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Abstract

protein for a limited number of ligands.

Background: One of the major challenges in the field of system biology is to understand the interaction between
a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a

Results: In order to address this problem, we developed a web server named ‘LPlcom’ to facilitate users in
understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the
“LPlcom’ server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least
30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction
and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP
binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to
understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP
and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high
level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting
residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to
facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues.

Conclusions: In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is
available for public use from URL http://crdd.osdd.net/raghava/Ipicom.
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Background

Ligands play a variety of roles in the regulation and expres-
sion of proteins. Currently, PDB has thousands of ligands
and the majority of them bound non-covalently to various
proteins. The non-covalent ligand binding occurs by
intermolecular forces like hydrogen bonds, ionic bonds,
hydrophobic-hydrophobic interaction, van der Waals
forces, etc. 3D shape of the protein gets altered as a
result of the ligand binding. These changes in the con-
formational state of the protein may activate or inhibit
some specific function of the protein. Various methods
have been developed to predict the binding affinity of
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ligands [1-9]. Many databases are also developed to
summarize binding affinity of a diverse class of ligands
[10, 11] or specific class of ligands [12, 13].

Ligands have high or low binding with specific amino
acids depending on various factors (e.g. shape, charge,
surface area). ATP has significantly higher interaction
with glycine and least interaction with leucine [14]. Various
studies have been performed to understand the binding be-
haviour of ligands with the amino acids in a protein. Many
machine learning methods have also been developed to
predict the preference of interacting and non-interacting
amino acids with various ligands [15-24].

However, binding preference analysis between different
ligands and protein was not carried out on a large data-
set. Considering this, we performed a rigorous study to
understand the binding behaviour of various ligands
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with different amino acids. This information can be used
to either enhance or diminish the binding strength of
the given ligand by mutating unfavourable residue with
preferred residue at the site of binding. In addition, we
developed a web-based platform for the analysis of
amino acid preference for all the ligand present in PDB.

Results and Discussion

Clustering of nucleotides based on their binding sites
The nucleotides are clustered to understand similarity or
dissimilarity in their binding sites. In this study only major
nucleotides (e.g., adenine, guanine, cytosine, uracil, thy-
mine monophosphate) are clustered based on residues
preferred in their binding sites.

Propensity-based clustering

The propensity score of nucleotides interacting residues
(RP;) is calculated using equation 3 and the propensity-
based Euclidean distance (PED,, q) between nucleotides
is calculated using equation 5. The PED between each
pair of nucleotides is used to construct a distance matrix,
which was further used for clustering these nucleotides.
Figure 1 depicts the propensity score based clustering of
all the nucleotides. The propensity score of GMP, CDP
and UTP ligands are negligible and hence these ligands
are not included in the analysis. We defined preference of
a residue in ligand binding site based on its propensity
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score, if score of a residue is lower than 5 than we called it
low preferred residue. Similarly, we called a residue mod-
erate if it has propensity score between 5 to 12; high if
score is more than 12. As shown in Fig. 1, for most of
nucleotides propensity score for different type of residues
is low or moderate. It is clear from Fig. 1 that ATP and
ADP nucleotides are highly similar in term of residue pre-
ferred in their binding sites as Euclidean distance is mini-
mum. Similarly, AMP and UDP nucleotides are clustered
together; while CMP nucleotide is out of cluster. The
NAD and FAD nucleotides binding/interacting residues
are also similar as they fall in same cluster.

Figure 1 indicates the low propensity score of WY,
H,QN,K,D,L and F amino acids for CMP nucleotide.
Based on propensity score one may conclude that CMP
has a strong preference for amino acid S,C,R,I and G
amino acids. Similarly, UDP binding sites are domi-
nated by C,R,H,LE and V amino acids, as the propensity
of these residues is high for UDP. The interaction of
CTP with most of the amino acids also falls in the low
category. The interaction of GTP ligand with H,K and
G amino acids falls in the moderate category while
amino acid M shows negligible interaction with this
ligand. Rest 16 amino acids show low interaction with
GTP ligand. Interestingly ADP ligand shows low inter-
action with most of the amino acids except G and T where
moderate interaction is observed. W,HKD,G and T
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Fig. 1 Shows residue-wise propensity score for different nucleotides (left) and clustering of nucleotides based on propensity score (right)
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amino acids show moderate interaction with ATP ligand
and rest 14 amino acids show low interaction with this lig-
and. Amino acids show similarity generally on the basis of
their category e.g. charged amino acids (K and D), hydro-
phobic amino acids (L, A and V) and polar amino acids
(T and S) show similarity up to some extent. Clearly, there
is no similarity between C & I, W & V etc. amino acids.

