end up either in x = 0, y = (r2 -
a)/r2 or in x = y = 0) is the separatrice of the saddle point
A3.

3.3. Stabilization or reduction of tumor load
Domains IV, V, VI (Figs. 1, 3, 4 and 5) are characterized by
the presence of a globally stable equilibrium different
from the maximal possible tumor load (x = 1 or X = K).
This suggests that, by changing parameter values, the over-
all tumor load can be reduced to a finite minimal size. The
analysis of this situation was one of the goals of Wodarz's
work [26]. Note that, in this case, it is necessary to have a
<b. The small total tumor load in the deterministic model
corresponds to a real-life situation in which stochastic
effects can eliminate tumor cells. Another possibility to
eradicate the tumor in the deterministic setting is to lower
the total tumor size to less that one cell.

Let us consider the case of β < 1 (i.e., b <r1 in dimensional
parameters). The overall tumor size X(t) + Y(t) is given by
K(r2 - a)/r2 if all cells are infected (domain IV) and K(1 - (b
- a)/(r1 - r2)) if the cell populations reach stable coexist-
ence (domains V and VI). When a increases, first, we
observe decrease of the tumor size, and then, as soon as a
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= aopt, the equilibrium tumor size starts to grow again (Fig.
6, the dimensionless parameter δ is used instead of the
dimensional parameter a). The values of aopt correspond to
the boundary between domains IV and V.

The optimal virus cytotoxicity is given by

and the minimal tumor size that can be reached is K(1 - b/
r1). This means that, to reduce the tumor load signifi-
cantly, we need to meet two conditions: b → r1 and a → r2.
In dimensionless parameters, this means that we must
have such values of parameters that the lines α2 and α3
coincide (Fig. 1) or at least are very close to one another.
In other words, with fixed β < 1, it is impossible to choose
values of δ and γ such that the tumor size becomes arbi-
trarily low, and the attainable tumor size might be large
enough to prevent tumor elimination due to stochastic
effects, which puts into question the generality of the con-
clusions of Wodarz [26] (see Fig. 6). Another important
aspect of this situation is that, attempting to tune the
parameters to maximally reduce the tumor load, we might
find ourselves in highly unfavorable domains I, II or III.

(iv) Deterministic extinction of the tumor cell population
The most beneficial domain of parameter values in our
analysis is domain VIII in Fig. 3. This domain corresponds
to the total elimination of both cell populations (infected
and uninfected) regardless of the initial conditions. This
domain meets the most optimistic expectations for the
use of replicating viruses for cancer therapy, i.e., that
repeated cycles of infection, virus release, spread, and
reinfection of tumor cells should eventually destroy the
entire tumor. The conditions on parameter values for the
system to be in this domain are

Note that the virus has to be highly infective in compari-
son with its cytotoxicity.

Conditions (16) provide restrictions on parameter values
to realize the regime of deterministic eradication of tumor
cells; however, even if these conditions are met, on its way
to extinction, the overall tumor size X + Y can reach rather
high values (which, with the parameters fixed, crucially
depends on the initial conditions) (Fig. 7a). This indicates
that we must not only identify the conditions that favor
tumor elimination, but also develop the optimal strategy
to infect initial tumor.

Let us assume that it is possible to instantly infect a partic-
ular part of the tumor. It is desirable to find the size of this
part as a function of the model parameters such that the
overall tumor size would monotonically decrease after

infection. Since, for the maximum tumor load, dx/dτ + dy/

dτ = 0, from (10), we can write down the equation for the

maximum tumor size: (x + γy)(1 - (x + y)) - δy = 0. Thus, if

the tumor size at detection is , we obtain the expression

for the fraction of the cells that need to be instantly
infected for the tumor load to decrease from the start of

the viral therapy. Since k( ) is a monotonically decreas-

ing function (k'( ) < 0 for any 0 <  < 1), we can use the
value

k(0) = 1/(1 + δ - γ) = 1/(1 + (a - r2)/r1)  (17)

to choose the parameters such as to minimize the percent-
age of the cells that have to be infected. From (16) and
(17) it is clear that, ideally, one should have b > a >> r2 and
b > a >> r1. As observed in experiments on human tumor
xenografts in nude mice, when virus-infected tumor cells
are mixed with uninfected tumor cells at the time of
implantation, 1 cell in 1000 infected with Ad337 was suf-
ficient to prevent tumor establishment and eventually
eliminate all tumor cells [24]. Our results show that this
situation readily merges within the framework of the
model described here (Fig. 7b).

