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Abstract

Oligonucleotide microarrays belong to the basic tools of molecular biology and allow for simultaneous assessment
of the expression level of thousands of genes. Analysis of microarray data is however very complex, requiring
sophisticated methods to control for various factors that are inherent to the procedures used. In this article we
describe the individual steps of a microarray experiment, highlighting important elements and factors that may
affect the processes involved and that influence the interpretation of the results. Additionally, we describe methods
that can be used to estimate the influence of these factors, and to control the way in which they affect the expression
estimates. A comprehensive understanding of the experimental protocol used in a microarray experiment aids the
interpretation of the obtained results. By describing known factors which affect expression estimates this article provides
guidelines for appropriate quality control and pre-processing of the data, additionally applicable to other transcriptome
analysis methods that utilize similar sample handling protocols.
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Introduction
Oligonucleotide microarrays belong to the most com-
mon tools used to describe changes in gene expression
levels caused by altering the physical or chemical condi-
tions. Microarrays can be also used to track differential
expression patterns among various tissues and thus
evaluate variability among individuals [1–3], they are
used in SNP (single-nucleotide polymorphism) geno-
typing [4–7] and identification of transcription factor
binding sites using the ChIP-chip (ChIP: chromatin
immunoprecipitation) method [8–12]. Microarrays are also
used to estimate genomic copy number using Comparative
Genomic Hybridization (CGH) arrays [13–16] and in
resequencing [17–22].
Microarray analysis offers a variety of methods allow-

ing, among other, identification of genes which might be
significant in a specific cellular response mechanism or a
particular gene expression pattern that characterizes a
particular disease. To obtain significant results, micro-
array data need to undergo statistical processing to

differentiate between signal changes caused by direct
experimental factors and arising from the indirect ex-
perimental factors such as specific methods used, as well
as from inaccuracies of the measurements. This level of
processing challenges led to studies of the compatibility
of different microarray platforms [23–28] which usually
is achieved by standardizing protocols and data analysis
pipelines [29, 30]. Selection of an appropriate statistical
method for microarray processing is a significant subject
of scientific discussion and although microarrays have
been in use for more than fifteen years, many issues
related to data analysis remain unresolved.
The most discussed issues concern the algorithms

used for the data normalization [31, 32], whose goal is
to eliminate differences between samples that originate
from technical aspects of the microarray handling which
may confound the biological differences in a given ex-
perimental setup. A similar goal underlies methods used
for batch-effect removal, a step which is crucial when
comparing datasets that originate from different times
and laboratories [33]. Other frequently-discussed issues
concern the identification of sample differentiating genes
[34, 35] and evaluation of noise level in the sample [36],
as well as methods to evaluate contamination or damage
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on the microarray’s surface [37, 38]. The most com-
monly used microarrays, produced by Affymetrix, are
known for additional issues related to their particular
design which influence the final results. These include
problems resulting from several measurements of
expression level for a single gene [39, 40], incorrect
assignments of probes to genes [41, 42], incorrect evalu-
ation of the background level and non-specific probe
hybridization signals [43], and the effects of distinct
probe features on data processing algorithms [44].
The most significant disadvantages of microarrays in-

clude the high cost of a single experiment, the large
number of probe designs based on sequences of low-
specificity, as well as the lack of control over the pool of
analyzed transcripts since most of the commonly used
microarray platforms utilize only one set of probes de-
signed by the manufacturer. Other weaknesses of micro-
arrays are their relatively low accuracy, precision and
specificity [45] as well as the high sensitivity of the
experimental setup to variations in hybridization tem-
perature [46], the purity and degradation rate of genetic
material [47], and the amplification process [48] which,
together with other factors, may impact the estimates of
gene expression.

Review
Microarray structure
A typical microarray consists of oligonucleotides which
are several dozen nucleotides (nt) long attached to the
surface of a glass slide. Using appropriate photolitho-
graphic masks, a single nucleotide A, C, T, or G is at-
tached at a time, and therefore it is possible to construct

a microarray with hundreds of thousands of different
oligonucleotide sequences which are complementary to
characteristic fragments of known DNA or RNA se-
quences. These characteristic fragments are arranged in
sets called probes [49]. A sample containing DNA or
RNA molecules is spread on the surface of a microarray
and its components hybridize specifically with their
complementary probes, which are located in multiple
copies across the microarray (Fig. 1). The amount of ma-
terial hybridized to a given probe is determined by a
fluorescence-based method and although the relation-
ship is not linear the fluorescence intensity reflects the
amount of DNA or RNA of a given gene in the sample
[50]. This approach allows quantifying the level of tran-
scripts of thousands of genes in a relatively short time.
The most widespread microarray is the Affymetrix

3′IVT (3′ in vitro transcription), i.e. HG-U133A or
HG-U133_Plus_2, which is assembled as 11 sets of
perfect match (PM) probes consisting of 25 nt sequences,
which in most cases were chosen out of 600 nt sequence
fragments located near the 3′ end of a specific transcript.
For every PM probe on the microarray, a MM (mismatch)
probe exists in which all nucleotides but one are identical
to those on the corresponding PM probe but the original
13th nucleotide is replaced by a non-complementary one.
The rationale behind the MM probes is to gauge the level
of nonspecific hybridization [51], although the usefulness
of this concept has been doubted (see further on).
The most recent generation of Affymetrix microarrays,

such as the HuGene 1.0ST, is constructed using probes
similar to the standard PM probes but with affinity not
to the noncoding part of the 3′ end but rather to the