Clustering of nucleotides using physicochemical
property-based

The physicochemical property based composition of nu-
cleotides binding/interacting residues, PC; is calculated
using equation 6. The physicochemical composition based
Euclidean distance (PCED4) between nucleotides is
calculated using equation 7. The PCED,, 4 of each nu-
cleotides is used to construct a distance matrix, which
was further used for clustering. Figure 2 shows the
clustering of different nucleotides based on physico-
chemical properties of residues in their binding sites or
interacting residues. In this ATP and ADP nucleotides
falls in same cluster, it means ATP and ADP interacting
residues have similar physicochemical properties. Simi-
lar trend was observed for GTP and GDP binding or
interacting residues. The next group of nucleotides
consist of UDP, AMP and CTP. The UMP nucleotide
again occurs as isolated in the overall cluster of nucleo-
tides. As expected the NAD and FAD nucleotides occur
in the same group and are most similar with CMP and
AVR (average of all ligand interacting amino acids in PDB)
ligands. Aromatic and acidic amino acids show similar
interactions and form a single group. The interaction of
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polar and charged amino acids is also similar to each other
followed by basic group of amino acids. Non-polar and
small amino acids show similarity in the interaction up to
some extent. Aliphatic amino acids have similarity with
the group of non-polar, small amino acids and are least
similar to all other groups. UMP ligand shows low inter-
action with aromatic and aliphatic amino acids, strong
interaction with acidic amino acids and moderate inter-
action with other groups.

Clustering of carbohydrates based on their binding sites

The propensity score of carbohydrates binding or inter-
acting residues (RP;) is calculated using equation 3. In
order to compute similarity/distance between different
carbohydrates, we compute propensity based Euclidean
distance (PED}, q) between carbohydrates using equation
5. The PED between all pair of carbohydrate was compute
for distance matrix, which was further used for clustering.
Figure 3 shows the clustering of carbohydrates based on
the propensity score of interacting amino acids. The inter-
acting region of GLC and GLA carbohydrates are similar
and occur in the same group. Both of these carbohydrates
interacting regions are similar to the MAL carbohydrate.
The MAN and FRU carbohydrates also show similar inter-
actions and form the same group. Interactions of TRE
carbohydrate with the group of FRU, MAN group are also
similar up to some extent. The remaining two carbohy-
drates RIB and XLS occur as isolated in the overall cluster
of carbohydrates. The F and T amino acids occur in the
same group (F-T). C-Q, V-T, A-S-L-P, Y-D and M-G-K
amino acids show similarity in the interaction with various
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Fig. 2 Show property based residue composition of different nucleotides binding sites (left) and clustering of nucleotides based on the physicochemical
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Fig. 3 Shows residue-wise propensity score for different carbohydrates (left) and clustering of carbohydrates based on propensity score (right)
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carbohydrates. On the other hand, the interaction be-
haviour of W and C amino acids are different as clear
from Fig. 3.

Similarly, GLA-GLC-MAL ligands and FRU-MAN-TRE
ligands show very similar interactions with various amino
acids. There is no similarity between the interaction be-
haviour of XLS and MAN ligands. XLS shows negligible
interaction with A,S,L, M and G amino acids and strong
interaction with W,Q,Y and I amino acids. Other amino
acids show low or moderate interaction with XLS ligand.
RIB shows a strong interaction with V,T,S and L-amino
acids and negligible interaction with C,Q and P amino
acids. TRE shows a strong interaction with C,L,A and I
amino acids while other amino acids show low or moder-
ate interaction with this ligand. MAN and FRU ligands
show low interaction with most of the amino acids while
MAL, GLC and GLA ligands show strong interaction.
Additional file 1: Figure S1 displays the percentile of the
interaction of graphical representation of these interac-
tions in detail.

Description of web based tools of LPlcom

LPIcom has three different modules namely ‘analysis of
binding sites, ‘comparison of multiple binding sites’ and
‘propensity based prediction’ implemented in the LPIcom
website for the analysis and prediction of interacting

amino acids for various ligands. We consider a case study
of various ligands e.g. ATP, ADP, GTP, NAD and FAD etc.
for illustrating these modules.

