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Background: We present a network-based method, namely quantitative proteomic signature profiling (qPSP) that
improves the biological content of proteomic data by converting protein expressions into hit-rates in protein

Results: We demonstrate, using two clinical proteomics datasets, that gPSP produces robust discrimination
between phenotype classes (e.g. normal vs. disease) and uncovers phenotype-relevant protein complexes.
Regardless of acquisition paradigm, comparisons of qPSP against conventional methods (e.g. t-test or
hypergeometric test) demonstrate that it produces more stable and consistent predictions, even at small sample
size. We show that gPSP is theoretically robust to noise, and that this robustness to noise is also observable in
practice. Comparative analysis of hit-rates and protein expressions in significant complexes reveals that hit-rates
are a useful means of summarizing differential behavior in a complex-specific manner.

Conclusions: Given gPSP’s ability to discriminate phenotype classes even at small sample sizes, high robustness
to noise, and better summary statistics, it can be deployed towards analysis of highly heterogeneous clinical
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Background

Mass spectrometry (MS)-based proteomics has become
a central technology for life sciences research. With
extensive fractionation of samples and data-dependent
acquisition (DDA) MS or so-called shotgun/discovery
proteomics, near-complete proteome coverage is now
achievable for a number of prokaryotic and eukaryotic
species, including Schizosaccharomyces pombe (fission
yeast) [1, 2], Saccharomyces cerevisiae (budding yeast)
(3], Leprospira interrogans [4], Escherichia coli [5], Myco-
bacterium tuberculosis [6], Drosophila melanogaster [7],
Caenorhabditis elegans (8], Arabidopsis thaliana [7-9],
human cells [10, 11] and tissues [12, 13].
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However, to obtain functional understanding of dynamic
biological systems, proteins have to be quantified consist-
ently across different states or samples. In data-dependent
acquisition (DDA) MS or shotgun proteomics, peptides
eluting from the column are first surveyed and selected
for fragmentation based on intensity using a quasi-
stochastic heuristic. Different peptides are selected for
fragmentation in different runs, leading to stochastic and
inconsistent quantitative information. When applied to
relatively large sample cohorts, many proteins could not
be consistently quantified across samples. This inconsist-
ency was not due to these proteins being absent or below
the limit of detection; rather, these proteins were simply
not analyzed.

Recent technological advancements in proteomics
[14, 15] have led to a surge in data-independent acquisi-
tion (DIA) methods such as MSE [16] and SWATH [17],
which fragment precursors and record fragment ions
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independent of their stoichiometry in the sample thereby
offering more consistent protein quantification across
samples. While DIA methods are broadly similar, they dif-
fer in the way the data are analyzed. In particular, SWATH
acquires data by repeatedly cycling through precursor iso-
lation windows, referred to as SWATH windows, within a
predefined m/z range covering the whole mass range of
most MS-measurable precursors [17]. The SWATH strat-
egy thus creates an exhaustive multi-windowed SWATH
map for every sample via a single injection. When coupled
with an emerging sample-preparation method, Pressure
Cycling Technology (PCT), the SWATH workflow could
be used to reproducibly digitize the proteomes of small
sample quantities in a high-throughput fashion [18]. A
unique benefit of SWATH-MS is the potential to align
fragment ion signals across multiple samples, producing a
data matrix that is nearly complete. This is similar in
principle to “match between runs” analysis available in
MaxQuant for DDA data matrix [19], but with higher ac-
curacy because the feature alignment in SWATH is based
on MS2 peak groups and retention time. Nevertheless,
SWATH data are noisier than most DDA data due to con-
current fragmentation and acquisition of a larger number
of precursors [17].

Network-based methods can mitigate noise, consistency
and coverage issues in proteomics data. Proteome cover-
age can be expanded, alongside recovery of undetected
proteins by identifying proteins that are closely associated
with already-identified proteins [20-22]. Consistency and
noise issues can be dealt with by approaches such as Pro-
teomics Signature Profiling (PSP) where inconsistent pro-
tein identifications between samples are transformed into
more consistent features by measuring the hit-rates of the
identified proteins against predicted network clusters and/
or known complexes [20, 23, 24].

Traditional DDA or shotgun proteomics produces
sparse data that is highly inconsistent between samples,
even from the same phenotype class. The lack of a
complete data matrix means that most statistical
methods cannot be effectively used. PSP resolves this
problem by transforming the detected proteins into a
vector of hit-rates by comparing against protein com-
plexes [20, 23]. Recent advances in proteomics technolo-
gies have yielded higher-quality data matrices with more
reliable quantitation. In particular, these new methods
generate near-complete data matrices. Since PSP uses
only the detection/non-detection of proteins, it cannot
be used directly on these data matrices. However, recent
work in genomics revealed that meaningful class-
discriminative signal is enriched amongst the top n% of
abundance-ranked genes [25, 26]. Using this principle,
we extend PSP to a quantitative variant (qPSP) where
protein-abundance information is incorporated. We
demonstrate its effectiveness using two datasets, viz. a
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recently published SWATH MS renal cancer dataset
[18] and a large high-quality DDA dataset for colorectal
cancer [27].

Methods

Proteomics dataset 1 (DDA) — Colorectal Cancer (CR)

The colorectal cancer (CR) study of Zhang et al. [27] using
high-resolution LC-MS/MS is suitable for benchmarking
(Additional file 1). This dataset contains 90 colorectal
cancer samples derived through TCGA’s Biospecimen
Core Resource (BCR), and 30 normal (non-matched) sam-
ples obtained from screening colonoscopies. Particular
emphasis was placed on ensuring data quality in this
study: For every 5 CR samples, benchmark quality con-
trols (QCs) from one basal and one luminal human breast
tumor xenograft were analyzed. Analysis of data from
benchmark QCs allows checks for platform reproducibil-
ity and also evaluation of data normalization methods. For
exhaustive spectral coverage, both standard search and
spectral-library matching methods were used. For stand-
ard search, the raw spectra were compared against pat-
terns of in silico fragmented peptides from the RefSeq
human protein sequence database (V.54) [28] using Myri-
match v2.1.87 [29]. Spectral-library matching was per-
formed using Pepitome [30] and referenced against the
NIST database where the m/z and rt profiles of actual
peptides were captured and stored [31]. Peptide-
identification stringency was set at FDR of 2 % for higher
sensitivity. However, for protein assembly, a minimum of
2 unique peptides per protein is essential for a positive
identification (3899 proteins with a protein-level FDR of
0.43 %). To limit the number of data holes, only proteins
supported by 95 % of samples were kept in the final matrix
(3609 proteins).

Proteins are quantified via spectral count, which is the
total number of MS/MS spectra acquired for peptides
from a given protein. In this study, we excluded label-
based quantitation such as iTRAQ and TMT [32] due to
severe sample-size constraints. Although it is possible to
up-scale TMT up to 10 or 18 samples, this is still rela-
tively small and unsuitable for benchmarking of new
methods [32].