Conclusion
In this work, we present the complete qualitative analysis
of the deterministic model of the interaction of an onco-
lytic virus with tumor cells [system (10)] along with the
auxiliary system (7). System (7) is the simplest mathemat-
ical model that includes the elliptic sector and can be used
as a building block for other models.

We showed that:

i) all behaviors from previously described by Wodarz [26]
are present in (10) along with additional dynamical
regimes;

ii) one of the additional dynamical regimes discovered
here (domain VIII) is of particular interest from the bio-
logical and therapeutic standpoints because it demon-
strates the possibility of complete eradication of the
tumor by virus therapy;
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Topologically non-equivalent phase portraits of system (10) obtained by numerical simulationFigure 4
Topologically non-equivalent phase portraits of system (10) obtained by numerical simulation. The panels are numbered in 
accordance with the domains of the parameter space (Figs. 1 and 3). The parameter values used in numerical simulations are 
given in Table 1.
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iii) our model, in contrast to original the model of
Wodarz [26], exhibits all possible outcomes of oncolytic
virus infection, i.e., no effect on the tumor, stabilization
or reduction of the tumor load, and complete elimination
of the tumor;

iv) the conditions on parameters were identified such that
the initial infection results in immediate decrease of the
tumor load and eventual elimination, and, for the given
parameter values, the fraction of the tumor cells that has
to be infected was found.

Although the available data are insufficient to rigorously
validate the present model, it is notable that the fraction
of the cells that have to be infected in order to achieve the
most beneficial results within the model's framework is
comparable to the values reported in experimental studies
on tumor implantation in nude mice [24]. Clearly, the
model described here is oversimplified, at least, in that it
ignores virus population dynamics and immune system
response; inclusion of parameters that characterize these
and other factors may lead to more realistic models of
virus-tumor interaction.
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Reviewer's report 2

David Krakauer, Santa Fe Institute, Santa Fe, NM, USA

The appreciation of cancer as an evolutionary and ecolog-
ical dynamic within the context of a multicellular organ-
ism has allowed many ideas developed in evolution and
ecology to migrate across into the study of disease. Best
known among these ideas are studies of virus dynamics
and immune regulation.

Cancer cells share many dynamic properties with viruses
including a rapid rate of proliferation, a high rate of muta-
tion and an elicitation of immune responses. Both deter-
ministic and stochastic evo-eco models have been
developed to describe the time course of cancer emer-
gence and cancer cell proliferation.

A number of researchers have thought of coupling these
two dynamics (virus and cancer) in an effort to use some
of the pathological properties of cancer to mitigate the
pathological properties of cancer cells. In particular,

Phase-parameter portrait of system (10) given as a cut of the positive parameter space (γ, β, δ) for an arbitrary fixed value of 0 <γ < 1 (a) and 1 <γ (b)Figure 5
Phase-parameter portrait of system (10) given as a cut of the positive parameter space (γ, β, δ) for an arbitrary fixed value of 0 
<γ < 1 (a) and 1 <γ (b). The boundaries of domains are listed in Theorem 1.
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encourage viruses to infect cancer cells (oncolytic virus) in
order to promote cancer cell clearance through several
routes including cytotoxicity and immune activation.

This paper represents an extension of existing work by
Wodarz and colleagues to include an alternative non-lin-
ear functional response (Holling-type) for infection rate
and a more exhaustive analysis of the parametric depend-
encies of the steady states. The parameters of focal interest
are the coefficient of infected cancer cell death and the
coefficient of infection.

The analysis is thorough and the extensions are interest-
ing. The appearance of several different outcomes accord-
ing to parameter values is valuable as it makes clear the
potential complexity of behavior in a very simple dynam-
ical system describing disease. The value of such a paper is
to use quantitative models to make a qualitative point,
that the outcome of biologically based therapies can be
diverse and require model-based thinking as a guide to
experiment.