Analysis of binding sites

This module calculates the amino acid composition of
ligand interacting and non-interacting residues using
equation 1. This server compute residue composition of
ligand interacting and non-interacting residues. It shows
the composition of interacting and non-interacting re-
sidues by a bar graph. In order to understand residue
preference in ligand interaction, the server also shows
the average amino acid composition of residues in
proteins. This help user to understand whether the
residue is preferred or not based on its composition,
whether it is higher or lower than its average compos-
ition. In order to demonstrate the utility of this mod-
ule of LPIcom server, we analyzed ATP binding sites
(Fig. 4). It was observed that G, L and R amino acids
are frequent binders followed by S and T amino acids.
These results are in accordance with walker motif
where G, L, S and T amino acids are dominated.
Figure 4 also contains a pie chart in the left corner,
which depicts the total number of ATP interacting and
non-interacting residues.
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Fig. 4 Example output of analysis module of server LPIcom for ATP with composition option; bar graph shows the composition of ATP interacting
and non-interacting residues along with the average amino acid composition of proteins

Analysis module of the server also allows the user to
generate two sample logo for ligands based on their inter-
action. We created all possible overlapping pattern of
length 21 residues in proteins; these patterns were classi-
fied as interacting and non-interacting patterns based on
their central residue whether it is ligand interacting or
non-interacting. The web logo of ATP interacting proteins
(Additional file 1: Figure S2) shows the dominance of G,
R, K, T and S amino acids. The most frequent neighbour-
ing residues are G, T, and S amino acids. On the other
hand, L and V amino acids occur as distant neighbouring

residues. A further investigation seems necessary to
understand the role of L-amino acid as a neighbour of
ATP interacting residues. The two-sample logo is cre-
ated for ATP using two-sample logo package to under-
stand the preference of neighbour (Fig. 5). To detect
potential motif in ATP interacting patterns, we used
the meme program available in MEME suite [25]. Since
motif detection is based on the frequency of the inter-
acting pattern in a dataset, their equal representation is
necessary for finding a motif. A 30 % non-redundant
dataset of ATP interacting proteins is created, and

analysis module of LPlcom for ATP with logo option

Fig. 5 Two sample logo of ATP interacting and non-interacting residues using a window length of 21 amino acids. It is an example output of
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meme program is used to find any potential motif. Motif
depicted in Fig. 6 has a pattern of XXXXXGXXG[SVT]
GKI[TS] [TV][LIV][AL][RA]X[LI][AL]. The central part of
the pattern (GXXG[SVT]GK[TS]) represents the walker
motif (GXXXXGK(T/S). The motif is known in the case
of ATP; however there are several ligand interacting
motifs that need to be discovered. This tool helps in
analyses of interacting and non-interacting residues
based on the column chart and web logo, two sample
logo and discovery of any potential motifs.

Comparison of multiple ligands based on binding sites

As discussed in the above section, multiple ligands can
be compared based on the interacting amino acids. The
ligands can be compared based on either the amino acid
composition of interacting amino acids or the propensity
score of the interacting amino acids as described in
methods section. We also implemented a third module
for comparing ligands on the basis of the composition of
physicochemical properties of interacting amino acids.
Each module displays four charts namely column chart,
area chart, pie chart and hierarchical cluster and the
user can download the data as a text file. Next three sec-
tions briefly describe these three modules.

Composition based on comparison of ligands

We compared ten ligands based on the interacting amino
acid composition computed using equation 1. The average
amino acids composition of all the ligand is used for the
reference dataset. Figure 7 depicts the percentage of com-
position of interacting amino acids with different ligands.
It is clear that G amino acid has the highest frequency
interaction with most of the ligands followed by R, S, T
and V amino acids. On the other hand, C, M, P, Q and W
amino acids show the least frequency. A, D, E, F, H, [, K,
L, N and Y amino acids show moderate interaction with
most of the ligands. UMP ligand with R amino acid shows
unusually high frequency and, in general, the interaction
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of most of the amino acids is higher than average for this
ligand as clear from Fig. 7.

Propensity based on comparison of multiple ligands

We compared all these nucleotides based on their pro-
pensity score obtained from PDB using equation 3. In
this case, the average propensity score of all amino acids
cannot be calculated. Figure 8 shows the propensity
score of different ligands as bar plot consists of all 20
amino acids. ATP has the least preference for C, A, V,
Q, B L, I and E amino acids while having a high preference
or propensity score for G, D, W, T, S, K and H amino
acids. Different ligands have different propensity score for
the 20 amino acids. The analysis suggests that the propen-
sity score is not dependent on the chemical property or
size of the amino acid.