Proteomics dataset 2 (DIA) — Renal Cancer (RC)

DIA methods are relatively new in the field, and large
applicable datasets are not easy to obtain. As an instance
of DIA proteomics, we used the SWATH datasets from
Guo et al. in their study of clear cell renal carcinoma or
renal cancer [33]. The first one (RC-C) is composed of
12 SWATH runs from a human kidney test tissue
digested in quadruplicates and each digest analyzed in
triplicates using a tripleTOF 5600 mass spectrometer
(AB Sciex) (Additional file 2). The second data set (RC)
contains 24 SWATH runs from 6 pairs of non-tumorous
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and tumorous clear-cell renal carcinoma (ccRCC) or
more simply, RC tissues, which have been swathed in
triplicates (Additional file 3).

Although technical duplicates were present in each
phenotype class, we opted to analyze them together: If
technical duplicates gave rise to high random variation,
then the technical replicates would not group together;
this would indicate that the data-acquisition platform
was unstable. Moreover, if technical variability is present,
it would impede the ability of less-robust algorithms to
detect biological signal. Since we are interested to know
the performance of the qPSP in the presence of noise
(from biological and technical variation) in the data, it
should not matter so much that the technical replicates
were grouped together in the study.

All SWATH maps were analyzed using OpenSWATH
[34] against a spectral library containing 49959 refer-
ence spectra for 41542 proteotypic peptides from 4624
reviewed SwissProt proteins [33]. The library was com-
piled using DDA data of the kidney tissues in the same
mass spectrometer. Protein isoforms and protein groups
were excluded from this analysis.

For RC-C, 2331 proteins were quantified across the
12 SWATH maps of the first data set with a peptide
and protein false-discovery rate (FDR) lower than 1 %.
In the original RC, 2375 proteins were quantified across
all samples with a precursor FDR below 0.1 % and 32 %
sparsity. The high level of sparseness was likely due to
higher noise and poorer alignments between features.
To improve consistency in the data, we relaxed the re-
tention time (RT) alignment criteria using TRansition
of Identification Confidence (TRIC) (version r238); spe-
cifically, we allowed a wider maximal RT difference
(max_RT =30) but increased the precursor FDR to
0.001 to limit false matches. The two most intense pep-
tides were used to quantify proteins. Finally, protein
FDR was set to 0.01 with 3123 proteins reported.

Alpha-stability analysis

We define “alpha” as the value used to subset a ranked pro-
tein list based on abundance. The alpha stability is a meas-
ure of alpha-protein rank consistency between samples in
the same phenotype class (e.g. normal samples from the
normal class) —i.e., whether the alpha proteins are similar
across same-class members. Evaluation of the alpha stability
(i.e. how consistent protein rankings are) provides insight
into inter-sample variability as well as noise levels.

We used Alpha-Stability Analysis (ASA) to evaluate
protein rank stability across samples to obtain insights
into technical and biological variability. ASA first sorts
the proteins in each sample by protein abundance so
that the most highly expressed proteins are ranked first
in that sample. The top n% proteins in the sorted list of
each sample constitute the set of alpha proteins of that
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sample. ASA then cross-compares the sets of alpha pro-
teins between all samples using the Jaccard distance (i.e.
the intersection of two sets of proteins over the union of
proteins in the same two sets).

Protein-complex analysis

Although subnets or clusters can be predicted from large
biological networks, it is found that real biological com-
plexes are biologically more coherent [22]. Thus, we
used protein complexes from the CORUM database
which contains manually annotated protein complexes
from mammalian organisms. [35] Some complexes in
CORUM are very small and could give rise to high hit-
rate fluctuations. Thus we considered 600 protein com-
plexes of at least size 5.

Implementation of gPSP (Quantitative Proteomics
Signature Profiling)

We assume that proteins with higher abundance are mea-
sured with higher accuracy in the mass spectrometer.
PSP first sorts proteins in each sample based on their
measured abundance, and selects the most abundant pro-
teins above a certain percentile (the value is denoted as
alphal). A second percentile value (defined as alpha2) is
set to extend the list of proteins for improving sensitivity
while maintaining precision [25]. To penalize lower-
ranked proteins, proteins are assigned different weights
based on which percentiles they fall under (Fig. 1).
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Fig. 1 Schematic demonstrating qPSP's fuzzification procedure. First,
alphal at top 10 % was defined. An alpha2 was defined from top
10-20 %. To place less confidence in the lower-scoring alpha2,
proteins that fall within this range were grouped into 5 bins with
descending weights. The modulated hit-rates for each sample
could then be used for generating each sample’s proteomic
signature profile
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By default, we set alphal as top 10 %, and alpha2
as top 10-20 %. Rank-based weighting was achieved
via discretization of the continuous range from top
10-20 % into four bins: 10-12.5 % (weight 0.8),
12.5 % to 15 % (0.6), 15-17.5 % (0.4), 17.5 to 20 %
(0.2). All other proteins outside of alpha2 (viz.
remaining proteins) have a weight of 0 (and are thus
ignored). Alphal proteins are assigned the full weight
of 1. For convenience, proteins with non-zero weight
are referred to as alpha proteins. For each sample, a
vector of hit-rates is produced by considering the
overlaps of the alpha proteins against a vector of
complexes. To see how this works, let’s say we have a
sample from class A (S,) and a vector of complexes
of length n. For each complex C; in the complex vec-
tor, the hit-rate is the intersection of proteins in Sa
and C; , modulated by the proteins’ weights (i.e. an
alphal protein counts as 1 in the intersection, an
alpha2 protein of weight 0.8 counts as 0.8 in the
intersection, and so on), over the total number of
proteins in C;. We let the hit-rate for Sy in Ci be
H(Sa, Cj). Therefore, the vector of hit-rates for sam-
ple Sa is Hga = <H(Sa, Cy)..., H(Sa, C,)>. This vector
of hit-rates is the sample’s subnet signature profile.

To perform feature selection (where a feature is a
protein complex in this instance), for each complex C
in the complex vector, we compare two lists against
each other, HA = <H(A;,C),..., H(A,,C)>and HB=
<H(B4,C),..., H(B,,C)>, where A and B are phenotype
classes of sizes m and n respectively. The t-statistic
between HA and HB is computed by the standard
formula:

HA-HB
t_score =
Suamsy/2+ %
where
(WI—I)SHAZ—(}’I—I)SHBZ
SHaHB =
m—+n-2

If the t-statistic is significant (i.e. its associated p-value
is lower than 0.05), then C is differentially expressed be-
tween classes A and B.

There are several adjustable parameters that deter-
mine the endpoint measure, which we examined in
the following, including the values of alphal and
alpha2, and the directionality of alpha values (i.e. top
n% or bottom n%).