Fig. 1 Microarray schematics. a Probes corresponding to the characteristic fragments of a given gene are placed in different locations across the
array; b Single probes are arranged in sets corresponding to the same region of the gene. DNA that hybridizes to the probe can be detected
using a fluorescent reporter system. Increasing the number of probes to which cDNA hybridizes correctly, increases the contrast between this
probe set (probe set A) and any other probe set (probe set B)
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individual exons in a given transcript. In this design the
MM probes are replaced by the Background Intensity
Probes (BGP), which are designed to evaluate back-
ground intensity levels for probes of different sequence
characteristics. BGP are a set of about 1000 probes, non-
complementary to any human gene sequence, with a
variable ratio of GC nucleotides in the sequence. This
approach enables a better evaluation of non-specific
hybridization across the microarray compared with MM
probes, for which the signal often exceeds the PM signal
due to probe-specific effects [52]. Additionally, lowering
the number of probes which evaluate non-specific
hybridization allows inserting of a much higher number
of PM probes. The probe set in the new generation of
whole transcript microarrays is constructed with two
levels, exon and gene level. The exon probe set includes
4 probes on average, which are tailored for individual
exons, and then these are clustered, usually in groups of
around 25, creating sets for individual genes. Using this
approach it is possible to determine levels of individual
differently-spliced transcripts.
Another popular system is the Agilent microarray plat-

form which was built using the SurePrint technology
that allows using considerably longer, 60 nt-long probes.
While probes are longer than in the Affymetrix system,
the number of probes per gene is considerably lower, 8
on average in the most expensive set of exon micro-
arrays (2 × 400 k) or 2 in the least expensive platform
(8 × 60 k). As the Agilent probes are longer than
those in the Affymetrix microarrays, the system tends
to be more specific which is an obvious advantage,
but on the other hand the lower number of probes
per gene makes Agilent microarrays more sensitive
to single nucleotide variations. These latter should not
affect the signal if they result from amplification errors
[53], but they may influence the expression estimates
resulting from characteristic features of the sample ana-
lyzed. In the case of the Affymetrix microarray system
these sources of error will only have a minor impact, as
they influence signal only in an individual probe for a
transcript or a transcript-specific probe-set. Single nu-
cleotide polymorphisms do not block the hybridization
but lower its efficiency, which can be interpreted as a
significant decrease of gene expression, a feature
which is used to estimate the level of nonspecific
hybridization using mismatch probes [54, 55] or to as-
sess allelic frequencies using SNP microarrays [56]. In
the Affymetrix systems the signal from one badly de-
signed probe, which may be based on inaccurate data
from a sequence database, can be easily eliminated from
further analysis [41] without significant decrease in the
precision of gene expression estimate, while in the Agilent
systems the same design glitch might cause significant dif-
ficulties in the evaluation of gene expression levels.

Microarrays provide expression data for thousands of
genes, but platform differences contribute to low accur-
acy of microarrays and for this reason they are only used
to identify potentially significant genes in the experimen-
tal conditions studied. Precise assessment of the expres-
sion level of these presumably significant genes requires
additional studies using more accurate methods such as
real-time PCR (polymerase chain reaction) which, in
turn, are not suitable for large-scale analyses. However,
some steps of the microarray protocol are shared by the
validation methods, affecting data quality in a similar
manner.

Biological background of microarray experiments
The microarray experiment is a multi-stage process in
which the accuracy of each individual step may influence
the gene expression estimates. Precise understanding of
each step is very important not only for the experi-
menter but also for the person performing data pre-
processing. In order to avoid mistakes that occur during
the experiment, its accuracy and the condition of the
biological material are controlled in various steps, as
shown in Fig. 2. The procedure used in a microarray ex-
periment is very similar across different platforms, and
therefore for simplicity the following description is based
on the procedure used for the Affymetrix microarrays.

Step I: RNA isolation
In the first step RNA is isolated from the cells and its
concentration and extent of degradation is controlled by
the use of a spectrophotometer (quantity) and a bioana-
lyzer (quality). In a high-quality RNA sample ribosomal
RNA (rRNA) constitutes over 80 % of the entire RNA,
and despite the fact that it is rarely a target of a study in
fields other than bacteriology and phylogenetics, its
concentration is a good indicator of the overall RNA
quality, both before and after the experiment. Prior to
hybridization the extent of RNA degradation can be
assessed by RNA electrophoresis or a bioanalyzer using
the RNA integrity number (RIN) as a benchmark [57].
Fig. 3 shows an example of an image made after elec-
trophoresis in agarose gel. The first two lanes show
RNA directly after isolation. The two most distinguish-
able bands correspond to the 18 and 28S rRNA and
their absence would indicate that RNA were highly de-
graded [58].
RNA quality can also be evaluated after the experi-

