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Abstract

Background: HIV can evolve drug resistance rapidly in response to new drug treatments, often
through a combination of multiple mutations [I-3]. It would be useful to develop automated
analyses of HIV sequence polymorphism that are able to predict drug resistance mutations, and to
distinguish different types of functional roles among such mutations, for example, those that
directly cause drug resistance, versus those that play an accessory role. Detecting functional
interactions between mutations is essential for this classification. We have adapted a well-known
measure of evolutionary selection pressure (K,/K;) and developed a conditional K /K approach to
detect important interactions.

Results: We have applied this analysis to four independent HIV protease sequencing datasets:
50,000 clinical samples sequenced by Specialty Laboratories, Inc.; 1800 samples from patients
treated with protease inhibitors; 2600 samples from untreated patients; 400 samples from
untreated African patients. We have identified 428 mutation interactions in Specialty dataset with
statistical significance and we were able to distinguish primary vs. accessory mutations for many
well-studied examples. Amino acid interactions identified by conditional K /K; matched 80 of 92 pair
wise interactions found by a completely independent study of HIV protease (p-value for this match
is significant: 10-79). Furthermore, K /K, selection pressure results were highly reproducible among
these independent datasets, both qualitatively and quantitatively, suggesting that they are detecting
real drug-resistance and viral fitness mutations in the wild HIV-1 population.

Conclusion: Conditional K /K, analysis can detect mutation interactions and distinguish primary
vs. accessory mutations in HIV-1. K /K analysis of treated vs. untreated patient data can distinguish
drug-resistance vs. viral fitness mutations. Verification of these results would require longitudinal
studies. The result provides a valuable resource for AIDS research and will be available for open

access upon publication at http://www.bioinformatics.ucla.edu/HIV

Reviewers: This article was reviewed by Wen-Hsiung Li (nominated by Eugene V. Koonin),
Robert Shafer (nominated by Eugene V. Koonin), and Shamil Sunyaev.
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Koonin), Robert Shafer (nominated by Eugene V.
Koonin), and Shamil Sunyaev. For the full reviews, please
go to the Reviewers’ comments section.

Background

During the past two decades, researchers and clinicians
have made enormous efforts to identify drug resistance
mutations in HIV-1 protease, a major target of anti-retro-
viral therapy. Discovery of a new drug resistance mutation
typically requires a combination of clinical research (e.g.
AIDS patients displaying drug resistance), molecular biol-
ogy (e.g. sequencing), and biochemistry (e.g. obtaining
viral samples and performing phenotypic assays). Over
the last 20 years, many mutations and combinations of
mutations in protease have been reported to play a role in
drug resistance [4,5]. But this discovery process is labori-
ous, expensive, and far from automatic - indeed, it is
research. Meanwhile, HIV is constantly evolving new drug
resistance mutations, often within weeks of introduction
of a new drug [6-8]. Thus, a completely automated
approach for identifying drug resistance mutations would
be valuable [9,10].

Differences in reproductive success (such as the enhanced
survival of a drug-resistant mutant) are reflected in selec-
tion pressure, which can be measured directly from
sequence data. For example, K,/K; is a well-known metric
of selection pressure for amino acid mutations, measured
relative to the observed frequency of synonymous muta-
tions (which cause no change to protein sequence or func-
tion) [11,12]. Ordinarily K,/K, values much less than one
are observed, indicating that most amino acid mutations
are deleterious. This is referred to as "negative selection".
By contrast, K /K, values greater than one indicate that
amino acid mutations improve reproductive success (posi-
tive selection), a very unusual condition. By screening for
individual amino acid mutations in HIV protease that dis-
played positive selection, this metric was able to correctly
predict 19 out of 23 known drug resistance mutation sites
in HIV protease [10]. This approach has several advan-
tages: it is completely automatic; it is based on a large and
well-understood body of evolutionary theory; it only
requires raw sequence data to perform this analysis.

However, not all positively selected mutations are created
equal. It would be very useful to be able to distinguish dif-
ferent types of mutations on the basis of their interactions
with other sites. For example, a binding site mutation that
interacts directly with the drug molecule might confer pri-
mary drug resistance [13-15]. Alternatively, a mutation
that interacts with another site within HIV protease might
compensate for destabilizing effects of mutations at the
other site [16,17]. Unfortunately, selection pressure met-
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rics such as K,/K, provide no explicit mechanism for tak-
ing such interactions into account.

To address this problem, we have extended the K /K, con-
cept to consider interactions with other sites, by formulat-
ing a conditional K, /K, that measures the effects of
mutations at one site on the selection pressure for muta-
tions at another site. We have applied it to four com-
pletely independent datasets: Specialty: 50,126 HIV-1
positive patient plasma samples sequenced by Specialty
Laboratories, Inc. between October 1999 and October
2003 [10]. This dataset represents a mix of treated and
untreated patient samples from the U.S. Treated: 1797
samples collected by Shafer and colleagues, from U.S.
patients undergoing specific drug treatments [9].
Untreated: 2628 samples collected by Shafer and col-
leagues specifically from untreated patients [9]. Africa:
399 African HIV-1 subtype C samples downloaded from
Los Alamos HIV Sequence Database [18-20]. These sam-
ples predominantly represent untreated patients. These
sequences cover the whole protease region (codons 1 -
99) of HIV-1. The conditional Ka/Ks results are highly
reproducible among these independent datasets. They
reveal complex interactions between amino acid sites, and
distinguish different types of mutations such as primary
drug-resistance mutations vs. accessory mutations.

Methods

HIV-1 sequence data

We filtered all four datasets to exclude contamination by
other HIV-1 subtypes. We compared all of the sequences
in these datasets against HIV-1 subtype reference
sequences from the Los Alamos database by using the pro-
gram BLAST and assigned each sample to the subtype with
the highest identify. All non-subtype B sequences were
removed from the U.S. datasets and all non-subtype C
sequences were removed from the African dataset. There
might be multiple samples from the same individual in
Specialty dataset. To eliminate the phylogenetic relation-
ships among sequences, we also excluded samples that
have 98% or greater nucleotide sequence similarity to
each other.