Comparison ligands based on physicochemical
composition of interacting amino acid

First, amino acids were grouped into different categories
on the basis of their physicochemical properties (e. g.
charged, acidic, basic, small, polar, non-polar, aliphatic,
and aromatic) than the composition of each class of amino
acids is computed using equation 6. The average physico-
chemical property of all ligand interacting amino acids in
PDB is also calculated as a reference. A column chart is
created for ATP, ADP, GTP, NAD and FAD interacting
amino acid. Charged amino acids, especially basic amino
acids, are more favoured in ATP, ADP and GTP inter-
action compared to NAD and FAD interaction as clear
from Fig. 9. Small and polar amino acids are equally repre-
sented in all five ligands. ATP, ADP and GTP ligands show
lower than the average interaction for non-polar, aromatic
and aliphatic amino acids. On the other hand, NAD and
FAD ligands show a higher than average interaction. Thus,
ligands can be divided into two groups 1) ATP, ADP and
GTP and 2) NAD and FAD on the basis of their physico-
chemical properties.
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Fig. 6 The motif detected in ATP interacting proteins, which resembles the walker motif
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Propensity-based prediction

The propensity based prediction method assign the
propensity score of the residue according to the se-
lected ligand using equation 3. These propensity scores
are normalized in the range of 0-9 and depicted below
the sequence (Fig. 10) using equation 4. The high prob-
ability region of ATP, ADP and GTP ligands are similar
in the test sequence. Probability region of NAD and
FAD ligands are also analogous to each other. We

tested the performance of propensity based prediction on
an independent dataset of 1301 PDB chains interacting
with 50 different ligands. Each PDB chain is submitted to
the prediction module with relevant ligand information
and the predicted propensity scores are compared with
the actual data to validate the performance. We achieved
an average accuracy of 70 % (minimum 24.65 % to
maximum 97.61 %, Additional file 1: Table S1). The re-
gion of amino acids having highest propensity score has
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a higher probability to interact with the given ligand. The
similarity-based approach is recommended to use if ma-
chine learning methods are not available, and propensities
based method is recommended for analysis/understanding
of interacting residues in a given sequence.

Conclusion

Binding preference analysis of a series of ligands with
interacting amino acids is performed using a dataset of
824 ligands. Ligands are clustered based on the preference
of interacting amino acids. The ligands having a similar
preference for interacting residues have a higher prob-
ability of interaction with similar pockets if the difference
in their size is not significantly bigger. Clustering the

ligands based upon residue preference will help in better
understanding of various ligand interactions. A web-based
method named LPIcom is also developed for identification
of favoured interacting residue with specific ligands. Three
different approaches are used from LPIcom for analysis of
interacting and non-interacting residues. 1) Comparison
based on the amino acid composition of the specific ligand
interacting and non-interacting residues. 2) Generation of
‘Two sample logo’ for comparison of interacting and non-
interacting amino acids based upon ¢-test. 3) Detection of
any potential motif in the interacting protein sequences
using MEME suite. In addition, three modules are devel-
oped for comparison of interacting amino acids of multiple
ligands. The first module compares the interacting amino
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acid composition of multiple ligands, the second module
calculates the propensity score of interacting residue for
each ligand and compares these propensity scores. The
third module compares the physicochemical properties of
amino acids for different ligands.

The propensity scores of various ligands are calcu-
lated, and the regions of all the protein sequences are
highlighted on the basis of propensity scores. The
propensity-based method can predict the probable inter-
acting region for every ligand. These results may help
biologist in better understanding the ligand interacting
regions. Simply, the regions having highest propensity
scores have the highest probability to interact with the
ligand. The single ligand module helps to understand
the interacting and non-interacting residues preference
and to detect any potential motif in interacting PDB
chains. It also provides a complete and non-redundant
dataset for analysis and development of prediction
methods. These comparison tools assist in analysing
the amino acid preference of various ligands simultan-
eously. It is important for readers or users to under-
stand limitation of web-server LPIcom describes in this
study. As shown in Additional file 1: Table S3, median
resolution of PDB chains for around 50 % ligands is
poorer than 2.0 A, even median resolution of 7 %
ligands is poorer than 3.0 A. It means prediction reli-
ability of large number of ligands will be poor, as me-
dian of resolution of PDB chains is poor. In addition,
user cannot use our server LPIcom for new ligands not
included Additional file 1: Table S3.

Method

The ligand interacting data was obtained from the
ccPDB database [26] updated up to September 2015 re-
lease of PDB. The ligand-interacting amino acids infor-
mation is extracted from PDB using the LPC software
[27]. This software stores the information of each lig-
and interacting residue with the ligand name, number
and chain id and the residue name, number and chain
id. In this study, we consider ligand amino acid distance
less than or equal to 4 A for performing the analysis. In
this study we only consider 824 ligands, having more
than 30 binding sites in the PDB on the basis of the
data release up to September 2015. The list of these
824 ligands is given in the Additional file 1: Table S2
and the respective PDBs resolution details are given in
Additional file 1: Table S3.