ment by analyzing results from a specific group of con-
trol probe-sets (as described in Table 1) designed to
target certain housekeeping genes (group 1) or rRNA
(group 2). As with other probe-sets a single expression
intensity is however non-informative since its value,
expressed in arbitrary units, depends on the characteris-
tics of the sample [59], the experimental conditions,
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such as for example the ozone level in the laboratory
[60], and the data pre-processing methods used [61]. For
this reason arbitrary criteria based solely on single
expression intensities are usually ineffective and a
comparison between arrays or between probe-sets is
required.
Each of the control probe-sets exists in three variants,

each targeting a different region of the selected tran-
script - its central section and the 3′- and 5′-ends. This
allows assessing the degradation rate of individual tran-
scripts by examining the 3′/5′ probe-set signal ratios,

which can be compared to the threshold defined by the
manufacturer and ratios obtained for other microarrays,
in order to assess the homogeneity of degradation level
across individual samples. In order to aid the assessment
of post-experimental RNA degradation, more complex
methods have been developed including RNA degrad-
ation plots [62] or mixed effect models based on individ-
ual probe and transcript characteristics [63].

Step II: cDNA synthesis
At the beginning of this stage external RNA controls
(ERCs) are added which serve as a control of cDNA syn-
thesis independently of the volume and condition of the
input material. For this purpose bacterial RNA is used
(the so-called poly-A spike) with no homology to known
human genes. Following this, the cDNA synthesis
process is performed by the use of oligo-dT (a primer
with a short sequence of deoxy-thymine nucleotides) or
random primers. Oligo-dT binds to the poly-A tails of
mRNAs, initiating the synthesis of the complementary
strand in a process of reverse transcription (Fig. 4). This
process does not work for rRNA molecules since unlike
mRNA molecules they do not have a poly-A tail, and for
this reason it is not necessary to remove the rRNA prior
to this process. However, in some cases rRNA can be
polyadenylated in human cells [64], and conversely, not
all mRNAs have a poly-A tail, and there are also reports
of mRNAs that exist in two forms both polyadenylated
and non-polyadenylated [65].
The second strand of the cDNA is then created by

using the first strand as a template. Addition of ribo-
nuclease causes RNA cleavage at nonspecific sites, leav-
ing only short fragments attached to the cDNA (Fig. 2).
These fragments are then used as primers for the

Fig. 2 Individual steps of a microarray experiment. After isolation of sample mRNA (1) synthesis of cDNA (complementary DNA, step) chains
begins with addition of oligo(dT) primers (2), then cDNA is amplified, producing cRNA (complementary RNA), which is labelled with biotin (3) and
later fragmented (4). After such preparation sample cRNA is ready for hybridization with microarray probes (5) and ready for the final staining
process (6)

Fig. 3 Electrophoretic analysis of the products obtained at various
stages of a microarray experiment. Lanes 1 and 2, isolated RNA;
3 and 4, purified cRNA; 5 and 6, fragmented cRNA (Image courtesy
of Herok R. - unpublished data)
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polymerase which synthesizes the second strand of the
cDNA, removing the remaining mRNA fragments found
on its way. Measurement of cDNA concentration, which
allows standardizing it across various samples, is not a
part of the standard experimental procedure for
eukaryotic cells, due to the presence of other nucleic
acid species that affect the spectrophotometric measure-
ment, whose removal requires additional cDNA purifica-
tion. This step is strongly influenced by any previous
RNA degradation, which leads to the creation of trun-
cated mRNAs (from the 5′-end) [66]. When oligo-dT
primers are used during cDNA synthesis these truncated
mRNAs are read from the 3′-end only to the position of
truncation, and the remaining part is lost due to the lack
of poly-A. In such a situation probes located further
from the 3′-end usually show lower signal intensity, a
phenomenon which is the basis of RNA degradation
plots used to assess the mRNA quality [62]. In order to
reduce this effect, on 3′IVT microarrays probes from a
single set are selected based on a very small region of
600 bp located close to the 3′-end of the mRNA. To

further reduce this bias sophisticated methods have been
developed that take into account the location of regions
targeted by probes in order to correct the signal inten-
sities [67, 68].
The 3′-end bias does not occur when random primers

are used for the cDNA synthesis. Random primers do
not require a poly-A tail since they can attach to any
region of the mRNA and not only to its 3′-end, promot-
ing synthesis in a 3′ ➔ 5′ direction, and a very strong
5′-end bias can be observed as shown in ref. [69].
Although many of the available cDNA synthesis kits

include a combination of oligo-dT and random primers,
kits based solely on oligo-dT are commonly used espe-
cially for the 3′-IVT platform where 3′-UTR sequences
are of the highest importance since they are targeted by
oligonucleotide probes.
Oligo-dT-based cRNA synthesis introduces an add-

itional bias that may affect the results of a microarray
experiment. First of all, because of the mRNA degrad-
ation problem, oligo-dT primers are a good choice only
if the region of interest is located in the vicinity of the

Table 1 Reference genes found on a typical Affymetrix 3’IVT microarray. Amplification and hybridization control RNAs are added in
various proportions and quantities as indicated in the last column. The amplification control transcripts are added using various
dilutions which results in an estimated copy numbers ranging from one copy per 6,667 to 100,000 transcripts in the studied RNA
sample. The hybridization control consists of biotinylated and fragmented cRNAs added in various amounts that result in a final
concentrations ranging from 1.5 to 100 pM