Multiple sequence alignment and mutation detection
were performed as previously described [10]. We used the
widely accepted nucleotide reference sequence from the
Los Alamos HIV Sequence Database as the "wildtype" for
HIV-1 subtype B [21,22] and used the nucleotide consen-
sus of all the African subtype C samples as the "wildtype"
for HIV-1 subtype C. In this paper, we considered only
single nucleotide substitutions; all other mutations were
excluded.
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Unconditional Kal/Ks measurement for individual codon
positions

Amino acid selection pressure can be calculated for an
individual codon [23,24]; we will refer to this as the
"unconditional K /K" to distinguish it from the condi-
tional approach presented in the next section. We first
measured the transition and transversion frequencies f,
and f, from the entire dataset, according to

NU

N,
Ji= ntS’fU - n,S

where S is the total number of samples, N,and N, are the
number of observed transition and transversion muta-
tions respectively, 1, is the number of possible transitions
in the region that was sequenced (simply equal to its
length L in nucleotides), and n, is the number of possible
transversions (equal to 2L). In this calculation (and all
others below) we only counted single nucleotide substitu-
tions; all other mutations were excluded. We performed
the calculation of unconditional K /K, as previously
described [10], as the ratio of N, the count of samples
with amino acid mutations observed at that codon, over
N, the count of samples with synonymous mutations
observed at that codon. This N /N, ratio is then normal-
ized by the ratio expected under a random mutation
model (i.e., in the absence of any selection pressure),
according to the following formula:

Na
Kﬂ NS

K - na,tft +na,ufv

nS,t](t + nS,Uf]/

where n, . is the number of possible transition mutations
in the codon that would change the wildtype amino acid,
n, . is the number of possible transition mutations in the
codon that are synonymous, and n, , and n, , are the equiv-
alent numbers for transversions. When the observed ratio
(N,/N,) is greater than the expected ratio (in the denomi-
nator of the expression above), the selection pressure K,/
K;is greater than 1 and we say that the codon is under pos-
itive selection pressure.

We calculated an LOD confidence score for a codon to be
under positive selection pressure according to the follow-
ing formula:

) K N(NY; N—i
LOD = -log;o p(i= N, |N,q,K—“=l)=—log10 2 ( ; }]1(1—6]) !
S i=N,

where N is the total number of mutations observed in the
codon, and ¢ is calculated as follows:
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— na,tft + na,va
3f; +6f,

Conditional selection pressure analysis

To measure how mutation at one site alters the selection
pressure at another site, we define the "conditional selec-
tion pressure" for a site Y in the presence of an amino acid
mutation at another site X as:

N YaXa
K a _ N YsXa

K, - "a,tft +na,va

ns,tft + ns,va

where Ny, x, is the number of samples with an amino acid
mutation at codon Y and an amino acid mutation on
codon X; and Ny, is the number of samples with a syn-
onymous mutation at codon Y and an amino acid muta-
tion on codon X. We will refer to (K,/K)yx, as the
"conditional K,/K," at Y given an amino acid mutation at
X.

|Xa

We define the "conditional selection ratio" as the ratio of
the conditional Ka/Ks divided by the selection pressure at
Y measured in the absence of any mutation at X:

K, Ny,x,
K )\ K, Nyx,
Ks bix  ( Ka Ny x,

K X, Nyx,

where Ny,y, and Ny, are the numbers of samples con-
taining either an amino acid mutation or synonymous
mutation at Y and no mutation at codon X.

Confidence scoring for conditional selection pressure
analysis

We screened for codon pairs with conditional Ka/Ks and
conditional selection ratios above 1. To evaluate the statis-
tical significance of apparent positive conditional selec-
tion pressure, we defined a LOD score based on the
likelihood of observing at least Ny,x, samples with amino
acid mutations at codon Y and X, assuming neutral selec-
tion at codon Y:

. K, NO(NY;: . N
LOD:_IOglOp(lzNYaXa|N'qf[7al =1)=-logy Y, (i}?l(’—ﬂ) '
|Xa

K i=Nyaxa
where N = Ny, v, + Nyx, and ¢ as defined above.

To evaluate the statistical significance of the conditional
selection ratio, we used a one-sided Fisher's exact test to
measure the p-value for the null hypothesis that (K,/
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Ky)yixa S (Ki/K)yixo We performed Fisher's exact test on a
2-by-2 contingency table containing the counts Ny,x,-1,
Nyxar Nyaxo and Ny, using the statistical software pack-
age R. We deducted a single count from Ny, to make the
test stricter against cases with small numbers of counts.

Throughout this study, we used the following criteria for
high confidence positive conditional selection pressure:
(KJK)yx> 1, (K/K)yxa> 1, LOD > 3, and p < 103,

Comparing K /K, values between datasets

To test whether the difference in K /K, value computed
from two datasets D and D' was statistically significant, we
calculated a p-value using a one-sided Fisher's exact test,
using the 2 x 2 contingency table representing the counts
of amino acid mutations and synonymous mutations
from the two datasets: for unconditional Ka/Ks, (N, N,
N', NY); for conditional K,/K, (Ny,xxs Nyxe N'vexa
N'yexa)- We used a p-value threshold of 0.01.

Results

Detection of selection pressure interactions via conditional
K, /K,

To dissect the functional roles of amino acid mutations in
HIV protease, we analyzed the Specialty dataset of 48,387
HIV-positive samples for conditional K,/K; relationships.
We screened all possible codon pairs using several criteria:
positive conditional selection pressure (with a statistical
significance test of LOD >3), and a conditional selection
ratio greater than 1 (with a statistical significance test of p

Table I: Positive conditional selection pressure in HIV-1 protease
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< 10-3). 400 codon pairs showed strong conditional rela-
tionships by these criteria (Table 1). These effects ranged
from relatively mild increases (for example, the presence
of an amino acid mutation at position 88 increased the
K, /K, value at codon 10 by about 27%) to very large (at
position 30, the K /K, value increased from 0.4 to 71.1
depending on the absence or presence of an amino acid
mutation at codon 88).