Consistency Benchmarking

As a match against a commonly used form of network-
enrichment approach, we compared qPSP against the
standard hypergeometric enrichment method (hyp_geo).
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The hyp_geo comprises 2 parts. In the first part, differen-
tial proteins are first selected using the unpaired two-sided
t-test (P <0.05). To do this, a t-statistic (7),) is calculated
for each protein p by comparing the z-normalized expres-
sion scores between phenotype classes CI and C2, with the
assumption of unequal variance between the two classes
[36], as given below:

X1-%X2
Tp ==
52 52
ol 22
m ny

where ¥; is the mean abundance level of the protein p, s;
is the standard deviation and #; is the sample size, in
class Cj. The T, is compared against the nominal t-
distribution to calculate the corresponding p-value. A
feature is deemed significant if p-value < threshold
(where threshold is set to 0.05).

In the second part of hyp_geo, the significant proteins
from the first part are compared against CORUM com-
plexes using the hypergeometric test. Given a total num-
ber of proteins N, with B of these belonging to a
complex and # of these proteins in the test set (i.e. dif-
ferential), the probability P that b or more proteins from
the test set are associated by chance with the complex is
given by:

P(X3b) = mmz%m <7) @—_in)

0

The complex is deemed significant if P(X > b) < thresh-
old (where threshold is set to 0.05).

To analyze reproducibility and stability, for both qPSP
and hyp_geo, we took random samplings of sizes 4, 6
and 8 from both normal and cancer classes 1000 times
to generate a series of binary matrices, where rows are
simulations, a value of 1 indicates a complex is signifi-
cant, and O otherwise. Each binary matrix is used for
comparing stability and consistency of significant fea-
tures predicted by qPSP or hyp_geo.

Three evaluations on the binary matrix can be per-
formed: 1/row-wise comparisons based on the Jaccard
coefficient to evaluate cross-simulation similarity, 2/row
summation to evaluate the distribution of the number of
selected significant complexes, and 3/column summa-
tion to evaluate the persistence and stability of each se-
lected significant complex.

Class-discrimination stability

We can analyze the strength of class discrimination in
hierarchical clustering using the bootstrap approach
PVCLUST [37]. For each cluster in hierarchical cluster-
ing, scores (between 0 and 100) are calculated via multi-
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scale bootstrap resampling. PVCLUST provides two
types of scores: AU (Approximately Unbiased) and BP
(Bootstrap Probability). AU is a less biased calculation
approach than BP; both are shown in the PVCLUST
bootstrap trees. Clusters that are highly stable (95 and
above for AU scores) are boxed in red.

Results and discussions

PSP improves signal in proteomics data

We first evaluated the signal enhancement and false-
positive rate in qPSP using the RC-C data set that is
comprised of technical and biological replicates. Since
there is only one true underlying class in RC-C, any re-
ported significant complex by splitting RC-C into two
groups is a false positive.

Figure 2a shows the Pearson correlation scores be-
tween RC-C samples based on protein abundance levels.
Overall, the correlations—these are mostly below 0.4—
are lower than expected given that the samples were in
fact replicates. This suggests there is considerable bio-
logical and technical noise within the SWATH data set.

Next, we applied qPSP to RC-C using various thresh-
olds of alpha (top 5, 10, 15 and 20 %) (Additional file 4:
Figures S1A and B). As shown in Fig. 2b, the Jaccard co-
efficient (the intersection divided over the union) be-
tween samples was preserved at different alphas ranging
from 5 % to 20 %. Our analyses also showed that inclu-
sion of bottom alphas (i.e., taking the bottom n% instead
of from the top) compromised the performance of qPSP
significantly, indicating that inclusion of low-abundance
proteins led to high instability. This is not surprising since
low-abundance proteins have very high coefficients-of-
variation (COV) (Fig. 2c). Furthermore, in contrast to
hyp_geo, the Pearson correlations between RC-C samples
based on hit rate vectors are about 0.99 (Fig. 2d). Thus,
qPSP improves signal within replicates.

We also evaluated the false-positive rate of qPSP. RC-
C samples were randomly assigned into 2 groups 1000
times, and evaluated by the number of false predictions
made. The distribution of false positives across simula-
tions (Fig. 2e) showed that the false-positive rate for
qPSP fell well within the expectation values (Observed
median value = 16, Expected =19).

gPSP is theoretically robust to experimental noise

Noise is a confounding factor for most experimental
data. We demonstrate here the t-statistic used in qPSP is
independent of the false-detection rate, so long as the
false-detection rate is the same between the control and
test state.

Let the false-detection rate be r, where 0 <r< 1. Let u
and v (0 <u, v < 1) respectively be the actual hit rate (i.e,
not due to false-positive proteins) expected of a complex
C in phenotype-A and phenotype-B patients. Suppose
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there are k proteins in C. Next, let x and y be the num-
ber of false detections in typical phenotype-A and
phenotype-B patients. Then r = x/(x + u*k) = y/(y + v *k).

Since the actual hit rate (sans false detections) of C ex-
pected in phenotype-A patients is u, the total actual hits
in the complex expected in phenotype-A patients is u*k.
Since r=x/(x + u*k), we have x =r*u*k/(1-r). Thus, the
expected value of the observed hit rate of C in
phenotype-A patients is HA =total actual hits + false
positives = u*k + r*u*k/(1-r) = u*k/(1-r). Similarly, the ex-
pected value of the observed hit rate of C in phenotype-
B patients is HB = v*k/(1-r).

The t-score generated by comparing phenotype-A and -B
patients is independent of r. To show this, first consider the
estimator of the common standard variation Syapp be-
tween A and B:

(m=1)S}, + (n-1)S}5
m+ n-2

SHAHB =

m—+ n-2

_ \/(m—l) var(u * k/(1-r)] 4+ (n-1) var[v * k/(1-r)]

1-r m+ n-2

|k \/(m—l) * var(u) + (n-1) * var(v)

k
R

The t-score is given as:

HA"-HB~ Eluxk/(1-r)]-E[v* k/(1-r)]

1 1
SHaHB /;+a (L)SW %jL%
(li) (E()-E(v)
E(u)-E(v)

L S l+l Suv l‘i‘i
1-r ) "“"\|/n  m nom

Hence, the t-score is independent of the false-
detection rate, r. The empirical p-values are based on
the distribution of t-scores. Since t-score is independent
of 1, it follows that the p-value is also independent of it.