Group Type Name Description

1 Housekeeping genes AFFX-HSAC07/X00351 ACTB - β-actin gene responsible for the structure of the cell

AFFX-HUMGAPDH/M33197 GAPDH – enzyme which takes part in glycolysis

AFFX-HUMISGF3A/M97935 STAT1 – transcription factor

2 Ribosomal RNA AFFX-HUMRGE/M10098 Gene coding for 18S rRNA subunit

AFFX-M27830 Gene coding for 28S rRNA subunit

AFFX-r2-Hs18SrRNA Gene coding for 18S rRNA subunit - version 2

AFFX-r2-Hs28SrRNA Gene coding for 28S rRNA subunit - version 2

3 Amplification control (Poly-A spike) AFFX-DapX / AFFX-r2-Bs-dap Dap gene of B.Subtilis bacteria - proportions 1:6,667

AFFX-ThrX / AFFX-r2-Bs-thr Thr gene of B.Subtilis bacteria - proportions 1:25,000

AFFX-PheX / AFFX-r2-Bs-phe Phe gene of B.Subtilis bacteria - proportions 1:50:000

AFFX-LysX / AFFX-r2-Bs-lys Lys gene of B.Subtilis bacteria - proportions 1:100,000

4 Hybridization control (Bacterial spike) AFFX-BioB / AFFX-r2-Ec-bioB BioB gene of E.Coli bacteria – quantity 1.5 pM

AFFX-BioC / AFFX-r2-Ec-bioC BioC gene of E.Coli bacteria – quantity 5 pM

AFFX-BioDn / AFFX-r2-Ec-bioD BioD gene of E.Coli bacteria – quantity 25 pM

AFFX-CreX / AFFX-r2-P1-cre Cre gene of P1 bacteriophage – quantity 100 pM

Fig. 4 cDNA synthesis based on a commercial T7-oligo (dT) primer. The arrow indicates the direction of synthesis, red font indicates the promoter
sequence used in the amplification. The green region is the sequence spacer that separates the primer from the (T)24 motif
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3′-UTR, since large distances between the region tar-
geted by probes and the poly-A can decrease the preci-
sion of expression level estimates [70]. If the analysis
requires the entire transcript as in the case of WT
(whole-transcript) microarray platforms where individual
exons are analyzed, random primers are required. Add-
itionally, oligo-dT is assumed to bind only to the poly-A
tail of the transcript, requiring a long continuous strand
of A nucleotides, as shown in Fig. 2. However, partial
primer complementarity (i.e. complementarity of only 8
adenine nucleotides in the primer’s sequence) is suffi-
cient for the reaction initiation, and due to the ran-
dom nature of the attachment it can also bind to the
A-strands found commonly in the UTRs [71]. Further,
with increasing concentration of oligo-dT the chance of
attaching multiple oligonucleotides to a single mRNA are
increased. In such situation the synthesis may start from
two distinct regions but the reaction located closer
to the 3′-end might be blocked by the second reac-
tion, again producing truncated cDNA products [71].
This phenomenon can therefore affect the entire
probe-set signal intensity of the targeted transcript if
its sequence includes simple repeats built predomin-
antly of A nucleotides.

Step III: Amplification and labeling
In this step the newly-synthesized cDNA is replicated
(amplified) in a process of in vitro transcription. The
goal of this step is to obtain a large quantity of cRNA
containing biotinylated C and U nucleotides that will be
required in the subsequent steps [58]. For this purpose
another fragment of oligo-dT is used, marked in red in
Fig. 2, which serves as a promoter for the T7 bacterio-
phage polymerase.
The efficiency of this reaction and its consistency be-

tween samples has a decisive impact on the final experi-
mental outcomes [72]. There are many factors which
influence the efficiency of this reaction including the
structural properties of the cDNA itself which, depend-
ing on the GC content, can affect the efficiency of the
polymerase [73] and form secondary structures [74].
This step is completed with a cleanup and quantification
of the cRNA which allows for control of the total reac-
tion yield and purity of the sample. The product of the
amplification reaction can be observed in lanes three
and four of the electrophoresis gel (Fig. 3). rRNA is no
longer visible, and due to the variability in length of the
cRNAs there are no easily distinguishable bands visible
on the gel.
Post-experimental control of cRNA level variations,

utilizes the signals of probes targeting a reference RNA
(poly-A spike) added prior to cDNA synthesis and sig-
nals of housekeeping genes which should be on a similar
level across all samples. The poly-A spike contains

transcripts of five B. subtilis genes (Dap, Lys, Phe, Thr,
and Trp) which are added in various proportions to the
isolated RNA. Since they all include a poly-A tail they
undergo the same procedure as the RNA analyzed, inde-
pendently of its condition. Lys gene RNA is added at the
lowest concentration (1:100,000 of the total RNA) which
is close to the sensitivity level of the microarray. Its
detection in at least half of the microarrays of a given
experiment is a good indicator of a properly conducted
procedure. The remaining reference RNAs are added in
increasing concentrations Lys < Phe < Thr < Dap with
Dap being the highest and close to the probe signal in-
tensity saturation level.
The amplification products no longer have the T7 pro-

moter, although the spacer sequence between the pro-
moter and the (T)24 primer (green in Fig. 3) is also
amplified [75]. Since this fragment is copied with each
cRNA its quantity is very large, and since it can bind to
probes having a similar sequence it might affect their
signal intensity [69]. It is believed that the process of
amplification might be the source of inconsistent signals
among samples, as it depends highly on the experi-
ment conditions and the transcript structure [74, 76],
becoming the main motivation for the development
of microarray protocols that do not require RNA
amplification [77].