The paper does however make a number of very strong
assumptions, which limit its use as a therapeutic tool and
make comparisons to extant data sets somewhat difficult.
I list these assumptions below. I think it worth pointing
these out, as they are significant issues for any comparable
research into this area.

1. Cancer is an inherently stochastic process dependent on
random mutation accumulation and a very noisy (sam-
pling noise) process of cell proliferation when cancer cell
numbers are low. Both mutation and extinction near the
zero cell boundary condition are left out of this model.
This has been treated extensively in some recent cancer
models that the authors should probably read and cite. I
am thinking of the early papers by Moolgavkar and the

more recent models by Murray et al, Speer et al and
Nowak et al.

Author response: Cancer is certainly a stochastic process
affected by random mutations and cell proliferation. We added
to the text some recent references on stochastic modeling of
tumorigenesis. However, we do believe that deterministic mod-
els are of significant importance in our understanding of can-
cer. A number of references to deterministic models were also
added. Our model does not contain mutation process, but our
basic goal was to construct a mathematical model, as simple as
possible, that could produce all the regimes which were observed
in experiments. Also, it has to be kept in mind that what is
being modeled here is the interaction between a tumorolytic
virus and the tumor, rather than the process of tumor growth
per se, so not all stochastic aspects of the latter are necessarily
relevant.

2. Cancer tissue exists within a larger context of healthy
tissue and density dependent growth does not only
depend on the density of cancer cells as is assumed in this
model but the density of healthy cells. While the model
treats cell death in the usual phenomenological frame-
work of logistic growth, some consideration of the mech-
anisms at work such as limitations in blood supply would
be valuable, including research into the effects of angi-
otensin.

Author response: Certainly, healthy tissues are important for
tumor growth. Indirectly, this is implied in the logistic model of
tumor growth, which is adopted here, as the growth may be lim-
ited by the effects of the healthy tissues. We do not believe that
including further details into a simple model considered here
would be productive.

3. The separation of time scales which allows the free vir-
ion to be treated algebraically is perhaps less acceptable in
the case of cancer than in virus infection of normal cells.
The reason for this is that the cancer cell can have an ele-
vated rate of proliferation, which would render this
assumption inappropriate.

Author response: This definitely might be the case, but we
think that our description can still be applied to many real sit-
uations. Besides, incorporating virus population dynamics
explicitly would yield a considerably more complex system of
differential equations, which could hamper the comprehensive
mathematical analysis of nonanalytical vector field. We agree
that this suggestion is a reasonable next step to improve the
model.

4. The assumption of perfect viral specificity is unlikely to
be possible and it is therefore important to quantify the
cost of tumor therapy in terms of the reduction in the

The overall tumor load x(∞) + y(∞) depending on viral cyto-toxicity in the case of δ <β < 1Figure 6
The overall tumor load x(∞) + y(∞) depending on viral cyto-
toxicity in the case of δ <β < 1. The value of γ is 0.3.
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healthy population of cells in relation to the reduction in
cancerous cells.

Author response: Yes, this is a simplification, we cannot
argue that, but it is one that is necessary to construct a model
that can be not only written down but also analyzed in detail.

5. Elimination might not be the desired outcome of ther-
apy but control. We have no real way of knowing whether
small micro-metastatic tumors have serious implications
on individual morbidity and so alternative treatments
that focus on protracted control could prove very interest-
ing.

Author response: Actually, it seems like elimination of a
tumor always is the most desirable outcome. It is quite another
matter that, this not being practical in a particular situation,
control might be effectively as good. What we show here, is that,
under certain regimes of virus-tumor interaction, complete,
deterministic elimination of the tumor cell population is a pos-
sibility.

6. Finally and perhaps most difficult for a model is the
whole question of a quantitative statement of "disease".
We can model individual cell populations but we do not
really understand the relationship of the cell level to the
individual clinical symptoms. How might we go about
relating these two spatial scales within a common theoret-
ical framework? I think this is an important question that
deserves more attention from the research community
and certainly goes beyond the realistic ambition of the
present study.

Author response: We just must agree and confirm that, per-
haps, sadly, this is beyond our ambitions in the foreseeable
future.