Therefore, the t-score is independent of the noise
levels so long as the false-detection rate is the same be-
tween the phenotype classes. Under this assumption,
qPSP is expected to be robust to noise and thus useful
for analyzing data with higher noise levels but greater
proteome coverage (lower FDR cut-offs). This can be
useful for improving sensitivity while maintaining rea-
sonable signal-to-noise levels.

t_score =
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Of course, the proof above makes also the assumptions
that m and n are about the same size, and the standard
deviation for each population is more or less the same.
While this assumption may not always hold true, using
CR data, we find that qPSP is robust to noise in practice
(see section “qPSP is immune to noise in SWATH
data”). Moreover, an analogous result can be obtained
(using essentially the same proof) when t-score with un-
equal variance is used instead.

qPSP discriminates control and cancer samples — RC and CR
We evaluate whether qPSP allows robust distinction of
phenotype classes (normal, cancer) using both the renal
cancer (RC) derived from DIA proteomics (Fig. 3a) and
the colorectal cancer (CR) derived from DDA proteo-
mics (Fig. 3b). Based on the similarity maps between
control and cancer samples using Pearson correlation of
hit-rate vectors (Figs. 3a and b; top row), it is evident
that cancer samples are well separated from control
samples. The correlation score range appeared narrow
(between 0.75 and 1.00) since no prior feature selection
was explicitly performed between normal and cancer
classes. For RC (Fig. 3a), we observed a further sub-
grouping in the cancer group. It turned out that the
smaller grouping, consisting of patients 2 and 8, belongs
to a severe form (Both patients 2 and 8 are deceased).
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Using qPSP, the strong discrimination between normal
and cancer classes is also clearly demonstrated in the
PVCLUST-generated HCL tree (Euclidean distance;
Ward’s linkage) where bootstrap resampling confidently
separated them into two distinct groups (Fig. 3a and b;
bottom row), which are encapsulated in highlighted
boxes (AU scores > 95).

PSP is immune to noise in SWATH data

To show that qPSP is immune to noise in real data, we
adjusted the global false-discovery rates (FDR) in RC
(since we have the raw spectra for RC but not CR) to 1,
5, 10 and 15 % levels, and repeated qPSP analysis on
each of these FDR-adjusted RC datasets. Figure 4
showed HCL tree structures with significant groupings
boxed in blue. The tree structure was maintained at all
EFDR levels although there were slight shifts in the sig-
nificance levels of the AU scores. This indicated that
qPSP was robust against increased noise levels in data.
Therefore, PSP could be deployed for improving sensi-
tivity (recovering more low-confident but relevant pro-
teins) while maintaining reasonable precision levels.

To understand the stability of the reported significant
complexes, we cross-compared the set of reported signifi-
cant complexes at 1, 5, 10 and 15 % FDR. It is expected
that since the t-score is independent of the noise levels,
the set of significant complexes should remain stable.
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Fig. 3 gPSP strongly discriminates sample classes for renal cancer (a) and colorectal cancer (b). Clustered similarity maps at the top row showed
specific and consistent segregation of non-cancer and cancer samples. The trees below the heatmaps are from bootstrap analysis (PVCLUST),
which demonstrates that the discrimination between sample classes based on gPSP hit-rates is highly stable
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Fig. 4 PSP is stable at various FDR levels. This makes it useful for analyzing more proteins at the cost of introducing more noise into the system

FDR= 5%

au bp
o -
© -
+
i
L
i=y
) .
I ™ 400
9 i
o
N
—_ —_
R NN o e N ey S |
S22 00000l Ql0aB2a00aPQ o0
ﬁ§99999999~u9999999999ah
e e PO eNNERI O 8 ER R
o80T o008 cc S ocoma 88 8 &
Z>S220000008800280000228=22
25 S5 7 Z s cnan0® S S
z2zzz=z=z Soo88880000
— O/
FDR= 15%
au bp
o -
© -
100 00
< -
4
L
=
o o~ 4
T S 100 100
T 80 5
=1 9o 120 L1960 _| 1000
o

N~ PR ~—
e TN TR TN IR TSNS Na TSNS Ry
hw%%gg&&&&%%&&%%&&&&%%mw
QLS ol 0 PR EERRRREE R
e PR EENNR RO o 8ee s
S oTTTET® T T ®© c oSS s mmm S S5 S
Z=>223 00000880022 a000022822
RSt sttt ot 0000000005k

zz 00000000000

The set of significant complexes at each FDR level
(P<= 0.05) are given in Additional file 4: Table SI.
As expected, the significant complexes were stable
and practically similar across different FDR levels. At
higher noise levels, slightly fewer complexes were able
to meet the significance threshold. Eight (out of 180)
complexes varied in presence across all four FDR levels.
All, with the exception of one, were found at the lesser
significance level (0.025< P <0.05). Most of the vari-
ability was found at the 15 % FDR level. Of the
remaining complexes, although there were mild fluctu-
ations of the p-values across different FDR levels, there
appeared to be no evidence of the p-values becoming
less significant as the FDR levels increased (based on
trends analysis of Additional file 4: Table S1).

Thus, in agreement with theoretical proof, qPSP is ro-
bust against noise.

gPSP is more stable than standard network-enrichment
analysis based on the hypergeometric test

For RC and CR, we compared PSP to the hypergeo-
metric enrichment method for subnet analysis. Figures 5a
and 6a showed the distribution of significant complexes
returned across 1000 simulations. At all sampling sizes,
qPSP (4 to 8) returned significantly more complexes.
This number increased as the sampling size increased.
This was not unexpected, since the sample sizes involved
were small. On the other hand, the significant complexes
identified by hyp_geo (hyp_geo 4 to 8) were extremely
low, averaging about 7 to 10 per simulation.
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Fig. 5 Stability analysis of qPSP and hyp_geo using bootstrap resampling in RC (Renal Cancer). a Distribution of number of significant complexes
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significant at least once). As sampling size increased, more complexes became more persistently represented across all simulations. However, this effect
was much more pronounced for gPSP than hyp_geo. More importantly, the left skew for gPSP showed that most complexes were stable across
samplings, while the right skew for hyp_geo showed that most of the significant complexes picked up were unstable

A mechanistic explanation for the observed increase of
significant complexes by qPSP as sampling size increased
is intuitive: Suppose the underlying differences between
cancer and control are heterogeneous (let’s assume there
are 5 causes). If we pick a small sample size, we would
only observe a subset of the 5 causes. If only one sample
is picked, then only one cause would be observed. The
more samples that were picked, the more likely better
coverage was obtained (to pick up more causes), and
hence the complexes associated with these causes. The
increase is expected to taper off once sufficient samples
to observe all complexes associated with all underlying
causes are obtained.

The stability of the significant complexes in qPSP and
hyp_geo differed greatly as well. Figures 5b and 6b
showed the distribution of agreement (Jaccard scores; 0

for complete disagreement and 1 for complete agree-
ment) between simulations (pairwise). This perspective
provided an indication of the level of agreement of the
significant complexes between simulations. Although
qPSP reported more significant complexes, these were
stable relative to hyp_geo (Figs. 5b and 6b).

To examine complex instability from a complex-wise
perspective, we summed each column of the binary matrix
(each column is a complex, while each row is a simula-
tion) and kept columns with sum greater than 0 (meaning
that a simulation has reported this complex to be signifi-
cant at least once), and divided the value by 1000 as a
normalized value (Figs. 5¢ and 6¢) such that a perfect
value of 1 means that this complex is reported significant
in all simulations while a value close to 0 means that the
complex is unstably observed.
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The frequency distribution of the column sums (in histo-
gram form) provided a simple but effective visual represen-
tation for discerning whether the majority of significant
complexes were stable or unstable. Figures 5c¢ and 6c¢ re-
vealed that qPSP had a left skew—the majority of signifi-
cant complexes were stable, and this stability improved as
the sampling size increased. On the other hand, hyp_geo
complexes had a right skew, showing that the majority of
complexes were unstable. This distribution shape persisted
even as sampling size increased showing no convergence.
However, for CR, complex stability improved to a lesser ex-
tent as sampling size increased.