Step IV and V: cRNA fragmentation and hybridization
cRNAs obtained in the previous step are cut into 50–
100 nt fragments shown in lanes five and six of the elec-
trophoresis gel (Fig. 3). After this, another set of external
RNA controls (ERCs) that originates from P1 bacterio-
phage and E. coli bacteria (termed bacterial spikes) is
added to the RNA pool. Similarly to the poly-A spike,
bacterial RNA is added in various concentrations with
the following relations satisfied: bioB < bioC < bioD < Cre
(group 4 in Table 1). BioB, bioC and bioD originate from
the E. coli genes used in the synthesis of biotin, while
Cre is isolated from P1 bacteriophage where its gene
product serves as a recombinase [78]. This bacterial
spike is already converted to cRNA and fragmented
allowing to control the hybridization process, independ-
ently of the efficiency of labeling and amplification used
in the previous steps to obtain cRNA [58]. After this the
mixture of various cRNAs is transferred on to the
microarray chip, initiating the hybridization process.
Hybridization is the most time-consuming step of the

entire microarray procedure. During approximately 16 h,
in which microarrays are incubated in a hybridization
oven set to 45 °C, the cRNA binds to the specific probes
attached to the glass surface of the microarray chip. The
dynamics of the hybridization process depends on many
factors which, as in the amplification step, depend on
both the reaction conditions and structural properties of
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the individual cRNA molecules which may significantly
affect the experimental outcomes [79, 80]. Prolonged
hybridization can cause sample drying and uneven dis-
tribution of the material on the surface of the chip. Add-
itionally, evaporation of some of the water can change
the salt concentration in the buffers and significantly
affect the efficiency of the process [81].
The main purpose of the bacterial spikes added before

the hybridization step is to control the consistency of
hybridization conditions across all samples, assessing the
overall microarray performance [82]. Flaws in the experi-
mental procedure cause either variations in expression
intensity range or in the relations among individual bioB,
bioC, bioD and Cre transcripts, although one has to re-
member that flaws in the hybridization process affect
other transcripts as well. For this reason, hybridization
inconsistencies should be also visible in probe-sets tar-
geting other cRNAs, including the poly-A spike controls.
If variations are only present in the bacterial spikes, the
problem most likely originates from inaccuracies in their
preparation or their concentration in the pre-hybridized
cRNA. All of the possible scenarios for housekeeping
genes, poly-A, and bacterial spike controls are summa-
rized in Table 2.
Bacterial spike controls are a good indicator of prob-

lems that may occur during the hybridization procedure,
although they fail to detect uneven hybridization, since
the probe-set intensity is obtained after summarizing
signals of over 20 individual probes, spread over the en-
tire surface of the microarray (3′IVT arrays) or located
in a small region at the middle of the array (WT arrays).
For this purpose the quality control of each sample should
include the analysis of an image of the microarray surface,
which is either a complete scan saved in a DAT file, or
more commonly a recreated image based on the individual
probe intensities stored in a CEL file [83, 84].
The main assumption made in design of a microarray

is that probes targeting a single transcript are placed

randomly on its surface. For this reason, variations in
the signal intensity of specific regions suggest reasons
other than the biological variation between the analyzed
mRNAs. Such differences among regions, termed image
artifacts, are mostly caused by bubbles of air or small
levels of impurities, which were added into the micro-
array cartridge with the experimental solutions [85].
Such artifacts appear very commonly, although they usu-
ally have a very small size and are handled efficiently by
summarization methods, which are insensitive to a small
number of outlying values. The main problem occurs
when the artifact covers a significant percentage of the
array surface or its intensity is extremely high and close
to the saturation level of the probes. Such artifacts are
mainly caused by uneven hybridization and affect not
only the expression estimates from probes located in its
region, but also the remaining probe signals. This latter
effect is due to data processing, which utilizes expression
levels of all or of a significant fraction of the probes on
the microarray [38].
Microarray surface artifacts can be visualized by either

creating an image, based on single probe expression in-
tensities in a convenient (usually logarithmic) scale, or
by analyzing differential images created by subtracting
the signal of each probe on a single microarray from that
on another reference array created by, for example, cal-
culating the median intensity level of each probe across
all microarrays in a single experiment [37]. If a defective
array is found, probes affected by an aberration may be
separated and removed from the subsequent data
analysis or even recreated using imputation tech-
niques [38, 37, 85, 86]. Microarrays affected by a very large
aberration should be removed from the study, as they no
longer serve as a reliable source of information.