Ligand-specific amino acid composition

The percent amino acids composition of interacting resi-
dues (or residues in ligand binding sites) of each ligand
is calculated using equation 1.
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R;
RC; = — 100 1
g 0

Where RC; is the percent composition of a residue of
type i, R; is the number of residues of type i, and N is
the total the number of all twenty interacting residues.

Similarity between two ligands based on their amino acid
composition

In order to compute similarity or distance between two
ligands, we compute similarity using amino acid com-
position of the ligand binding or interacting residues.
The similarity between two ligands based on their amino
acid composition is calculated using the Euclidean dis-
tance (ED). The composition based ED between two li-
gands p and q is calculated equation 2:

CED, = \/ S (RCP-RCY) (2)

Where CED,, 4 is distance between two ligands p and
q, RCP is amino acid composition of residue type i for
ligand p and, RCP is amino acid composition of residue
type i for ligand q.

Residues propensity for ligands
It is important to understand which residue is preferred
or not preferred in binding sites of a ligand. In order to
compute preference of a residue in binding site or inter-
action of a ligand, we compute residues propensity for
each ligand. The ligand propensity for each type of resi-
due for a given ligand is computed using equation 3.

Rp, = N 5 100 3)

N;

Where RP; is ligand propensity score for residue type i,
R; is number of interacting residues of type i and N; is the
total number of residues (interacting and non-interacting)
of type i. The propensities were further normalized
between 0 to 9 using equation 4.

Pi - Pmin

NP; = x 9 (4)

I’max - I)min

Where NP; is the normalized propensity of the residue
type i, Ppin is the minimum propensity score out of
twenty amino acids and P, is the maximum propensity
score out of twenty amino acids.

Similarity between two ligands based on their residues
propensity

In order to compute the similarity between two ligands
based on residues preferred in their interaction, we com-
pute ED between their residues propensity. The propensity
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based ED between two ligands p and q is calculated using
equation 5.

PED,, = \/ 37 (RPP- RPY)2 (5)

Where PED,, q is distance between two ligands p and
q, RP? is residue composition of residue type i for ligand
p and RP? is residue composition of residue type i for
ligand q.

Physicochemical property based composition

In order to understand physicochemical property (e.g.,
charge, polar, hydrophobic) of residues involved a ligand
binding residues. We group all twenty types of residues
in eight class based on their physicochemical property.
As shown in Table 1, we group amino acids based on
their major characteristics that include their size, charge,
polarity and hydrophobicity. We compute composition
of each class of residues of these eight classes (or com-
position of physicochemical property) using following
equation 6.

PC; = — x 100 (6)

Where PC; is the percent composition of a physico-
chemical property of type i, P; is the number of interact-
ing residues having physicochemical property of type i
and N is the total the number of interacting residues.

Ligand similarity based on physicochemical property of
residues

In order to compute the similarity between two ligands
based on their physicochemical property of residues in-
volved in their binding sites, we compute ED between
compositions of their physicochemical properties. The
composition based ED between two ligands p and q is
calculated using equation 7.

Table 1 The different physicochemical property of amino acids
with the respective amino involved

Physicochemical property Amino acid involved

Charge ASP,GLU ,LYSHIS,ARG

Acidic amino acids ASP,GLU

Basic amino acids LYS,ARGHIS

Small amino acids PRO,ALA,CYS,GLY,SERASN,ASP, THR,VAL
Polar amino acids SER,THR,TYR,ASN,GLN

Non polar amino acids ALAVALLEU,ILE,PRO,PHE TRP,MET,CYS,GLY
Aromatic amino acids PHE,TYR,TRP

Aliphatic amino acids LEU,ILEVALALA,GLY
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PCED, , = \/ 3 ¥ (pcP- pCy)? (7)

Where PCED,, 4 is distance between two ligands p and
q, PCP is composition of physicochemical property of
type i for ligand p and, PCY is residue composition of
composition of physicochemical property i for ligand q.

Clustering of Ligands

In this study, we have used the ‘dist function’ available in
‘R’ package to obtain the distance matrix between mul-
tiple ligands. The distance matrix is used for generating
clusters based on hierarchical clustering algorithm em-
bedded in ‘Hclust function’ available in ‘R’ package. The
cluster information along with distance matrix is used to
generate the heat map using ‘Heatmap function’ also
available in ‘R’ package.

Generation of the dynamic graph

High-charts library was used to display graph according
to selected features. The generated charts can also be
exported to various image formats. For creating web
logo and two sample logo, we generated a pattern of
window length 21 for a specific ligand interacting pro-
teins with the central residue as the ligand-interacting
residues. The web logo standalone package is used for
displaying the logo of interacting amino acids [28]. A
two sample logo is generated on the basis of interacting
and non-interacting patterns using the default parame-
ters [29]. Meme program from MEME suite [25] is used
for motif identification in the non-redundant dataset of
interacting proteins.