A valid concern is that qPSP is biased towards complexes
that are enriched with high-abundance proteins. However,
we argue that the benefit of having a reasonable number of
consistent significant complexes is preferable to the down-
side of unstable and low number of significant complexes.
Instability prevents generalizable interpretation of biological

mechanism (since the significant proteins and complexes
are unstable, they cannot be used for determining the true
underlying biology), while low numbers of significant but
true complexes provides too little information to make any
kind of biological inference (the complexes may be correct,
but there are not enough of them to establish a compre-
hensive analysis).

Hypergeometric enrichment is a poorly reproducible
method due to unstable t-test protein selection
Given how widely the hypergeometric test (hyp_geo) is
used, its poor performance was surprising. Hence it is ne-
cessary to understand why it failed. Since RC appears to
be less complex than CR, we investigate further using RC.
To obtain a deeper understanding of feature-selection
stability in hyp_geo, we plotted the stability histograms
for complexes, their constituent proteins, and the stand-
alone two-sample t-test (Fig. 7). In these histograms, a
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value near 0 on the x-axis means the feature is unstably
observed while a value near 1 means the feature is ob-
served across all random samplings. Separate histograms
were generated for random samplings of sizes 4, 6 and 8.
It is interesting to note that the stability distribution of
hyp_geo complexes mirrors closely that of their constitu-
ent proteins (ie., those proteins that formed part of the
complexes determined to be significant by the hypergeo-
metric test itself). In turn, the stability distribution of these
complex proteins resembles closely those proteins deter-
mined to be significant by the two-sample t-test. Given
these resampling tests, there is no enrichment for highly
stable t-test proteins within the hypergeometric-selected
complexes. This means that the hypergeometric test is
very sensitive to stability issues by the upstream t-test.
Since the hypergeometric test only makes a small
number of statistically significant selections (approxi-
mately 20-30 complexes) compared to PSP, it is of
value to see if qPSP’s apparent feature-selection stability
would be diminished if we restricted the selected fea-
tures to the top 30 most significant instead of just those
that met the p-value cutoff. Additional file 4: Figure S2
shows that even when restricting to the top 30

complexes in qPSP, the feature stability is still better
than the hypergeometric test. This also implies that the
p-values for each qPSP complex are relatively stable.

As a second fairness check, we restrict proteins to the
top 20 % (in a manner similar to the top 20 % in qPSP)
before running the hypergeometric test, Additional file
4: Figure S3 shows that restriction to the top proteins
does not have strong effect on improving the perform-
ance of the hypergeometric enrichment method.

PSP uncovers informative protein complexes — A case
study in RC

In Fig. 3a, we were able to discriminate the severe and
less-severe renal cancer phenotypes. Following this, we
would like to achieve two more objectives: 1/briefly exam-
ine some of the complexes differentially expressed be-
tween severe and less severe cancer, and 2/show that the
hit-rate measure in qPSP is an accurate summarization of
the individual protein features across the complex.

HCL (using Euclidean distance; Ward’s Linkage) be-
tween normal, and severe and less severe cancers showed
the overall distribution of hit-rates for normal, severe and
non-severe classes (Fig. 8a). We reduced the qPSP matrix
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to only include cancer samples and significant complexes
(between normal and cancer), leaving 125 complexes.
Next, we performed HCL clustering on this set, and re-
moved all complexes that did not exhibit any difference
between the two cancer phenotypes. This further reduced
the complexes to 15.

The relationship between these complexes and the
severe/less severe cancers are shown in Fig. 8b. We

briefly examine 3 complexes out of the four shown in
Fig. 8c—20S proteasome, Septin complex and 40S
ribosome. Figure 8c further demonstrates that the hit-
rates provide useful summarization that can distin-
guish between the normal, cancer and severe cancer
samples. This measure is cleaner, and less compli-
cated than looking at each discrete constituent gene
expression.
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There is some evidence in literature linking these
complexes to renal cancer: For example, the 20S prote-
asome is a potential biomarker for non-metastasized
breast cancer [38]. A recent study in 2012 demonstrated
increased 20S proteasome levels in clear cell renal can-
cer, advanced disease, and poor prognosis [39]. The
Septins have been shown to be fundamental for cytokin-
esis in many organisms and recognized as important com-
ponents of the cytoskeleton [40]. Alterations in septin
expression levels have been linked to various cancers, e.g.
breast and leukemia [41, 42]. Interestingly, the 40S ribo-
some has higher hit rate in severe cases than less-severe
cases. This complex is associated with metastasized RCC
[43]. We related the hit-rates to the overall expression rate
(Fig. 8¢) and found that the results were consistent.

Details on the 15 differential complexes, which in-
clude their annotated functionalities, are provided in
Table 1.

Conclusions

qPSP is a powerful network contextualization approach
for proteomics data. Using examples from DDA and DIA
data, we demonstrated that qPSP produces strong yet
stable class discrimination. It is robust against noise and
makes reproducible feature (complex) selections, unlike
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subnet-enrichment analysis based on the hypergeometric
test. Using the renal cancer dataset, we demonstrated that
the qPSP hit-rate is a succinct summarization of contrib-
uting signals across multiple complex protein constitu-
ents. Given these qualities, qPSP is a powerful approach
for analysis of clinical samples and selecting features for
biomarker and drug target discovery.

Reviewers’ comments

Reviewer’s report 1

Reviewer name: Frank Eisenhaber, Bioinformatics Institute
of Singapore

1. Formulation of the qPSP methodology

In its current form, qPSP basically utilizes the complex
information (from the CORUM database) to form pro-
tein groups and then uses the protein abundance for the
derivation of a new measure - hit rate per protein com-
plex for any proteome sample. The hit rate measure is
then used for subsequent statistic testing to elucidate
enriched protein complexes between samples.