Step VI: Washing and staining
Washing follows the cRNA hybridization and is used to
remove cRNA non-specifically bound to the microarray
surface. Again, in this step small variations in the reac-
tion conditions may affect the expression estimates [87].
Depending on the conditions of the washing process
(temperature, salt concentration, calcium and magne-
sium ion levels in the buffer) non-specifically bound
cRNA is removed with varying efficiency, affecting the
sensitivity and background level of the entire microarray.
The binding strength of cRNAs depends not only on
their complementarity level but also on the temperature
of the hybridization and their sequence characteristics,
mainly the GC content [88] and specific base positions
inside the sequence [44]. Separation between the binding
strength of non-specifically bound GC-rich cRNA and
GC-poor cRNA with perfect complementarity is not
very sharp, affecting the final intensity level of cRNAs
depending on their sequence characteristics [50], which

Table 2 Problems detected by different control probe-sets and
their possible reasonsa

Housekeeping
genes

Poly-A
spike

Bacterial
spike

Possible reason

error ok ok Poor quality of the mRNA
analyzed

error error ok Problems during amplification/
labeling

error error error Problems during hybridization/
washing

ok ok error Inaccurate preparation of
bacterial spike

ok error ok Inaccurate preparation of
bacterial poly-A spike

aOther possible combinations of errors rarely occur in practice
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can be only reduced using sequence-based normalization
approaches during the data pre-processing step [89, 90].
The washing process is followed by staining of the hy-

bridized cRNA using a streptavidin-phycoerythrin com-
plex (Fig. 2). Streptavidin is a protein with high binding
affinity to the biotinylated nucleotides used in the cRNA
preparation, while phycoerythrin is a fluorescent dye
used for quantitation of the hybridized cRNA. The
quality of the fluorophore used significantly affects the
fluorescence intensity of the microarray, decreasing its
sensitivity if it is exposed for too long to daylight [91].

Step VII: Scanning
In this step the microarray cartridge is placed in the
microarray scanner where the fluorescence of the phyco-
erythrin bound to the cRNA is excited using a laser. The
level of fluorescence is measured by the scanner’s de-
tector and is assumed to be proportional to the amount
of cRNA bound to the corresponding probe. The length
of this process depends on the size of the microarray
and in most cases lasts around 10 min for a single array.
During the scanning process all arrays are placed inside
the scanner’s chamber so that the fluorescence intensity
is not affected by differences in the length of exposure
to daylight, which could increase the differences among
microarrays in both the scale of the measurements and
the sensitivity level. It is advised to scan each microarray
only once, since each subsequent scan decreases the
fluorescence intensity by 10–20 %, due to decay of the
fluorophore [92]. The fluorescence intensity of cyanine-
based dyes also used in microarray experiments, such as
Cy5, can be further affected by the ozone concentration
in the laboratory, a factor which is both time- and
location-dependent, and can become a major source of
among-experiment inconsistencies [60, 93].

Step VIII: Data pre-processing
The last stage involves data pre-processing which starts
by analyzing the microarray image stored in the DAT
file, whose goal is to obtain single fluorescence intensity
for each probe based on the 16 pixels of the original
microarray image. This step is performed by the
Affymetrix software and returns a CEL file as an out-
put, in which each probe, at a specific position on
the microarray, has a signal intensity assigned to it.
These individual probe intensities are used in the subse-
quent preprocessing steps, during which each array is
standardized by first estimating and then subtracting the
background signal in order to reduce the effect of non-
specific hybridization [44]. Following step is to perform
normalization procedure which reduces the differences
in probe intensities that originate from differences in ex-
perimental conditions and cRNA concentration [31, 94].
The final step of pre-processing is the summarization, in

which a single expression estimate is calculated for each
probe-set based on the intensity of the individual probe
signals [95]. Summarization step is highly dependent on
the quality of the probe and probeset definitions which
are in many cases low due to inaccurate transcriptome
data at the time of microarray design. This can result in
probesets targeting transcripts of multiple genes due to
low probe specificity, probes that do not map any of the
known transcripts [41, 42] or multiple probesets that
map the same gene [39, 40], requiring the development
of methods used for the validation of existing probes and
for probeset redefinition [41, 42, 96].
Selection of the pre-processing strategy can have a

very large impact on the experimental outcomes [94]
and often requires a few assumptions which are not
always acceptable. The main assumption made by pre-
processing methods is that the total level of mRNA in
the cell does not vary significantly among samples,
regardless of the experimental conditions and cell lines
used. This assumption is required for the standardization
approaches based on mean and median scaling or more
complex approaches, such as quantile normalization [31],
and its natural consequence is that the amount of
differentially-expressed features with increased or de-
creased levels will be always similar. For example, in the
case of global transcript level changes in cells with inhib-
ited transcription, one might expect to detect predomin-
antly transcript down-regulation, whereas after applying
quantile normalization it is very probable that a significant
number of up-regulated transcripts will be observed, due
to intensity distribution transformations.
Another important assumption is forced by the mas-

sively parallel experimentation of the microarray tech-
nique which allows for assessing expression level of
thousands of genes simultaneously. We have to assume
that the reaction conditions for each individual gene
were similar while knowing that due to various molecu-
lar properties of the analyzed RNA/DNA fragments it is
impossible to properly optimize each of the individual
reactions. Most of the data processing methods make
this assumption although some standardization methods
also exist that utilize probe and RNA/DNA sequence in-
formation in order to reduce the signal differences
resulting from sub-optimal amplification and hybridization
conditions that affect gene expression estimates to a vary-
ing degree [89, 90].