Validation dataset

The LPIcom database was generated from PDB com-
plexes released up to September 2015. In order to valid-
ate the performance of our prediction module, we
created a validation dataset. A 1301 PDB chains, for 50
commonly found ligands, were selected from PDB
complexes released between October-December 2015
(Additional file 1: Table S1). Thus, PDB chains in valid-
ation dataset are entirely different from PDB chains used
for prediction in LPIcom.

Reviewers’ comments

Reviewer 1: Response to Prof Michael Gromiha

In this work, the authors developed a web server for pre-
dicting ligand binding sites in proteins. They have ana-
lyzed the binding propensity of more than 700 ligands and
the topmost ones are presented in the manuscript. Fur-
ther, the ligands/amino acid residues have been clustered
to understand the preference of binding. The details about
the binding sites and other details are provided in the
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Additional file 1 and on the web. It is an interesting manu-
script with several ligands together.

The manuscript could be improved by incorporating
the following suggestions.

1. Propensity analysis has been carried out based on
high, moderate and low. The plausible reasons could be
discussed.

Response: We are thankful to the reviewer for the
suggestion, in revised manuscript we clearly described pro-
pensity score in detail including modification of equations
used for calculation. We defined preference of a residue in
ligand binding site based on its propensity score if the score
of a residue is lower than 5 then we called it low preference
residue. Similarly, we called a residue moderate if it has
propensity score between 5 to 12 and high if the score is
more than 12. In revised manuscript, we incorporate
suggestion of reviewer.

2. Analysis on statistical significance would validate
the specific preference of residues/ligands.

Response: We agree with the reviewer that analysis
should show whether the preference is really significant
or it is by chance. In order to facilitate users to understand
whether propensity or composition of ligand interacting
residue is significant or not, we also compute and compare
it with an average of each type of amino acids. This help
user to understand whether a given residue is preferred
in the binding site of a ligand. In revised version, we
emphasize this point.

3. Several examples are given on the binding site pre-
diction of ligands using example proteins and ligands
produced no binding site results. It is better to provide
examples with binding site residues. Also, these results
should be checked.

Response: We are thankful to the reviewer for pointing
the error. We have fixed all the errors.

4. In the Additional file 1 prediction performance of
specific ligands are given. It will be beneficial if the data
for all ligands are given although some of them would
be poor due to their less occurrence in proteins-ligand
complexes.

Response: We calculated the prediction performance of
some of the ligands, which have significantly high frequency
in the PDB. After getting comment of the reviewer, we also
compute prediction accuracy for more ligands (50 ligands).
It is not feasible to compute performance to all ligands
(~800 ligands).

5. Several methods are available for ligand binding site
prediction. A comparison with other existing prediction
methods could be useful.

Response: Ideally one should compare newly developed
prediction method with existing methods as suggested by
a reviewer. In past our group also developed a number
of methods for predicting ligand interacting residues
(e.g, ATPint, NADbinder, GTPbinder, FADpred) where
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we compare their performance with existing methods.
Development of prediction method even for a single
ligand is time-consuming as one need to create clean
datasets (e.g, non-redundant) and should evaluate
using cross-validation techniques (internal and external
validations). This is the reason, so far methods have
been developed only for limited ligands. In this study,
we described simple propensity based method for a large
number of ligands. Though we also compute performance
of our method on limited ligands but comparing perform-
ance with existing method will be unfair as we have not
used clean dataset for training and cross-validation tech-
niques. The objective of our method is to assist biologist in
understanding the propensity scores of various amino acid
and propensity based prediction of those ligands for which
no specific method is available.

Reviewer 2: Response to Prof Vladimir Poroikov

In this paper freely available via Internet web-server
LPIcom (Ligand-Protein Interactions Comparison and
Analysis), which provides the possibility to study protein-
ligand interactions, is described. The authors extracted
from PDB the information about protein-ligand com-
plexes for 724 ligands, which have 50 protein binding
sites in PDB. This information was analyzed, to esti-
mate the propensity of participating in protein-ligand
interactions for each of twenty amino acid residues.
Web-server consists of three modules provided Ana-
lysis, Comparison and Prediction functionalities. It pro-
vides the following facilities: a) assigning of ligand-
interacting residues in a protein from the structure of
protein-ligand complex; b) analysis of composition of
ligand-specific interacting residues; c¢) comparison of
binding sites of different ligands; d) generation of two
sample logo of ligand binding sites; e) searching of
ligand binding motifs; f) propensity-based prediction of
ligand-interacting residues.

