Skip to main content

Advertisement

Fig. 3 | Biology Direct

Fig. 3

From: Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells

Fig. 3

As- and LbCpf1 nucleases can efficiently cleave randomly picked targets. Percentages of GFP positive cells counted above the background level, resulted by the action of various nucleases. Eleven randomly picked targets (a) aiming the mouse PRNP (1–4), SPRN (5) and PRND (6–11) genes and further nine arbitrary targets (b), cloned into the pGF-ori-FP vector were tested using the GFxFP assay. The target vectors along with the corresponding nuclease vector were transfected into N2a cells and GFP positive cells were counted two days after transfection. All samples are also cotransfected with an mCherry expression vector to monitor the transfection efficiency and the GFP signal is analysed within the mCherry positive population. The background fluorescence was estimated by using a crRNA-less, active AsCpf1 nuclease expression vector as negative control, and the resulting GFP fluorescence found for each target was subtracted from the corresponding sample values. Three parallel transfections were made for each case. Error bars show the mean ± standard deviation of percentages measured in N = 3 independent transfections. All of these targets were cleaved efficiently by both nucleases confirming the robustness of the activity of these Cpf1 nucleases

Back to article page