Conclusions
Despite successful studies of reproducibility [27] and
specificity [97], microarrays have been often subject of
criticism as a method which fails to identify relevant in-
formation that can be transferred directly into clinical
applications [98]. The main reason is that statistical sig-
nificance often differs from biological relevance due to a
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very limited number of samples or to the influence of
other factors, such as cellular heterogeneity or variability
of the morphological features, which are difficult to sep-
arate from the studied features. This highlights the im-
portance of experimental design which utilizes an
adequate number of samples and biological replicates to
answer questions defined in the project.
In this article we describe the experimental protocol

used for Affymetrix microarrays and important factors
that may influence its outcomes, summarized in Fig. 5.
The entire procedure has been subject of many changes
since the first Affymetrix microarrays were released,
mainly involving different sets of reagents which allow
obtaining a higher yield of reactions with shorter incuba-
tion times. The most important changes include the
transition from one-step to two-step cDNA synthesis in
2004, and the addition of whole transcript (WT) micro-
arrays in 2009, which utilize different sets of reagents
produced by Ambion. Apart from the differences in
cDNA synthesis, which as described in step two of the
experimental protocol, is based on random primers in-
stead of oligo-dT, significant modification was also made
to the labeling process of WT microarrays., The labeling
takes place after cDNA fragmentation and uses terminal
deoxynucleotidyl transferase (TdT) that adds labeled nu-
cleotides only at the 3′-end of the cRNA. Despite similar
methods of oligonucleotide probe design, changes in the
experimental procedure might explain the differences in
transcript level estimates obtained using various plat-
forms, and their modifications with time might be a
source of the inconsistencies observed among experiments

conducted by different laboratories and even in the same
laboratory, when separated by long periods of time.
The capabilities of microarray studies are limited, since

the measurement of transcript levels provides only a
rough estimate of the intracellular conditions at a spe-
cific time point, and is affected by a plethora of
experiment-specific factors. The process of discovery of
new drugs, using expression or genotyping microarrays,
is therefore uneven in pace and in some cases might be
even misleading. However, microarrays can be success-
fully used to validate the effects of existing drugs by
helping to identify their targets and off-target effects
[99]. Microarrays are becoming less popular due to the
decreasing costs of the RNA-seq methods [100], al-
though one has to remember that some of the steps used
in the microarray procedure, with their drawbacks and
limitations, are also utilized in other techniques includ-
ing the RNA-seq approaches [101–103]. Despite the
evolution of experimental procedures, the fundamental
principles behind microarray experiments remain similar
and their understanding is also an essential step towards
appropriate interpretation of the data provided by more
advanced but related methods.

Reviewers’ comments
Reviewer’s report 1: Dr. Janet Siefert
Jaksik et al. have written a review article on the use of
microarrays and the cautions and complications of using
the results of them to evaluate research data. The
Kimmel lab has considerable experience, over several
years, with microarray data so the expertise of his team

Fig. 5 Individual steps of a microarray experiment. Right panel describes factors that may affect experimental outcomes, left panel typical methods
that are used to validate each of the processing steps
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to evaluate and write such an article is well placed. I find
their review to be comprehensive and thorough. It will
be of considerable use to anyone considering employing
microarray experiments as well as those who need to
troubleshoot previous use of microarrays and accom-
panying statistical evaluations. Although the published
literature offers a number of articles reviewing micro-
array use, it is the expertise of this team, as statisticians
actively working with numerous microarray data sets,
that makes this article valuable to the researching
community.

Reviewer’s report 2: Dr. Leonid Hanin
This is an interesting article that lists and analyzes in
detail various sources of errors and inconsistencies asso-
ciated with microarray technology. It represents an
important step towards answering the following funda-
mental question: Is microarray technology a reliable tool
for furthering our understanding of biological systems at
the genomic level or is it bound to produce a lot of bio-
logical/technological artefacts and largely generate false
knowledge? I believe the main deficiency of the article is
that it is entirely qualitative in that no quantitative esti-
mates of the impact of various factors identified in this
work or of their relative importance were given. The
basic question that a researcher utilizing microarrays
would ask is whether impact of these factors is minor or
major. The article does not provide any information or
opinion in this regard. Given that the processes collect-
ively forming microarray technology are either biochem-
ical or physical in nature, estimating the effects of
various factors on gene expression signals quantitatively
seems to be in principle possible. For example, here are
two relevant publications, just from the top of my head,
about the physics of DNA/RNA hybridization, see also
references therein:
1. E. Carlon, T. Heim (2006), Thermodynamics of

RNA/DNA hybridization in high-density oligonucleotide
microarrays, Physica A 362: 433–449.
2. A. Ferrantini, E. Carlon (2008), On the relationship

between perfect matches and mismatches in Affymetrix
Genechips, Gene 422: 1–6.
On a more technical level, I have the following ques-

tions and comments.
1. One of the sources of uncertainty in determination

of gene expression levels that was not mentioned in the
article is errors in gene finding. While for well-
annotated genomes of model organisms they are prob-
ably insignificant, for many other organisms type I and
II errors in gene finding may be as high as 10–15 %.