These data reveal a basic distinction between two types of
positive selection effects: those that depend on the pres-
ence of another amino acid mutation at a specific site, ver-
sus those that do not. For example, amino acid mutations
at codon 90 are strongly selected for, regardless of the
presence or absence of a mutation at codon 10 (Fig. 1). By
contrast, codon 10 displayed negative selection in sam-
ples with no mutation at 90, but strongly positive selec-
tion in samples containing an amino acid mutation at 90.
These data show that mutations at 90 are directly selected
by drug treatment, that mutations at 10 are not favorable
by themselves, but that they become advantageous in
viruses bearing a 90 mutation. These results closely match
previous experimental studies showing that mutations at
90 cause drug resistance, while mutations at 10 have an
accessory effect of compensating for the destabilizing
effect of mutations at 90 [25]. We have observed similar
asymmetric effects at other sites, for example 24/82 (Fig.
1a). In general, primary drug resistance mutations showed
consistent positive selection, whereas accessory mutations
often showed only conditional positive selection, depend-

Codon Y Codon X Nyaya Nxavs (Ka/Ks)Y|Xa Nxova Nxovs K/ Ks)Y|Xo (Ka/Ks)Y|X LOD P
90 73 1879 6 367.63 6842 628 12.79 28.74 >300 <0.001
82 24 564 0 277.79 3625 680 2.63 105.8 98.09 <0.001
90 95 161 | 189 7757 595 15.3 12.35 52.35 <0.001
82 48 483 2 118.95 3727 663 2.77 42.96 79.90 <0.001
82 53 366 2 90.13 4005 694 2.84 31.71 59.79 <0.001
82 55 332 2 81.76 3994 701 2.8l 29.14 53.96 <0.001
30 88 1730 9 71.1 727 677 0.4 179 217.97 <0.001
63 50 132 | 65.01 22576 2037 5.46 11.91 21.31 <0.001
90 89 329 6 64.37 7677 524 17.2 3.74 100.28 <0.001
71 Il 126 0 62.06 8775 964 4.48 13.84 21.91 <0.001
90 92 315 6 61.63 7706 575 15.73 3.92 95.67 <0.001
63 73 1711 14 60.2 20832 2016 5.09 11.83 269.97 <0.001
33 83 49 | 57.52 2436 803 3.56 16.15 15.09 <0.001
90 84 2039 45 53.19 6756 596 13.31 4 >300 <0.001
90 85 395 9 51.52 8361 627 15.65 3.29 117.75 <0.001

Due to the long list of positive conditional selection pressure detected in the Specialty dataset, only the |5 positive selections with the strongest
increase in (K./K))y|x, value after conditioning were showed here. Please see the Additional File for the complete list.

Codon X: the codon site where the first mutation appears.
Codon Y: the codon site where the second mutation appears.

(Ko/Ko)y|xa: conditional selection pressure of codon Y in the presence of an amino acid mutation at codon X.
(Ko/Ko)yixo+ conditional selection pressure of codon Y in the absence of any mutation at codon X.

LOD: confidence score for (K/Ky)yx,> |.
p: p-value for (K/K)yx > | to be random.
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Figure |

Conditional Ka/Ks measurements for primary vs. accessory drug-resistance mutations. For the two possible path-
ways from wildtype to a double mutant, we computed the conditional K /K, values for each mutation conditioned on the pres-
ence or absence of the other mutation (shown as numbers next to each edge in the figure). Primary drug resistance codons are
highlighted in bold. a) 24/82; b) 54/89; c, e, g) 10/90; d, f, h) 63/90. a-d are from the Specialty dataset; e-f from the Treated

dataset; and g-h from the Untreated dataset (see text).
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ent on the presence of a primary drug resistance mutation.
By exposing such asymmetries, the conditional K,/K, anal-
ysis may be able to predict whether mutations have a pri-
mary drug resistance vs. accessory effect. For example,
mutations at position 54 are positively selected, which in
turn induce positive selection for mutations at 89, which
by themselves are unfavorable (Fig. 1b). These data sug-
gest that 89 is an accessory position, whose mutations can
stabilize mutations at 54 (which are known to cause drug
resistance [26]).

Comparison with independent drug treatment studies of
HIV protease

One weakness of the Specialty dataset is that it includes no
information about individual drug treatments. To assess
the significance of our conditional K,/K, results, we have
compared them with the independent experimental study
of Wu et al., who identified correlated mutation pairs, i.e.
pairs of codons where mutations co-occurred much more
frequently in patients with specific drug treatments, than
in patients who received no drug treatment [9]. By com-
paring 1,004 HIV isolates from untreated patients with
1,240 patients from patients treated with one or more
protease inhibitors, Wu et al. identified 92 protease codon
pairs with significant correlated mutations associated with
drug treatment. Our conditional K,/K, analysis of the Spe-
cialty dataset matched these results closely, identifying 80
of these 92 codon pairs as having positive conditional
selection pressure (LOD>2 and p < 0.01). This result had
strong statistical significance (p-value = 10-79). Thus con-
ditional K,/K, appears to robustly detect mutational inter-
actions that are genuinely associated with drug treatment,
even from a dataset (Specialty) lacking any drug treatment
information.

Distinguishing drug-resistance vs. fitness mutations by
comparison of K,/K for treated vs. untreated datasets
We have sought to distinguish mutations that are selected
specifically in response to drug treatment, from fitness
mutations that are positively selected even in the absence
of drug treatment [27]. To do so, we first compared
unconditional K /K values from the Treated dataset with
those from the Untreated dataset (Table 2). Nine codons
underwent a confident shift from negative selection in
Untreated, to positive selection in Treated. Of these, five
(30, 53, 54, 82, and 90) are known primary drug-resist-
ance mutations, and three (10, 24, 73) are known acces-
sory drug-resistance mutation codons [28]. Thus, this shift
appears to be an accurate predictor of sites involved in
drug-resistance. Intriguingly, the one remaining codon
(74) is not currently known to cause drug-resistance, but
showed confident positive selection both in the Treated
(K,/K,=3.75) and Specialty (K /K, = 5.87) datasets.
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A total of fifteen codons were positively selected in both
Treated and Untreated dataset (Table 3; codon 71 has K/
K,value of 1.11 but a LOD = 0.63 in the Untreated data-
set). The fact that these mutations were positively selected
even in the absence of drug treatment suggests that they
contribute directly to viral fitness. Of these, five (19, 62,
63, 71 and 77) displayed a statistically significant increase
in K,/K, from Untreated to Treated (Table 2). Codons 63,
71 and 77 are known accessory drug-resistance mutations
[28]. The functions of the remaining two codons are
unknown. The significant increase of K /K, value in the
Treated dataset predicts an accessory role in drug-resist-
ance.

Strikingly, all of the known primary drug resistance muta-
tions were observed to be negatively selected in the
Untreated dataset, suggesting that they reduce fitness in
the absence of drug treatment [29-31]. These negative
selection effects were strongest for mutations at codons 66
(K,/K, < 0.01), 84(< 0.01), 32 (0.01), 48 (0.02) and 54
(0.03), and weakest at codons 82 (K,/K, = 0.46), 53
(0.31), 24(0.33), and 90 (0.25). Thus, in the absence of
continuing drug treatment, these mutations would be
expected to be gradually lost from the evolving viral pop-
ulation due to their greatly reduced fitness [29-31]. By
contrast, while most accessory drug-resistance mutations
were negatively selected in Untreated, some were neutral
(e.g. 71), while others were strongly positively selected
(e.g. 63, 77) even in the absence of drug treatment. This
may explain why mutations at position 63 appear to be
becoming dominant in the HIV population [26,32]

It is interesting to note that at no codon did we ever
observe the pattern of positive selection in Untreated but
negative selection in Treated (Table 3). Thus, drug-treat-
ment appears to preserve positive selection pressure for
fitness mutations that are found in the untreated dataset,
merely adding new positive selection effects for drug-
resistance.