The current formulation did not consider the effect of
protein complex stoichometry. To emphasize, high abun-
dance of some proteins in a complex grouping does not
necessarily imply that the same abundance of the complex.
Hit rate/complex calculated from such cases can be grossly
overestimated in complex abundance and skewed statistical

Table 1 RC Details on significant complexes differentiating normal and cancer phenotypes

CORUM ID  Complex name Functionalities qPSP pvalue
298 VEGF transcriptional complex This complex regulates Src-dependent hypoxia-induced expression 0010
of VEGF in pancreatic and prostate carcinomas.
1178 BCOR complex (Ubiquitin E3 ligase) Ubiquitin E3 ligases covalently attach ubiquitin to a lysine residue on a 0.010
target protein. Polyubiquitination marks proteins for degradation by the
proteasome. The BCOR complex contains E3 ligase activity for histone H2A.
Monoubiquitylated H2A is present together with the BCOR complex at BCL6
target genes in B cells. This strongly suggests a role of BCOR as regulator of
BCL6, a sequence-specific transcriptional repressor, that probably plays an
important role in lymphomagenesis.
36 AP1 adaptor complex This adaptor-related complex participates in a transport step different 0010
from that of AP-1. It may function at some trafficking step in the complex
pathways between the TGN and the cell surface.
144 Gamma-BAR-AP1 complex Protein targeting and endocytosis 0.012
5380 TRBP containing complex Translation regulation 0.0016
5268 TNF-alpha/NF-kappa B signaling complex 7 Cytokine activity 0.02
1193 Rap1 complex DNA repair; telomere maintenance 0
193 PA700-20S-PA28 complex Proteasomal degradation 0
1332 Large Drosha complex RNA processing 0.0001
5177 Polycystin-1 multiprotein complex Kidney tissue differentiation 0.021
2318 [TGA6-ITGB4-Laminin10/12 complex Cell adhesions 0.0001
191 20S proteasome proteasomal degradation 0
194 PA28gamma-20S proteasome proteasomal degradation 0
5179 NCOA6-DNA-PK-Ku-PARP1 complex DNA repair 0
5266 TNF-alpha/NF-kappa B signaling complex 6  Cyokine activity 0
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significance. In contrast, the original PSP, which only uses
presence or absence of the protein, has less bias in this re-
gard. As a separate note, abundance of proteins is also in-
dependent of whether the actual protein interactions took
place to form the complexes. Often, proteins are post-
translationally modified so that the interactions do not take
place though they are present in the cell. It is worrisome
that the term “high abundance complexes” on the basis of
protein abundance alone were being used in the text.

Taken together, the preceding assumptions made by
qPSP are not trivial. At best, the hit rate is a predictive
measure, but not a sufficient surrogate measure of protein
complex formation and abundance. Its subsequent usage
in statistical tests to identify enriched protein complexes
creates the issue of nested predictions (predictions based
on predictions); the proper usage of hypothesis testing is
meant for testing differences in observed measures, not
predictive measures.

2. Robustness of PSP against noise: effects of t-score
or pre-filtering?

From the theoretical argument, the authors presented
a proof to show that t-score is independent of false-
discovery rate (FDR = FP/TP + FP). Here, noise implicitly
refers to the number of FP (false-positives). The proof
seems incomplete since there was no discussion about
effects of the pooled standard deviation term Su.v and
the sample sizes n and m on the actual level of FP.

With respect to the two sample t-test, FP is equivalent
to type I error (a). When the variances are unequal, the
probability of type I error tends to be greater than the
stated o. When n=m, this probability will be greater
than the stated « if the smaller sample is associated with
the larger variance. In both cases, the level of FP (or
noise) will be underestimated and the robustness of the
t-test will be compromised as well. As such, qPSP does
not seem impervious to FP arising from both unequal
variances and sample sizes.

In actual applications, the robustness of qPSP to noise
seems to stem from the pre-filtering step (ie., the
“alpha-stability analysis” that excludes protein hits below
top 20 % of the ranking) rather than from the more elab-
orated hit rate/complex measure and FDR-independent
t-statistics. There are two observations to note. First, the
authors have shown that qPSP suffers in performance if
the bottom hits were included in their RC-C study. Sec-
ond, in the RC study, repeated qPSP analysis on various
FDR-adjusted dataset has little impact on the classification
tree results. The latter seems more likely a consequence of
the pre-filtering step to create similarly truncated datasets
(i.e., with similar level of FP hits removal) regardless of the
initial FDR adjustments on the data.

3. Evaluation of the qPSP methodology

The evaluation of qPSP’s robustness reveals another
issue. If the pre-filtering step alone in qPSP is sufficient
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to build similar clustering plots and hierarchical trees as
shown throughout the article, then the inclusion of pro-
tein complex information and t-statistics adds little im-
pact to the overall QPSP methodology.

Specifically to the RC dataset analysis, although the au-
thors were able to show clear discrimination between the
phenotypes in the HCL trees (as depicted in Fig. 3a), the
qPSP methodology was unable to conclude any particular
protein complex that strongly distinguishes between the se-
vere versus less-severe phenotypes (as depicted by Fig. 8a).
As such, the merits of including protein complex informa-
tion to generate the hit rate for the t-statistics to improve
biological interpretation have yet to be demonstrated.

Lastly, since qPSP is extended from PSP, the latter
should be included in the performance comparison to
demonstrate an improved performance.

Minor issues :

Section: qPSP is theoretically robust to experimental
noise:

1. False-discovery rate is a more common terminology
than false-detection rate.

2. It should be made clear that noise is referring to FP
(false-positives) as a component of FDR (=FP/TP + FP).

3. It would be more readable to write the hit rate/com-
plex computations as a formulation of vectors and
matrix.

Section: implementation of qPSP:

Variable n has been used to twice. One instance is to
describe a vector of complexes of length n, another use
is as the size of samples n of phenotype B. The naming
of the two variables should be distinct.

1/Arguments on not considering protein complex stoi-
chiometry in qPSP

a) “not consider the effect of protein complex
stoichometry...

We acknowledge and agree that this is a potential
shortfall. However, whether the complex can or cannot
be formed is something that cannot be directly ad-
dressed at the level of the proteomics screen. At the
same time, we also agree that the simultaneous consider-
ation of possible PTMs can be useful as additional infor-
mation for refining the qPSP technique. In a typical
proteomics screen however, increasing the screen for
each PTMs (whether deterministic or stochastic), will
greatly increase the library search space. Because there
are a lot less expected matches relative to expected, it
will drive up the false positive rates. This also means that
we will have to increase the critical level accordingly but
at the cost of further driving down proteome coverage.
These analytical issues are interesting areas for further
refinement and improvements but are upstream of
qPSP.

For now, we are simply making the assumption that
when the constituents of a complex are highly enriched/
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present in the proteomics screen, it is more likely that
the complex can be formed. Currently, we are in fact
looking into alternative assays that allow predictions of
the strength of formation of various complexes. This can
be potentially used as a weight for subsequent iterations
of qPSP (we penalize those complexes that have low for-
mation stability).

b) “hit rate is a predictive measure, but not a sufficient
surrogate measure of protein complex formation and
abundance”

The reviewers are correct to say that the hit-rate can
be considered as a probabilistic indicator of protein
complex formation and abundance. And in this regard,
it is a form of predictive measure. But this is dependent
on context and the manner in which these hit-rates are
being used.

For now, we are just saying that each sample can be
represented by a series of hit-rates against a feature vec-
tor of subnets. And that differential signal can be de-
tected in this manner. We did not emphasize that the
hit-rates themselves are predictive of the complex being
formed or quantified. Moreover, in the last section of
the manuscript, we considered the relation between hit-
rates and the constituent protein quantitations. They
correlated quite well in spite of the hit-rate being a sum-
mary measure.

c) “It is worrisome that the term “high abundance
complexes” on the basis of protein abundance alone
were being used in the text”.