Authors’ response: Description of probe design flaws
resulting from inaccurate transcriptome data were
added to the description of the data pre-processing step.

“Summarization step is highly dependent on the
quality of the probe and probeset definitions which
are in many cases low due to inaccurate transcriptome
data at the time of microarray design. This can result in
probesets targeting transcripts of multiple genes due to
low probe specificity, probes that do not map any of the
known transcripts [41, 42] or multiple probesets that
map the same gene [39, 40], requiring the development
of methods used for the validation of existing probes
and for probeset redefinition [41, 42, 96]. “

2. Another factor that was mentioned only very briefly
in the text but probably deserves more discussion is het-
erogeneity of biological material from which mRNA is
extracted. It may include different types of cells, cells in
various phases of their life cycle, quiescent and prolifer-
ating cells, etc.

Authors’ response: Cellular heterogeneity is a major
problem in many biological studies and can indeed
significantly affect the results of a microarray study.
However because this problem is unrelated to the
technical aspects of the microarray protocol, we find it
to be outside of the scope of this article.

3. It was mentioned, again very briefly, in the
Conclusions section that utilizing several replications
may improve design of microarray experiments. I
think this is a very important point. I find it pretty
appalling that a lot of microarray experiments with so
many sources of variation and error were based on a single
run of the process! What minimum replication number
would the authors of the article recommend?

Authors’ response: Based on our experience we suggest
using at least 3 replicates for studies based on cell
lines. From a statistical point of view a minimum of
3 samples are required for the estimate of standard
deviation to be valid. Higher number of replicates
might be highly beneficial for experiments dealing
with poor quality material or studies aiming to
detect small differences in gene expression. For
experiments based on samples extracted from multiple
patients, replicates are usually not necessary since the
confidence level increases with the number of patients
studied.

4. It was stated in the Microarray Structure section
that the “amount of material hybridized to a given
probe… is related to the amount of DNA or RNA of a
given gene in the sample. ”What is this functional rela-
tionship? Is the magnitude of the optical signal produced
by microarray chip proportional to the copy number of
a gene’s RNA transcript in the sample? What happens to
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this relationship when microarray output data are pre-
processed?

Authors’ response: The fluorescence intensity of probe
is proportional to the RNA level of corresponding
gene although, as shown by Held et al. in 2006 the
relationship is not linear whether or not the data
are pre-processed.

Finally, here are few minor comments.

Authors’ response: Minor comments of the reviewer
have been taken into account. Corresponding changes
in the manuscript are highlighted in grey.

1. Introduction, line 2. “physical or chemical condi-
tions”. Perhaps biological conditions too?
2. Introduction, line 4. It seems like “their” should be

inserted between “evaluate” and “variability”.
3. Introduction, paragraph 2, sentence 2. Aren’t

“specific methods used” and “inaccuracies of the
measurements” themselves “experimental factors”?
4. Introduction, last paragraph. What is the difference

between “accuracy” and “precision”? Also, how is specifi-
city defined in the case of microarrays?

Author’s response: Definitions of accuracy and
precision can be found in ref. 45.

In the case of microarrays specificity refers to the ability
of a probe to bind a unique target sequence. A specific
probe provides signal proportional only to the amount
of the target sequence, while non-specific probe signal
will be a result of interaction with more than one target
sequence. The specificity of a probe can be diminished
by cross-hybridization, also called non-specific
hybridization, a phenomenon in which sequences
that are not strictly complementary according to the
Watson–Crick rules bind to each other.

5. Introduction, last sentence. Delete “have”.
6. Microarray Structure, paragraph 2. “…600 nt sequence

fragments located near the 3′ end of a specific transcript
(Fig. 1). “This is not clear from Fig. 1.
7. Microarray Structure, last paragraph. Platform dif-

ferences contribute to low accuracy of microarrays, so
“despite” seems to be out of place.
8. Step I: RNA isolation, paragraph 1. “…ribosomal

RNA… is rarely studied”. I think rRNA is studied quite
extensively in phylogeny and pharmacology.
9. Step I: cDNA synthesis, paragraph 1. Shouldn’t the

figure referred to here be 4 rather than 3?
10. Conclusions, paragraph 1. What is the significance

of “morphological features” in this context?

11. Caption to Fig. 1. What is the purpose of probe
sets A and B? Also, does “corresponds to” mean
“proportional to”, see technical comments 4?
12. Figure 2. I think it would be better if the steps of

microarray experiment shown in the figure correspond
to the steps described under Biological background of
microarray experiments.
13. Table 2. What about the other two combinations

of control probe-set outcomes involving an error?
14. The authors are encouraged to proofread their

submission. There are a few places with missing or extra
commas, instances where article “the” can (or perhaps
should) be removed, etc.

Reviewer’s report 3: Dr. I King Jordan
This reviewer provided no comments for publication.
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