Although the Treated and Untreated datasets are much
smaller than Specialty, we were able to calculate condi-
tional K /K, values for many sites. Fig. 1e-h shows a com-
parison of conditional K /K, results from the Treated and
Untreated data for positions 10/90 and 63/90, versus the
results from the Specialty Data (Fig. 1c-d). The Specialty
and Treated results display good qualitative agreement, in
that mutations at 90 (a primary drug-resistance mutation
site) are positively selected regardless of whether an acces-
sory mutation is present at 10 or 63, and each mutation
reproducibly increases selection for the other mutation
[25,31]. By contrast, in the Untreated dataset, mutations
at codon 90 become unfavorable (negative selection pres-
sure), while selection pressure for the accessory mutation
(10 or 63) drops much less.
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Table 2: Significant differences of selection pressure between Treated and Untreated dataset

Position Treated Untreated p-value
K, /K, N, N, LOD K, /K, N, N, LOD

10° 1.47 516 176 5.4 0.21 172 401 71.57 <0.0001
I 0.17 15 43 10.38 0.04 7 90 35.47 0.0017
17 0.06 17 142 49.46 0.16 55 176 40.54 0.0006
19 29 183 97 17.72 1.72 278 248 9.45 0.0004
20 0.39 137 131 12.56 0.07 41 215 80.54 < 0.0001
23 0.25 27 163 14.25 0.08 I 222 35.57 0.0006
24 1.59 85 64 2.49 0.33 22 79 6.73 <0.0001
30 1.84 211 43 4.1 0.18 22 46 12.11 <0.0001
32 0.53 49 46 3.08 0.01 2 69 31.72 < 0.0001
48 0.71 72 51 1.62 0.02 3 82 36.4 < 0.0001
50 0.9 27 13 0.51 0.07 2 12 5.74 0.0007
53 2.99 48 6 2.44 0.31 5 6 1.91 0.0032
54 1.55 246 69 3.25 0.03 7 112 50.03 <0.0001
58 0.1 46 164 53.2 0.01 3 207 113.48 < 0.0001
6l 0.1 55 211 70.15 0.05 63 431 172.9 0.0031
62 13.65 419 2 8.93 242 446 12 3.38 0.0094
63 6.1 (N 9l 100.36 3.23 1343 208 71.62 < 0.0001
66 0.01 12 385 181.09 0.00 | 551 286.44 0.0002
67 0.2 64 118 26.07 0.10 75 290 95.99 0.0002
71 6.99 601 43 58.9 I.11 195 88 0.63 < 0.0001
73 1.81 130 36 3.17 0.05 5 48 18.6 <0.0001
74 3.75 75 10 5.36 0.22 7 16 4.09 <0.0001
76 1.02 34 40 0.28 0.16 10 74 11.25 < 0.0001
77 24.42 635 13 91.3 9.72 700 36 79.13 0.0025
82 4.58 339 37 25.9 0.46 51 56 4.77 <0.0001
83 0.15 18 45 13.27 0.03 10 107 49.35 0.0006
84 |.46 112 5 0.56 0.00 0 14 300 < 0.0001
85 1.39 48 I5 0.79 0.11 3 12 5.01 0.0001
88 0.82 154 70 I.11 0.1 25 95 3249 <0.0001
90 12.26 472 46 107.02 0.25 12 58 6.9 <0.0001
92 0.1 34 131 44.36 0.04 25 211 90.47 0.0044

2 Mutations at codon in Italic are known associated with drug resistance. The nine codons that underwent a confident shift from positive selection

in Treated to negative selection in Untreated are in bold.

Although estimating conditional K,/K, accurately from the
Treated dataset is difficult due to insufficient counts, we
identified 274 codon pairs that showed statistically signif-
icant increases in conditional K /K, for Treated relative to
the Untreated dataset (Table 4). Of these shifts, eleven
exhibited positive conditional selection pressure in
Treated, but not in Untreated: 10—54, 71—-54, 7182,
63—90 (primary drug-resistance mutation codons);
20—10, 82—10, 71-10, 24—10, 1063, 36—>71,
63—73 (accessory drug-resistance mutation codons). And
two codon pairs (93—63, an accessory drug-resistance
mutation; 12—19, function unknown) are positively
selected in both datasets. It is striking that almost all of
these increases in conditional K,/K, involved known drug-
resistance mutation sites.

K,/K, comparison between the specialty and treated
datasets

To evaluate the robustness of our approach, we compared
its results from two independent datasets (Specialty;
Treated), both from U.S. patients who received drug treat-
ment. We first computed unconditional K,/K; values from
the two datasets, and compared the results (Fig. 2). These
independent data displayed a significant quantitative
agreement, with a correlation coefficient of 0.887. Out of
the 97 protease codons analyzed, only two significant dif-
ferences were observed between the datasets. At codon 24,
the Treated data showed mild positive selection (K /K, =
1.59), but the Specialty dataset indicated slightly negative
selection (K /K, = 0.55). At codon 15, the situation was
reversed (Treated K,/K, = 0.88; Specialty K,/K, = 1.30), but
since both values were very close to neutral (K,/K, = 1.0),
the difference was not statistically significant. The almost
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Table 3: Positive selection pressure in Treated and Untreated datasets

Selection pressure

Conditional selection pressure

Treated +2 + - +2 + Not + selected, or
not present
Untreated + -b + + Not + selected, or +
not present
Codon 12,13,19,33,35,37,  10,24,30,54,73,74, None 19, 63,71 93¢ 10, 24, 30, 35, 48, None
41,57,60,62,63,647 82,90 534 54, 73, 82, 88, 90
7937l

apositively selected. For selection pressure, K/K;> | and LOD > 2; for conditional selection pressure, (Ki/Ko)yx, > 1, (K/KJ)yx > 1, LOD > 3 and p

<0.001.
b negatively selected (K,/K; < | and LOD > 2)

¢ codon 71 is positively selected in Treated samples (K,/K;> | and LOD > 2), and it has a K/K, value greater than | but a LOD score less than 2 in

Untreated samples.

dcodon 53 is positively selected in Treated samples (K,/K,> | and LOD > 2), and it has a K /K, value less than | but a LOD score less than 2 in

Untreated samples.