We appreciate that the presence of “high abundance
constituents” does not necessarily imply the presence of
the “high abundance complex”. This term has only been
used in one paragraph and was meant to make known a
potential shortfall of the qPSP approach, namely, its ten-
dency to pick complexes that is enriched for higher
abundance proteins. We cannot observe all constituents
in these complexes given that proteomics picks only
about 3000 proteins in general, so for pithiness, we simply
made the assumption that the complexes are high abun-
dance. We will change this to the clearer term: “complexes
enriched for high-abundance proteins” instead.

2/Robustness of qPSP against noise

a) “The proof seems incomplete since there was no
discussion about effects of the pooled standard deviation
term Su.v and the sample sizes n and m on the actual
level of FP”.

The reviewer is correct that we made very specific as-
sumptions wrt to the proof and it does not cover all
potential scenarios as highlighted by the reviewer. Gen-
erally, we are saying that the actual level of FP comes
from the false discovery rate for the proteomics data,
which is estimated independently of S, and m and n.
Hence the unbiased s.d. S, can be inferred based on k,
m, n and the observed s.d. Sy pg. Incidentally, the
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proof can be adapted to show the analogous result for t-
score based on unequal variance.

We added some discussion on this issue in the main
text of the manuscript. But briefly, in the unequal vari-
ance scenario,

S S

k
SHanp = - +

m n

This can be plugged back into the t-expression:

A’ HB~
t_score =

/SHA 4 Sus” SHB

5 K/ (L=r)|E[y k) (1-1)]

And will still converge towards the same result as the
proof in the original manuscript as k/1-r can still be fac-
tored out and cancelled.

b) “With respect to the two sample t-test, FP is equiva-
lent to type I error (a). When the variances are unequal,
the probability of type I error tends to be greater than
the stated a. When n = m, this probability will be greater
than the stated « if the smaller sample is associated with
the larger variance. In both cases, the level of FP (or
noise) will be underestimated and the robustness of the
t-test will be compromised as well. As such, qPSP does
not seem impervious to FP arising from both unequal
variances and sample sizes.”

This is indeed true. But maybe we can clarify this bet-
ter. We are saying that qPSP is independent of r, which
is the false discovery rate or uncertainty arising from the
identification of proteins from proteomics. In typical
proteomics, noise is typically very high, which normally
requires imposing a very stringent false discovery rate
(or false-detection rate) to restrict false matches (be-
tween 0.01 % to 1 % FDR). But this in turn, results in
very low proteome coverage. Approaches that are able
to circumvent this issue can be potentially very valuable.

The FP the reviewer is talking about here is regarding
feature-selection based on the t-test, and not what we
were discussing about above. The type I error was dis-
cussed in the earlier section “qPSP improves signal in pro-
teomics data” where we used control data to test how
many false positive complexes were predicted using re-
sampling statistics. And yes, we agree, feature-selection in-
stability where s.d. is very high and sample sizes very low
is not something qPSP is immune against.

b) “the robustness of qPSP to noise seems to stem from
the pre-filtering step (i.e., the “alpha-stability analysis” that
excludes protein hits below top 20 % of the ranking) ra-
ther than from the more elaborated hit rate/complex
measure and FDR-independent t-statistics. There are two
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observations to note. First, the authors have shown that
qPSP suffers in performance if the bottom hits were in-
cluded in their RC-C study. Second, in the RC study, re-
peated qPSP analysis on various FDR-adjusted dataset has
little impact on the classification tree results. The latter
seems more likely a consequence of the pre-filtering step
to create similarly truncated datasets (i.e., with similar
level of FP hits removal) regardless of the initial FDR ad-
justments on the data.”

qPSP is based on rank shifts amongst the extreme
ranked proteins away from a defined alpha cutoff. As all
samples have the same proteins reported, if we don’t use
cutoffs, then there is no difference in the hit-rates. So
the alpha cut-off is necessary.

We've shown that using the top 20 % of proteins
seems to be a pretty good compromise. If alpha is set to
too high e.g. top 1 %, then we have very few proteins to
observe). If alpha is set too low, then we lose discrimin-
atory power. Bottom alphas include low abundance pro-
teins for which the rank shifts are more unstable, and
less reliable. Their rank shifts are likely more due to
chance than to phenotype-specific changes. In earlier
work on genomics, we've also shown that in methods
e.g. PFSNET and FSNET, using the top 20 % with com-
plexes/subnets is an optimal alpha cutoff.

The FDR adjusted analyses reflect stability of analysis
against low to high FDR levels given the same qPSP ana-
lysis procedure (alpha = top 20 %). This level was shown
to be useful earlier in the paper, so we kept to it. We can
definitely change the alpha levels but as we mentioned
earlier, lowering the alpha will simply just increase the
number of proteins, making sensitivity higher but also
making it harder to find discriminatory signal amongst
complexes. But this is not the aim of the section, which
is to show that the results will hold constant in spite of
changing the proteomics FDR levels.

3/Evaluation of the qPSP methodology

a) “ The evaluation of qPSP’s robustness reveals an-
other issue. If the pre-filtering step alone in qPSP is suf-
ficient to build similar clustering plots and hierarchical
trees as shown throughout the article, then the inclusion
of protein complex information and t-statistics adds lit-
tle impact to the overall qPSP methodology.

Specifically to the RC dataset analysis, although the
authors were able to show clear discrimination between the
phenotypes in the HCL trees (as depicted in Fig. 3a), the
qPSP methodology was unable to conclude any particular
protein complex that strongly distinguishes between the se-
vere versus less-severe phenotypes (as depicted by Fig. 8a).
As such, the merits of including protein complex informa-
tion to generate the hit rate for the t-statistics to improve
biological interpretation have yet to be demonstrated.”

Prefiltering step in itself is not sufficient. In qPSP, the
clustering is done based on the vector of hit-rates against
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the complexes, and never based on the protein expres-
sion levels themselves. Single protein expression based
selection (e.g. t-test) is shown to be highly unstable and
unreliable while the hypergeometric enrichment ap-
proach in itself also suffers from reproducibility issue.
qPSP’s contextualization of protein expressions into com-
plex hit-rates preserves the stability of feature-selection
and reproducibility better than these two other commonly
used approaches.

In Fig. 8, we simply showed all complexes without ac-
tually doing feature-selection. We have improved the
presentation of the diagram such that differential com-
plexes can be more easily shown. But the four examples
in Fig. 8c show clearly that there are differences between
normal, cancer, and severe cancer groups.

But we are limited by our biological knowledge (none
of us are cancer biologists), and so we provide the list of
differential complexes for real cancer experts to examine
(Table 1). But proper confirmation in a specific bio-
logical problem, in silico and downstream biological val-
idation is beyond the scope of this paper.

b) Lastly, since qPSP is extended from PSP, the latter
should be included in the performance comparison to
demonstrate an improved performance”.