1 From the technical point of view, everything is well-
done, except some misprints in the text at this web-site
(e.g., “How to save and pritn the graph” - it should be
“print”).

Response: We are thankful to the reviewer for indicating
the error and we have corrected the typing and grammatical
mistakes in the revised manuscript.

Also, according to my knowledge, this is the first analytics
of massive data on protein-ligand interactions from PDB,
where information about at least 50 binding sites is
available for the ligands. However, some questions
arose regarding the possibility of application of the ob-
tained results in a prospective mode. The authors de-
clare that “This information can be used to either enhance
or diminish the binding strength of the given ligand”
(page 3, lines 37-38 of the manuscript).
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1. It is unclear if and how the developed web-server
could be applied to the new ligands, which are not in-
cluded into the “training set” (724 ligands).

Response: The web-server cannot be applied to new li-
gands; we have increased the number of ligands from 724
to 824 which have a minimum number of ligand binding
sites greater than 30. In future, we will update this data-
base to include new ligands.

2. It is necessary to explain how the user might use
the information provided by this web-server, to "enhance
or diminish the binding energy of the given ligand."
Since such application is of great importance in the field
of computer-aided drug design, it would be great if the
authors could present at least one case study with such
application in the manuscript. Such example(s) could be
based on the retrospective data for already studied set of
ligands belonging to the same chemical series.

Response: In revised manuscript, we explain how this
server can be used to enhance or to diminish a ligand
binding site in a protein. This server provides propensity
score or preference for each type of amino acid for a given
ligand. Experimentalist may enhance ligand binding by
mutating low propensity residue with high propensity
residue in the binding site having similar physicochemical
property. Similarly, one may also diminish ligand binding
by mutating high propensity residue with low propensity
residue. Every ligand has a specific preference towards a
different type of residues, nucleotides-ligand prefer ali-
phatic residues and less preference for acidic residues.
On the other hand, carbohydrates have more preference
for acidic residues than aliphatic residues. Experimental
researchers may use above information for increasing or
decreasing binding affinity based propensity score. The
server only suggests the residues based on the informa-
tion available in the PDB. Multiple factors influence the
binding strength of a residue in a given binding site
apart from its affinity to interact with a particular
ligand. The purpose of LPIcom is to provide the affinity
information of residues toward different ligands as ob-
served in PDB.

Minor: It would be great if in the Additional file 1 the
authors present the estimates of the quality of the X-ray
data in the protein-ligand complexes analyzed for each
studied ligand (median, minimum and maximum
values characterized the resolution for all binding-sites
under consideration).

Response: The X-ray data of all PDB present in the
LPIcom database are given in Additional file 1: Table S3.
We have provided the median, minimum and maximum
X-ray resolution for each ligand as shown in Additional
file 1: Table S3.

Second Revision

Major comments: The authors have provided the re-
sponses on my major comments, and now the contents
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of their work is more clear for a scientific community.
There is still some minor issues, which should be fixed
prior to the publication. 1. It is necessary to provide the
units for values presented in the Additional file 1: Table S3.
2. As one may see from the Additional file 1: Table S3, in
some cases the median resolution in X-ray data is quite
low (exceeded 2.00). The authors should comment in the
manuscript if the obtained results are reliable enough in
such cases. 3. It should be explicitely mentioned in the
manuscript that the web-server cannot be applied for new
ligands.

Response: We are thankful to reviewer for appreciating
our efforts. 1. In Additional file 1: Table S3 units of reso-
lution (angstrom) has been stated. 2. Yes, median reso-
lution of ~50 % ligands exceed 2.0 A, even median
resolution of ~7 % ligands exceed 3.0 A. In revised manu-
script, we clearly mentioned limitations of our study as
number of ligands have PDB chains of poor resolution. In
addition, we also mentioned in last paragraph of ‘Con-
clusion section’ that our web-server couldn’t by applied
for new ligands.

Minor: Despite the correction of grammatical errors
and misprints, the authors added new errors/misprints
in the novel part of the manuscript; e.g., Page 10, Line
57: “twnety” it should be “twenty”. The whole manu-
script should be carefully checked, and all errors/mis-
prints should be corrected. Despite the correction of
grammatical errors and misprints, the authors added
new errors/misprints in the novel part of the manu-
script; e.g., Page 10, Line 57: “twnety” it should be
“twenty”. The whole manuscript should be carefully
checked, and all errors/misprints should be corrected.

Response: We are grateful to the reviewer for indicat-
ing the grammatical errors. The manuscript has been
carefully checked and corrected.