¢In Treated dataset, codon 93 is positively selected with (K/Ko)yx, > 1, (K/K)yx > I, LOD > 3 but p > 0.001.

exact overlap in positive selection between the two data-
sets was highly significant (p-value = 10-152).

Overall, the positively selected K /K, values computed
from the Treated dataset tended to be slightly higher than
those from the Specialty dataset. This is reflected in the
ratios of K /K, values from Treated vs. Specialty data,
whose average (1.37) indicates that the Treated K,/K; val-
ues were 37% higher than the Specialty values. This is con-
sistent with the fact that the Treated dataset consists
exclusively of patients under drug treatment, whereas the
Specialty dataset contains a mixture of samples from
treated and untreated patients. Such mixing is expected to
reduce the observed selection pressure arising from drug-
treatment.

We next compared conditional K,/K; values from the two
datasets (Fig. 3). These results display considerably more
variation, but this appears to be due to insufficient counts
in the Treated dataset for accurate estimate of conditional
K /K, values for many codon pairs. Whereas the uncondi-
tional K,/K; uses the whole dataset to estimate the rates of
amino acid mutations (K,) and synonymous mutations
(K,), the conditional K /K, for a mutation Y conditioned
on another mutation X is by definition limited to the
small subset of sequences that contain mutation X. Since
the Treated dataset contains only 1,797 samples, this
drops many sites below the number of samples needed for
accurate estimation of conditional K,/K.. To filter the data-
set to codon pairs where (K,/K)y|x, could be estimated
with some accuracy, we restricted the analysis to cases
where Ny, + Ny, > 100. These results showed a strong
match between conditional K /K, values calculated from

Table 4: Significant differences of conditional selection pressure between Treated and Untreated dataset

Codon X Codon Y Treated Untreated p-value
(Ka/ Ks)Y|Xa NXaYa NXaYs (Ka/ Ks)Y|Xa NXaYa NXaYs

20 10 5.21 74 7 0.08 | 6 0.000021

82 10 10.78 197 9 0.49 4 4 0.000512
71 10 4.39 285 32 0.42 23 27 <0.000001
24 10 25.12 51 0 0.25 2 4 0.000038
12 19 18.25 35 3 3.85 59 24 0.006913
10 54 7.81 164 9 0.19 4 9 <0.000001
71 54 3.65 162 19 0.14 4 12 <0.000001
10 63 12.42 353 14 2.15 70 16 0.000012
93 63 21.23 431 10 6.72 382 28 0.000995
36 71 24.13 196 4 0.46 14 15 <0.000001
63 73 2.76 112 20 0.10 4 19 <0.000001
71 82 10.73 196 9 0.59 6 5 0.000199
63 90 18.32 359 23 0.34 9 31 <0.000001

Due to the long list of significant shift results, only the |3 shifts that involved a positive conditional selection in Treated datasets are listed in this

table.
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K./K, analysis: Specialty vs. Treated

25
A

20 A

15

Treated
>

10 4

Specialty

Figure 2

Positive selection pressure in the Specialty
andTreated datasets. K /K, values for positive selection
pressures in the Specialty and Treated datasets are plotted.
K, /K, values with a LOD < 2 in the Treated dataset were
plotted as empty triangles. Different colors represent codons
with different functions on drug resistance: Red: primary
drug resistance mutation codon; Blue: accessory drug resist-
ance mutation codon; Light blue: function unknown codon.
The correlation coefficient of the selection pressures in
these two datasets is 0.887, suggesting a significant quantita-
tive agreement.

the two independent datasets, with a correlation coeffi-
cient of 0.495. None of the codon pairs with positive con-
ditional selection in the Specialty dataset showed negative
selection in the Treated dataset.

Again, the positively selected conditional K,/K; values
computed from the Treated dataset were slightly higher
than those from the Specialty dataset (by 17.9% on aver-
age). This is consistent with the fact that the Specialty
dataset is a mixture of treated and untreated samples,
whereas the Treated dataset was collected exclusively from
treated patients.

K,/K, between the untreated and Africa datasets

We computed K, /K, values from two untreated datasets:
2,628 HIV-positive samples from U.S. patients who had
received no drug treatment (Untreated); and 399 HIV-
positive samples from African patients (predominantly
untreated [18-20]). While the African dataset is too small

http://www.biology-direct.com/content/1/1/14

Conditional Ka/Ks analysis: Specialty vs. Treated

50
A
40 +
A
A

30 A
b A A A
5 A
o A
= A

20 . A

7 A
AA “ A A ® A A
R A
A
B . A
10 g ta
A
o2 at s
&
A Aan
por AYX
0 T T T T
0 10 20 30 40 50
Specialty

Figure 3

Positive conditional selection pressure in the Spe-
cialty and Treated datasets. (K,/K)yx, values for positive
conditional selection pressures in the Specialty and Treated
datasets are plotted. To filter the dataset to sites where (K/
Ks)y|xa could be estimated with accuracy, only selection pres-
sures with Ny_v, + Ny,y, > 100 in both datasets were
showed. An empty triangle indicated that we were not confi-
dent about the conditional selection value in the Treated
dataset. The correlation coefficient of the conditional selec-
tion pressures in these two datasets is 0.495.

for accurate estimation of K /K, values, the two datasets
show strong qualitative agreement (Fig. 4). Of the 97 pro-
tease codons analyzed, seventeen codons showed positive
selection (K,/K,>1, LOD>2) in at least one of the two
datasets. In twelve cases, both datasets indicated positive
selection (K /K, >1); in four cases, the Untreated data
detected positive selection but the African dataset did not;
and in one case (codon 39), the reverse was observed. This
high level of agreement was statistically significant (P-
value = 10-375). Despite the fact that these data were col-
lected on different continents and represent different HIV-
1 subtypes (B in Untreated, and C in African), they indi-
cate that fitness mutations are found mostly at the same
positions in the two populations.