PSP cannot work on data which has a complete matrix.
This was one of the main reasons why we adapted qPSP
using the fuzzified rank approach.

4/Terminologies

a) “False-discovery rate is a more common termin-
ology than false-detection rate”.

We have made the changes.

b) “It should be made clear that noise is referring to FP
(false-positives) as a component of FDR (=FP/TP + FP)”.

We have made the changes.

¢) “It would be more readable to write the hit rate/com-
plex computations as a formulation of vectors and matrix”.

We feel that this would have the effect of isolating
non-computer science/non-math readers instead.

d) “Variable n has been used to twice. One instance is
to describe a vector of complexes of length n, another
use is as the size of samples n of phenotype B. The nam-
ing of the two variables should be distinct*.

We have made the changes.

Reviewer’s report 2

This work is an extension of network contextualization
methods for proteomic signature profiling by restricting
the analysis to the top 20 % most abundant proteins and
their complexes. Through reanalysis of 2 different cancer
sets, the authors propose that the number of signifi-
cantly detected complexes is higher than with classical
hypergeometric network enrichment tests without in-
creasing false positives and that the complex detections
are robust to noise and small sample size.
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The comparison does not seem very balanced given
that all proteins (including low abundance ones that
would increase noise) are considered for the hypergeo-
metric tests (see major suggestion 1).

The network contextualization approach intuitively
makes sense as by requiring multiple proteins from a
protein complex to be identified before the complex and
its proteins are considered present should give a more
conservative picture of true protein identifications. This
manuscript is dedicated to the addition of the criterion
to only consider the top 20 % most abundant proteins
(top 10 % weighted highest and staggered weights for
the top 10-20 %) through which the conservatism is en-
hanced even further with some measurable advantages
as mentioned above but the question is how useful is
such a conservative view biologically when only restrict-
ing to most abundant protein complexes?

The first thing that comes to mind is that this ap-
proach will find and possibly be restricted to ribosomes
and there-like which provides a rather limited chance of
getting novel mechanistic insights. Unfortunately, many
or most diseases’ causative mechanisms are expected to
be more subtle and come from a variety of genes/pro-
teins and pathways. Although the disease state could still
correlate with ribosome abundance levels etc. it would
likely be an indirect effect. This means that the ribosome
levels may be used as biomarkers of disease states but
much less so to provide a deeper understanding of dis-
ease mechanisms which could be targeted for drug
interventions.

Indeed, 2 of 3 examples where they discuss biology of
hits include ribosome complexes. However, the list of
significant complexes in Additional file 4: Table S1 in-
cludes 180 complexes, some of which should be func-
tionally much more specific and hence interesting. To
help biologically knowledgeable readers judge better the
biological significance and possibly get inspirations for
further mechanistic studies, you may provide better and
more info on the identified complexes (see major sug-
gestion 2).

Major suggestion 1) Make a clean comparison of the
different approaches to allow judging contributions of
abundance criterion vs network contextualization. E.g.
PSP vs. qPSP (same context method, different protein
abundance criterion), qPSP vs hyp_geo_top20%abundant
(different context method, same protein abundance cri-
terion), qPSP vs hyp_geo_all (different context method,
different protein abundance criterion). Parts of it are in-
cluded already but should be presented more clearly.

Major suggestion 2) Show tables of at least the top 10
identified complexes unique to phenotype groups stud-
ied here in the main manuscript and longer lists in sup-
plementary. Instead of complex identifier numbers use
names (and list major protein constituents and basic
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known function). Also list, in a separate table, complexes
uniquely identified by the qPSP approach compared to
other methods tested here and discuss briefly any pos-
sibly interesting biological insights.

Reviewer name: Sebastian Maurer-Stroh, Bioinformatics
Institute of Singapore

5/Major suggestion 1) Make a clean comparison of the
different approaches to allow judging contributions of
abundance criterion vs network contextualization. E.g.
PSP vs. qPSP (same context method, different protein
abundance criterion), qPSP vs hyp_geo_top20%abundant
(different context method, same protein abundance cri-
terion), qPSP vs hyp_geo_all (different context method,
different protein abundance criterion). Parts of it are in-
cluded already but should be presented more clearly.

PSP cannot be used here. It was originally meant for data
with highly inconsistent protein identifications between
samples and doesn’t work on data with a complete matrix.

For most papers, the default selection criteria for the
hypergeometric test is to simply test proteins pre-
selected by the t-test regardless of abundance. The sug-
gestion to use hypergeometric test with the abundance
criterion is an interesting one but not a setting that is
typically used in application.

To satisfy the reviewer’s request, we have included this
analysis under Additional file 4: Figure S3 and described
it in the manuscript text.

6/Major suggestion 2) Show tables of at least the top
10 identified complexes unique to phenotype groups
studied here in the main manuscript and longer lists in
supplementary. Instead of complex identifier numbers
use names (and list major protein constituents and basic
known function). Also list, in a separate table, complexes
uniquely identified by the qPSP approach compared to
other methods tested here and discuss briefly any pos-
sibly interesting biological insights.

Thanks for the suggestion. There aren’t many interest-
ing complexes so we just put them in Table 1 directly in
the manuscript.

As for interesting features found by the other methods —
we found that they are hardly stable anyway. A comparative
functional analysis of qPSP against the features these other
methods selected seems to have very limited utility.

Additional files

Additional file 1: Colorectal Cancer dataset (CR). (TXT 4814 kb)

Additional file 2: Renal replicates control dataset (RC-C).

(XLSX 1168 kb)

Additional file 3: Renal cancer dataset (RC). (TXT 485 kb)
Additional file 4: Figure S1. RC-C HCL clustering using gPSP using

various alpha thresholds (A) Using top and bottom ranked proteins (B)
Using just top ranked proteins. Figure S2. qPSP restricted to top 30
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complexes The histograms for CR and RC shows that even when

restricted to the top 30 complexes, the p-values for each complex is fairly
stable, and therefore, even across random samplings, are consistently

observed. Figure S3. Stability analysis of gPSP and hyp_geo (top 20 %)

using bootstrap resampling in RC (Renal Cancer). (A) Distribution of
number of significant complexes returned. Across various sampling sizes
(4, 6 and 8), gPSP consistently reported more significant complexes than

t-test selection for differential proteins followed by complex selection

using the hypergeometric test (hyp_geo). (B) Simulation similarity

comparisons. Pair-wise analysis of simulations to calculate the agreement

levels (using Jaccard Score, 0 for complete disagreement, 1 for complete

agreement) across complexes showed that PSP was far more consistent
than hyp_geo. (C) Complex persistency distribution. Distributions of

significant complex agreements (On the x-axis, a score of 1 means

complete persistence across all simulations, the y-axis is a frequency

measurement, and its sum adds up to all complexes observed to be
significant at least once). Table S1. RC gPSP complexes and respective
p-values changes by adjusted FDR levels. (DOCX 1144 kb)
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