Reviewer 3: Response to Prof Zlatko Trajanoski

General comments The manuscript describes a web ser-
ver for analysis of protein ligand binding sites. Although
the topic is potentially of interest to a broader commu-
nity, I don' see any considerable contribution neither
from manuscript nor from the web server. The manu-
script is difficult to read and the presented results seems
to show simple statistical analysis of the amino acids
which are binding ligands. What is the major contribu-
tion and how does this work add additional information
compared to other papers?

Response: Best of our knowledge this is a unique server
which allows users to analyse, compare and predict po-
tential binding sites for a large number of ligands based
on information in PDB.

Specifically, the work should be compared to the web
servers already available (References 10 and 11) and the
advantages/disadvantages highlighted.
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Response: Ideally one should compare newly developed
prediction method with existing methods as suggested by
a reviewer. In past our group also developed a number of
methods for predicting ligand interacting residues (e.g.,
ATPint, NADbinder, GTPbinder, FADpred) where we
compare their performance with existing methods. Devel-
opment of prediction method even for a single ligand is a
time consuming as one need to create clean datasets (e.g.,
non-redundant) and should evaluate cross-validation
techniques (internal and external validations). This is the
reason, so far methods have been developed only for limited
ligands. In this study, we described simple propensity-based
method for a large number of ligands. Though we also com-
pute performance of our method on limited ligands but
comparing performance with existing method will be unfair
as we have not used clean dataset for training and cross-
validation techniques. The objective of our method is to
assist biologist in understanding the propensity scores of
various amino acid and propensity based prediction of
those ligands for which no specific method is available.

Moreover, the web server itself was not thoroughly
tested as evident by a number of issues raised bellow.
Specific comments The implementation of the web server
has several limitations some of which are provided below:

1) Typos and grammatical errors: For instance, from
the input form and output of “analysis of binding sites”
(http://crdd.osdd.net/raghava/lpicom/mut.php): - “User
are required”; - “Click to Cutomize plot”; - “red color
bars shows”; - “amino acid composition of all ligand”; -
“High Resolutione”.

Response: We check and removed all the errors from
the revised manuscript and web-server.

2) Inconsistencies in the descriptions: - The page of
“ligand statistics” (http://crdd.osdd.net/raghava/lpicom/
ligand-data.php) is once referred as “the complete list of
ligands”  (http://crdd.osdd.net/raghava/lpicom/mut.php)
and once as the list of “highly frequent ligand” (http://
crdd.osdd.net/raghava/lpicom/predict.php). The second
option is probably the correct one, since the web
server provides results also for ligands that are not
present in the list. However, the full sentence is diffi-
cult to understand: “Detail of highly frequent ligand in
PDB is available from and view ligands having highest
occurence in PDB HERE”. - The description of results
from “analysis of binding sites” (http://crdd.osdd.net/
raghava/lpicom/mut.php), says: “blue color bars show
ATP interacting and red color bars shows not interact-
ing residues [...]”. But there are no red bars, only blue
or back ones.

Response: We check and removed all the errors from
the revised manuscript and web-server.

3) Inconsistencies in the web pages and broken links
If “Click to Cutomize plot” is selected on the “analysis
of binding sites” results page (http://crdd.osdd.net/
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raghava/lpicom/mut.php), a different web page is
shown. Some links, such as “interacting PDB” are
broken.

Response: We fixed these issues and now they are
working fine.

4) Not-working modules (?) - The example of the mod-
ule “Comparison of Ligands Binding Sites (Amino acid
Composition)” (http://crdd.osdd.net/raghava/lpicom/com-
pare.php) gives 0.00 % result on all amino acids and li-
gands. - The “Prediction of Ligand Interacting Residues”
module (http://crdd.osdd.net/raghava/lpicom/predict.php)
predicts O propensity score for all positions (there are no
regions highlighted in red or green.

Response: We fixed these issues and now they are
working fine.

5) Finally, it would be useful to have descriptions of
acronyms and link to external references (e.g. PDB), as
well as a description of the full name of the ligand(s) for
which the analysis was run, to have a confirmation of
the selection.

Response: The information is already provided on the
web-server and in the Additional file 1. We have up-
dated the web server language for better understanding
of the terminology.

Additional file

Additional file 1: Figure S1. The propensity score of residues interacting
with various carbohydrates. Figure S2. A web logo of ATP interacting
patterns of 21-window length. Table S1. Performance of our propensity
based prediction models on 50 major ligands, evaluated on independent
datasets. Table S2. List of 824 ligands having more than 30 binding sites in
the PDB. Table S3. Minimum, Maximum and Median Resolution of PDBs
interacting with 824 ligands. (DOCX 276 kb)
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