Assessing the effects of mixing treated and untreated data
on selection pressure calculations

In principle, the K,/K analysis approach differs from asso-
ciational studies in that it does not require an untreated
"reference" dataset in order to detect drug-resistance sig-
nals, and should even be tolerant of significant levels of
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Figure 4

Independent HIV-I| datasets yield reproducible positive selection results. Our method identified positively selected
sites (marked with different symbols depending on whether the site is a known drug resistance mutation, accessory mutation,
etc.) in independent analyses of four different datasets: Specialty: 48,387 U.S. patient samples, a mix of treated and untreated
patients; Stanford-Treated: 1797 U.S. patient samples with specific drug treatments; Stanford-Untreated: 2628 U.S.
untreated patient samples; African: 399 African patient samples, HIV-1 subtype C (predominantly untreated patients).

contamination by untreated samples. To test its robust-
ness to such contamination, we deliberately mixed the
Treated and Untreated datasets, and analyzed K,/K from
the mixed data. We tested several mixtures: adding 25%
contamination of Untreated samples (i.e. Ny, 00100 = 0-25
Nyearea); 50% contamination; and 146% contamination
(i.e. all the available Untreated samples). The 25% and
50% mixtures caused only minor effects on the measured
Ka/Ks values (data not shown). The maximum contami-
nation (146%) caused up to two-fold decreases in posi-
tively selected K,/K, values (Fig. 5), with shifts averaging of
32.5%. Out of the 24 codons detected to be positively
selected in the Treated dataset, only two became nega-
tively selected in the mixture dataset. These data show that
the K,/K, approach is relatively robust even to very high
levels of contamination by untreated samples.

Discussion

Naive K,/K; analysis involves several assumptions that can
undercut the robustness of its results. In particular, the
assumption of a single consensus sequence as the com-
mon ancestor of all sequences in the data sample ignores
the possibility of important phylogenetic relationships
among these sequences. Phylogenetic structure in the
dataset thus can cause artifacts in K,/K, analysis, and some
methods perform K /K, analysis in the context of an
explicit phylogeny [33]. Linkage disequilibrium between
sites can also cause artifacts in conditional K,/K analysis,
by creating correlations between sites that are purely his-
torical, and not due to functional interaction [34,35].
These problems are likely to be most severe in genomes
with a low mutation rate and low recombination rate, and
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Figure 5

Effects of mixing Treated and Untreated data on
selection pressure calculation. We have mixed the
Treated (1797 samples) with the Untreated (2628 samples)
to assess the effects of a mixed data on selection pressure
analysis. This mixing caused up to two-fold decreases in posi-
tively selected Ka/Ks values (compared with the Treated
dataset), with shifts averaging of 32.7%. Out of the 24 posi-
tively selected codons in the Treated dataset, only two
became negatively selected in the Mixture dataset. K /K, val-
ues with a LOD < 2 in the Mixture dataset were plotted as
empty triangles.

less severe in genomes with very high mutation and
recombination rates, such as HIV.

To assess these problems, we have used HIV mutation
data to test the utility and robustness of conditional K,/K;
analysis, by comparison with known functional interac-
tions involved in drug resistance, and comparison of the
K /K, results for multiple independent datasets. Several
lines of evidence indicate that, at least for HIV protease,
conditional K,/K; analysis provides robust detection of
real functional interactions that are not artifacts: 1) K /K
identification of sites with strong positive selection cor-
rectly identified known drug resistance mutations in HIV
protease (p-value = 10-3:3; [10]); 2) K,/K; identification of
mutations with strong positive selection matched inde-
pendent experimental phenotypic assays [10,36]; 3) con-
ditional K,/K identification of pairs of sites with strongly
positive conditional selection ratios ((K,/K)yx >>1)
strongly matched independent experimental studies iden-

http://www.biology-direct.com/content/1/1/14

tifying pairs of mutations that are correlated in treated vs.
untreated patient datasets [9]; 4) detailed functional pre-
dictions from conditional K /K; (such as distinguishing
primary vs. accessory drug resistance mutations) matched
well-known examples in HIV protease where such
detailed functional information is available; 5) condi-
tional K,/K; values computed from independent datasets
(Specialty vs. Stanford-Treated) yielded highly similar
results, indicating that these values are not artifacts, but
broadly reproducible characteristics of HIV evolution in
the wild population; 6) the strong positive selection pat-
terns identified by conditional K /K; in treated patients
(Specialty; Stanford-Treated) vanished in the untreated
patient dataset (Stanford-Untreated), indicating that these
K /K, patterns genuinely reflect selection pressure associ-
ated with drug treatment. Considered as a whole, all of
these assessments suggest that conditional K,/K, robustly
identifies genuine functional selection pressure in HIV
protease, not artifacts, and thus may also be useful in
other genes with similar characteristics, such as other HIV
genes, or other rapidly-evolving viruses. However, it is
likely that a more sophisticated approach, incorporating
phylogenetic structure, will be required for other types of
problems.

The high level of reproducibility of K /K, results across
four independent datasets in this study (Fig. 4) merits fur-
ther consideration. These datasets were collected entirely
independently, and come from diverse sources [9,10,18-
20]. The quantitative agreement between K, /K, values
obtained from these datasets is surprisingly consistent
considering that the input data were collected by different
investigators, from different patient groups, over different
time periods, under differing drug treatment regimens
(and in the case of the Specialty dataset, no treatment
information available whatsoever), and even from differ-
ent continents and HIV-1 subtypes. Even the weakest level
of agreement between datasets (Untreated vs. Africa, by
far the smallest dataset) was significant (p-value = 10-3-75).
Moreover, comparison of the K /K results versus known
drug-resistance mutations demonstrates that this
approach predicts true drug-resistance mutation codons
with a high level of accuracy (13 drug-resistance mutation
codons in K, /K, analysis, and 19 in the conditional K,/K
analysis). These results also show that comparison of K,/
K, values between treated and untreated datasets is effec-
tive at distinguishing primary and accessory drug-resist-
ance mutations (only observed in the treated dataset)
from viral fitness mutations (observed in the untreated
dataset). This suggests that this approach could be applied
successfully to more specific dataset comparisons (such as
two different drug treatments).

These four datasets also suggest that viral fitness muta-

tions in HIV protease are surprisingly consistent through-
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out HIV-1 populations. In general, mutations that were
positively selected in untreated samples (i.e. the
Untreated and African datasets) were also observed to be
positively selected in treated samples (i.e. in both the Spe-
cialty and Treated datasets). To a first approximation,
these mutations seem to represent a uniform background
of positive selection pressures that are consistently
observed in any set of samples we have analyzed. Further-
more, these "viral fitness" mutation codons matched
strongly between the Africa and Untreated datasets, indi-
cating that these fitness pressures are even consistent
across different HIV-1 subtypes (B in Untreated vs. C in
Africa) [37,38].