Reviewer's report 3

Erik van Nimwegen, Division of Bioinformatics, Biozentrum,
University of Basel, Basel, Switzerland

Novozhilov et al. study the phase portrait of a simple
mathematical model for the dynamics of an oncolytic
virus and tumor cells. This model is a particular example
from the class of Lotka-Volterra like models and is an
extension of a model proposed in the same context by
Wodarz. The main feature of interest is that, as a function
of the small set of parameters, the model exhibits qualita-
tive different kinds of dynamical behavior such as coexist-
ence of tumor and infection, disappearance of infection,
disappearance of all tumor cells, etcetera.

First, a remark as to the novelty of the research here pro-
posed. I do not know to the literature well enough to be
able to point to a specific reference in which the model
(10) has been studied but I would be quite surprised if
this model, and its phase-portrait, had not already been
described in the literature on Lotka-Volterra type models.
I therefore expect that the main addition to the literature
is the application of this model to the oncolytic virus sys-
tem, and a discussion of its phase portrait in this context.

Author response: This model is not exactly in the class of
Lotka-Volterra models. The main difference (considering this
model as a model of interaction of two species) is that the func-
tional response is ratio-dependent, and this was the main topic

The tumor load versus time; parameter and initial condition values are: (a) γ = 0.7, β = 15, δ = 10, (b) γ = 0.7, β = 1005, δ = 1000Figure 7
The tumor load versus time; parameter and initial condition values are: (a) γ = 0.7, β = 15, δ = 10, (b) γ = 0.7, β = 1005, δ = 
1000. The initial conditions are x(0) = 0.1, y(0) = 0.0001.
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of the work of Arditi and coauthors who emphasized the quali-
tative differences between these models and the classical Volt-
erra models.

This brings me to the main criticism of the manuscript.
The presentation is rather mathematical throughout and
will be completely inaccessible to most biomedical
researchers. Even I had some difficulties with some of the
terminology. For example I had to look up what an "ellip-
tic sector" is (the definition in the paper didn't help me
very much) and I also had to look up the Bendixson-
Dulac theorem to understand how Lemma 3 follows. I
bring this up mainly because I don't believe it is necessary
to make the manuscript so technical. I think the main
interest of the results lies in discussing the meaning of the
phase-portrait for tumor therapy. The discussion does a
reasonable job of this but I think it could be made even
clearer to the point that the main conclusions would be
easily accessible for biomedical researchers.

Author response: The existence of the elliptic sector is the cru-
cial aspect of the model presented in this paper. This mathemat-
ical notion is not just a technical detail but rather has important
biological implications, i.e., in this particular case, the possibil-
ity of deterministic elimination of the tumor. Therefore we felt
that it was necessary to include the required proofs.

Some weight is put in the discussion of the mathematics
on the fact that "The important mathematical peculiarity
of system (7) is that the origin is a nonanalytical compli-
cated equilibrium point". It seems to me that such math-
ematical subtleties could be easily avoided by expressing
the equations in terms of the total number of tumor cells
n = x + y and the fraction ρ = y/(x + y) of tumor cells that
is infected. In terms of these variables the equations (7)
become:

and

First, these equations are now analytic everywhere in the
strip n ≥ 0, 0 ≤ ρ ≤ 1. Furthermore, the second equation
does not depend on n and can be directly integrated to
obtain explicit analytic expressions for n(t) and ρ(t). Even
more simply, it is immediately apparent from the second
equation that the sign of β - δ + γ - 1 determines if the sys-
tem will flow to ρ → 1 as t → ∞ or to ρ → 0. And once we
know what values ρ will limit to, we can fill its value in the
first equation to see that the tumor will only disappear if
β - δ + γ - 1 > 0 and δ > γ. Obviously the authors reach the

same conclusions but I think the derivation just sketched
is much simpler and more easily accessible to the reader-
ship of Biology Direct than the rather technical derivation
that the authors present.

Similar remarks apply to the system (10). If one again
transforms to n and ρ one obtains

and

Here one cannot explicitly solve for n(t) and (t) in closed
form but the system is analytic everywhere in the strip and
the fixed points, their Jacobians, and the eigenvalues of
these Jacobians can be easily determined. Again one
would of course reach the same conclusions as the
authors1 but I think the mathematics is again substantially
simplified in this coordinate system.