These comparisons suggest that it may be useful to classify
mutations according to their selection pressure values in
treated vs. untreated patient populations. For example,
whereas mutations that are positively selected even in
untreated samples may be classed as improving viral fit-
ness [37], mutations that are positively selected in treated
samples but not untreated samples are likely to be drug-
resistance mutations [13-15]. It is also interesting to clas-
sify mutations according to whether their positive selec-
tion effects are conditional or unconditional. A mutation
that is positively selected by drug treatment, with no con-
ditional dependence on any other mutation, evidently
makes a primary (i.e. direct) contribution to drug-resist-
ance [13-15]. By contrast, a mutation that is positively
selected by drug treatment only in the presence of a pri-
mary mutation, evidently does not make a direct contri-
bution to drug-resistance, but rather a secondary (or
"accessory") contribution mediated by the primary muta-
tion [16,17]. Finally, a mutation that compensates for a
deleterious fitness effect caused by a primary drug-resist-
ance mutation can also be distinguished by K /K, analysis
[31]. Such a mutation should not exhibit unconditional
positive selection in either untreated or treated samples,
but should show positive conditional selection (only in the
presence of the primary mutation) in both types of sam-
ples.

How much "mixing" of sample types can this approach
tolerate? We have tested the effects of deliberately mixing
treated and untreated datasets upon positive selection
mapping by K,/K,. These data show that K,/K, can robustly
detect drug resistance mutations even when the level of
mixing equals or even exceeds 100%. Such mixing
reduced K, /K, estimates somewhat, but qualitatively the
results were robust. Thus, not only can K, /K, detect drug
resistance mutations in a single dataset (with no require-
ment for a reference dataset of untreated samples), it can
do so even when the primary dataset is contaminated with
a large fraction of untreated samples, or samples with dif-
ferent treatments. This can be very useful in situations

http://www.biology-direct.com/content/1/1/14

where treatment information is incomplete or unavaila-
ble.

Since different amino acid mutations can have different
functional effects [36], an obvious extension of this anal-
ysis to consider the conditional selection pressure effects
of individual amino acid mutations, rather than treating
all amino acid mutations at one site as equivalent, as was
done in this analysis. Such an extension would yield
detailed information about the amino acid interactions
between two codon sites [10].

Conditional Ka/Ks represents a slight extension of existing
work on co-evolution of amino acid residues in protein
sequences. One well-established approach to this prob-
lem is the use of correlation analysis to look for correla-
tions between amino acid residues in a set of related
sequences [17,39-44]. For example, by analyzing muta-
tion correlation in an alignment of 266 non-redundant
SH3 domain sequences, Larson et al. were able to predict
residue-residue contacts in the structure of the SH3
domain [40]. Such correlated mutation analysis tests for
non-additive effects of a pair of mutations on reproduc-
tive fitness, such as epistasis [45] or compensation [43].
One important question not addressed by correlation
analysis is whether an interaction between a pair of muta-
tions is symmetric or asymmetric; that is, whether the
influence of one mutation on the fitness effect of the sec-
ond mutation is the same as the influence of the second
mutation upon the fitness effect of the first. Since the def-
inition of correlation is inherently symmetric (i.e. the cor-
relation coefficient p(x,y) = p(y,x) is invariant to exchange
of x and y), it does not answer this question. Conditional
Ka/Ks combines the benefits of correlation analysis
(detection of interactions between sites) with the benefits
of standard Ka/Ks (a measurement of functional selection
pressure). Moreover, this method can distinguish sym-
metric vs. asymmetric functional interactions.

We emphasize that in the simple form presented in this
paper, conditional Ka/Ks is probably not applicable in
datasets with a low mutation rate or strong linkage dise-
quilibrium. If the number of mutation observations at a
site is small, results will not be statistically significant.
Worse, if individual observations of a mutation are not
independent mutation events, but instead arose by com-
mon descent from a single ancestral mutation event, the
results will be skewed by such "double-counting" bias
within the data. In sequence datasets with clear phyloge-
netic structure, it will be essential to compute conditional
Ka/Ks for specific branches of the phylogenetic tree, as has
been done for standard Ka/Ks calculations [33,46]. This
improved approach control for departures from condi-
tional independence in the data sample, by explicitly ana-
lyzing the conditional dependence structure (i.e. the
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phylogenetic tree). Thus conditional Ka/Ks need not be
limited to cases that fit a "star topology", but can be gen-
eralized to work with phylogenetic trees.

Conclusion

Conditional K /K, analysis can detect mutation interac-
tions between different sites. The analysis results also
reveal important effects on fitness that are asymmetric and
are very useful to predict primary vs. accessory drug resist-
ant mutations. Comparison of K /K, values between
treated and untreated datasets is effective at distinguishing
drug-resistance associated mutations from viral fitness
mutations. Analysis results from four completely inde-
pendent datasets are highly consistent both qualitatively
and quantitatively. These results can be very helpful to
understand the functional roles of different mutations in
the development of drug resistance.
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Reviewers' comments

Reviewer's report |

Wen-Hsiung Li (nominated by Eugene V. Koonin), University
of Chicago, IL, USA

Second review following revisions:

This is a very interesting study. The author developed a
conditional Ka/Ks test and applied it to large amounts of
HIV sequence data to detect drug resistance mutation and
fitness mutations. Since the MS reads well and since I am
traveling, I have not read it carefully, but I suppose there
are no serious problems.

My main suggestion is that the authors should explain in
more detail the methodological parts, so that readers can
understand them better.

Minor comments:

Give an explanation of Ka and Ks in the Introduction.

Explain the definition of q on page 7.

In many places "amino acid mutations" should be
"amino acid substitutions or replacements"”.

Author response
We have briefly introduced Ka/Ks in the Background and there
is detailed description of how to calculate Ka/Ks in the Method.

http://www.biology-direct.com/content/1/1/14

We have defined the mathematical formula to calculate q on
page 7.

Reviewer's report 2
Robert Shafer (nominated by Eugene V. Koonin), Stanford
University, CA, USA

Second review following revision

The manuscript has been greatly improved by addressing
the larger specific issues raised in the initial review and
also by improving the presentation of the results and clar-
ity of the writing. Below I've summarized some of the spe-
cific improvements and do raise two additional points —
the second of these points should definitely be addressed
because it will be raised by others knowledgeable about
the specific patterns of mutations observed in drug-resist-
ant isolates.

1. Phylogenetic relationships among the sequences. The
manuscript has been improved by discussing the rele-
vance of this issue and by adopting a heuristic approach -
excluding samples with >98% sequence identity. The
authors should add to the methods that this step was
taken.

2. Inherent variability of HIV-1 sequences. The authors
have explained in more detail how conditional Ka/Ks was
determined. Although their approach may remain contro-
versial, it is certainly novel and worthy of publication and
broader discussion.

Author response

As suggested by the reviewer, we have added a sentence in the
Method Section to explain that we have excluded samples with
>98% sequence identity.

3. Availability of the data. Although this may be partly
beyond their control, the authors' attempts to make the
data available - ideally the complete nucleotide sequence
- is laudatory.

Author response

All the sequence data and analysis results will be available to
open access upon the publication of this manuscript at: http://
www.bioinformatics.ucla.edu/HIV

4. Presentation of the results. This has been improved and
the Additional File is also useful.

Several additional comments:
The authors state in the methods that "we only counted

single nucleotide substations". Would this influence their
ability to detect positions at which the mutations are 2-bp
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mutations. If so this should be stated. This would not
influence the protease because, as far as I am aware, the 2-
bp changes [47A, 154A, V82S, 184A/C are each uncom-
mon mutations at positions at which 1-bp changes also
cause resistance (147V, 154V, V82A, 184V). But it would
influence a similar analysis on RT as T215Y and T215F are
each 2-bp changes and are the only drug-resistance muta-
tions at these positions.

I believe the authors need to add further explanation as to
the implications of conditional Ka/Ks because of the fol-
lowing: In table 1, several of the Codon X's are actually
known to follow the Codon Y. Therefore the statistical
dependence of Y on X, does not necessarily mean that Y
follows X. The most obvious example of this is the rela-
tionship between position 30 and 88. There is only one
mutation at position 30 (D30N). There are several at posi-
tion 88 (N88D >> N88S >>> N88T/G). N88S occurs com-
pletely independent of D30N but is much less common
than N88D. However, N88D always follows and never
precedes D30N. Therefore there are two paths to resist-
ance involving these mutations: D30N followed by
D30N+N88D and N88S alone. I believe that this is also
the case for codons 73 and 90 (73 nearly always follows
90) and 24 and 82 (24 nearly always follows 82).

Author response

Only a very small fraction of the mutations involve multiple
nucleotide substitutions in a codon (about 10%). They are
excluded from this analysis because their evolution patterns are
different from single nucleotide polymorphism (ex. It takes two
steps for ctc mutating to gcc, which could be either of these two
processes: 1. ctc—gtc—gcc; 2. tet—ccc—gec)

Reviewer's report 3
Shamil Sunyaev, Harvard Medical School, MA, USA

Second review following revisions:

This manuscript presents an analysis of HIV protease
sequencing datasets. Comparing synonymous and non-
synonymous sequence changes, the authors detected sites
under putative positive selection possibly in response to
drug treatment.

The manuscript is based on the earlier work by the same
authors (J Virol. 2004 Apr;78(7):3722-32.) and intro-
duces a new concept of conditional positive selection. The
authors argue that selection in some sites is conditional
on amino acid residue at a different site.

This is an interesting work and the manuscript has
improved upon revision. The revised manuscript includes
discussion of the existing literature on co-evolution of
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amino acid residues. However, I would still like to make a
few comments, some of them being critical.

1) A few comments on the method

a) The authors make a series of simplifications including
assumptions of star-like phylogeny and absence of multi-
ple substitutions in individual codons. Therefore, the
method assumes that all sequences are descendants of a
single sequence and the estimation of Ka and Ks is done
by simple counting. I agree with the authors that currently
available methods are not applicable to the dataset of
~50,000 sequences. Thus, the authors have no other
choice rather than to rely on simpler computationally effi-
cient methods and making these assumptions is a neces-
sity. The authors also point that the number of codons
with multiple substitutions is not expected to be high.
However, if the above assumptions are not valid (and it is
not clear why the phylogeny is expected to be star-like),
the results of the analysis have to be received with caution.
Inference of positive selection can be erroneous. Analysis
of statistical significance which relies on the binomial dis-
tribution and application of the Fisher exact test are not
justified if these assumptions are not satisfied.

Author response

We have identified all mutations (both single nucleotide poly-
morphisms and multiple nucleotide polymorphisms) in this
dataset. The results show that only a very small fraction of the
mutations involve multiple substitutions in a codon (about
10%). They are excluded from this analysis because their evo-
lution patterns are different from single nucleotide polymor-
phism.

HIV has extremely high mutation rate and high recombination
rate. And it is under strong selection pressure, especially when
the patient is under drug treatment. These same factors tend to
make HIV evolution within a specific subtype follow the star
topology model.

b) It is my understanding that frequencies of transition
and transversion rates were estimated using both synony-
mous and non-synonymous changes. It may be better to
use synonymous changes only.

Author response

As suggested by the reviewer, we have estimated the transition
and transversion rates only using synonymous changes (F,/F =
23.75). This does not alter the results of selection pressure and
conditional selection pressure analysis much. For the purposes
of this paper (selection pressure analysis) we prefer to use the
more conservative assumption of measuring F,/F from all
nucleotides (F,/F, = 8.90), since this matches what has been
published previously (Wilson, J. W., ] Clin Microbiol, 2000).
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¢) Testing all pairs of codons creates an obvious multiple
test problem. The manuscript would probably benefit
from the discussion on how the rate of false-positive pre-
dictions is controlled given this multiple test problem.

2) It is of interest whether amino acid residue pairs which
display conditional selection located close to each other
in protein structure. The structural analysis can serve as a
confirmation of the conclusions made by the authors.
However, 1 agree with the authors's response that this
should be a subject of a separate study.

3) Most importantly, I do not find the explanation of the
observed "conditional selection" satisfactory. The authors
argue that mutations with significant "conditional Ka/Ks
values" are not directly involved in the drug resistance and
play accessory role. The first mutation which is directly
involved in the drug resistance is destabilizing (in other
words, is expected to be deleterious in the absence of the
drug treatment) and the second mutation is needed to
compensate the destabilizing effect of the first mutation.
Although, this is certainly a possibility, it is feasible to
imagine many other scenarios. For example, is it possible
that the first mutation enables the effect of the second
mutation on the drug response, i.e. the first mutation is
not destabilizing but the second mutation would not have
an effect on drug resistance without the first mutation?
Alternatively, is it possible that the first mutation is not
destabilizing, whereas the second mutation would be
destabilizing (and deleterious) in the absence of the first
mutation (Dobzhansky-Muller incompatibility)? In this
case also the second mutation may be directly involved in
drug resistance. Importantly, the latter scenarios do not
involve initial increase in frequency of a destabilizing var-
iant.
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