Author response: The models (1)-(2) and (3)-(4) proposed
by the reviewer are indeed equivalent to our models (7) and
(10), respectively, only if the total population size n = x + y is
constant or, at least, is bounded from below, i.e., n ≥ Const >
0. Otherwise, however, the systems are not equivalent and
exhibit qualitatively different behaviors.

On page 16 it is said "Noting that the main part of (12)
coincides with system (7), we can use the results described
above for the latter system to obtain the structure of a pos-
itive neighborhood of the origin of system (10)".

I presume that the expression "main part of (12)" is a
technical term and that the authors are implicitly using a
theorem here (that I am unfamiliar with) that proves that
the topology of the set of trajectories close to the origin is
the same in system (10) and system (7). Some more
explanation would be helpful.

Author response: The requisite explanations have been incor-
porated in the revision.

Reviewer's report 4

Ned S. Wingreen, Department of Molecular Biology, Princeton
University, Princeton, NJ, USA

The authors address the question of the possible out-
comes of tumor therapy with oncolytic viruses within a
simple but appropriate mathematical framework. The
model allows for two populations of cells: uninfected

dn

dt
n= + − − ( )[ ( )],1 1 1ρ γ δ

d

dt

ρ ρ ρ β δ γ= − − + − ( )( )( ).1 1 2

dn

dt
n n= − + − − ( )[( )( ( ) ) ],1 1 1 3γ ρ δρ

d

dt
n

ρ ρ ρ β δ γ= − − + − − ( )( )[ ( )( )].1 1 1 4
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tumor cells and infected tumor cells. The concentration of
viral particles is not explicitly followed, and the tumor is
assumed to be homogeneous in space, i.e. no spatial
dependence of cell concentration is considered. As such,
the system consists of two coupled, deterministic differen-
tial equations allowing for cell reproduction and death,
and cell infection. Previous related work by Wodarz (Refs.
12, 26, and 32) assumed an infection rate proportional to
the product of infected and uninfected cell concentrations
(a la the law of mass action). Within this assumption, the
equations never lead to elimination of the tumor. The
main result obtained by Novozhilov et al. is that a plausi-
ble change in the form of the infection rate can lead, in
some range of parameters, to additional outcomes in
which all tumor cells, or either infected or uninfected cells
can be completely eliminated. This is an important con-
clusion in terms of the medical implications of oncolytic
viral therapy.

The paper is very clearly written, and, while rather techni-
cal, the mathematical analysis of the coupled equations
for cell concentrations is enriched by some nice qualita-
tive discussion of what the assumptions and results mean.
Mathematically, the use of a ratio-dependent infection
rate (~ XY/(X+Y), where X and Y are the uninfected and
infected cell populations) leads to interesting behavior in
the limit of low cell concentrations, and the authors do a
good job of deriving and explaining this behavior.

Overall, I found the paper both interesting and informa-
tive. The careful study of a simple model is very instruc-
tive, and is likely to be helpful in guiding future work on
oncolytic viral therapy.

A few minor comments on the manuscript:

1. It would have been helpful to have a more detailed
review of the experimental status of oncolytic viral ther-
apy in the introduction. The sentences leading up to cita-
tions to Ref. 18–20 give no quantitative sense of how
effective this therapy is compared to any control experi-
ments.

Author response: We added one piece of quantitative infor-
mation. We were reluctant to get deeper into that because the
reliability of quantitative assessment of the comparative effects
of different therapeutic strategies is a matter of concern.

2. The discussion of the use of a ratio-dependent infection
rate is rather terse considering how important this is to the
manuscript. It is clear that in the limits X << Y and Y << X,
the form used is sensible, but this is never discussed
clearly. Similarly, it is never explained why, mathemati-
cally, the ratio-dependent and alternative form of the
infection rate lead to qualitatively different outcomes.

Again, this seems central to the paper, and deserves some
more attention.

Author response: In the revision, the reasons for adopting a
ratio-dependent infection rate in our model are discussed in
greater detail.

Note
1Here I am assuming the authors' derivations are all cor-
rect. I have not explicitly reproduced them all but all cal-
culations that I did all confirmed the authors' results so I
am confident that the derivations are indeed all correct.

Additional material
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