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Abstract

Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface
receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are
further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors
display broad tissue distribution throughout the body and are involved in several biological events. Immune
cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of
many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response
to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular
model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the
mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although
preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further
explored in future studies.

Reviewers: This article was reviewed by Neil S. Greenspan and Rachel Gerstein.
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Introduction
Nucleotides and nucleosides are fundamental molecules
in cell metabolism that perform a wide range of acknow-
ledged functions that include acting as energy sources
and being the structural building blocks of nucleic acids
[1,2]. Furthermore, these compounds act as potent ex-
tracellular signaling molecules and neurotransmitters via
the activation of a family of cell-surface receptors termed
purinergic receptors [3]. Based on biochemical, pharma-
cological and molecular biological studies, purinergic
receptors are categorized into P1 receptors (for adeno-
sine) and P2 receptors (P2Rs, for ATP/ADP and some
pyrimidines) [4-8].
To date, four P1 receptors have been identified: A1,

A2A, A2B and A3. All of these molecules are typical G
protein-coupled receptors, although they differ with re-
spect to the G protein to which they are coupled [8,9].
The P2Rs are separated into two distinct families: the
ionotropic P2X receptors (P2XRs) (activated by ATP)
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and the metabotropic P2Y receptors (P2YRs) (that bind
to ATP, UTP or their metabolites) [10-12]. Mammals ex-
press seven subtypes of P2XR monomers (P2X1-7R) and
eight subtypes of P2YR monomers (P2Y1R, P2Y2R,
P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R, and P2Y14R)
[13,14].
The P2XRs function as ATP-gated ion channels. Fol-

lowing the binding of an agonist to their extracellular
portions, they undergo conformational changes that re-
sult in the opening of an ion channel, facilitating the
influx/efflux of cations [15-17]. Following prolonged ac-
tivation by ATP, some P2XRs, such as P2X2R, P2X4R
and P2X7R, are capable of undergoing an additional con-
formational change, which increases the permeability of
large molecules [18-20]. In response to prolonged ex-
posure to ATP, other P2XRs, such as P2X1R and P2X3R,
undergo a fast desensitization, resulting in channel closure
[17,21-23]. Functional P2XRs are assembled into either
homomeric or heteromeric trimers, each subunit of which
contains two transmembrane domains; a large extracellu-
lar loop, which includes 10 conserved cysteines and glyco-
sylation sites; and intracellular N and C terminal domains,
which contain consensus phosphorylation sites for protein
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kinases [5,6,24-26]. The detailed signaling process that is
triggered by the activation of most P2XRs has yet to be
completely elucidated. For instance, one possible inter-
mediate in the activation of MAPKs, PKC and calmodulin
may be the cytoplasmic calcium [25,27].
The P2YR subtypes are typical G protein-coupled recep-

tors (GPCRs), which typically consist of seven transmem-
brane domains connected by three extracellular and three
intracellular loops. The N-terminus is extracellular, and the
C-terminus is intracellular [28-30]. Similar to other GPCRs,
stimulation of P2YRs induces the activation of a heterotri-
meric G protein and its dissociation into α and βγ subunits,
activating a range of effector proteins, such as phospholip-
ase C and adenylyl cyclase [25]. The P2YR family displays
high diversity with respect to amino-acid composition and
structural diversity with respect to the intracellular loops
and the C-terminus, influencing the degree of coupling
with functionally distinct types of G proteins [31,32].
P2Rs are broadly distributed throughout nervous, endo-

crine, cardiovascular, renal, gastrointestinal and immune
tissues [33] and participate in several biological events, such
as platelet aggregation, exocrine and endocrine secretion,
endothelial-mediated vasodilatation, nociceptive mechano-
sensory transduction, neuromodulation and neuroprotec-
tion, cell proliferation, differentiation, migration and death
during embryological development, wound healing, epithe-
lial cell turnover and immune responses [14,16].

Review
Importance of purinergic signaling in immune responses
Most immune cells express both P1 and P2 receptor
subtypes [34-39]. A large body of evidence has demon-
strated that extracellular nucleotides and purinergic re-
ceptors are key regulators of many immune phenomena,
such as inflammatory pain, cytokine secretion, chemo-
taxis, activation of various types of immune system cells,
surface-antigen shedding and pathogen killing.
ATP, adenosine and other nucleotides are also involved

in regulating the migratory responses of neutrophils, mac-
rophages and other innate immune cells [40,41]. Meta-
bolic stress, ischemia, hypoxia, inflammation and trauma
lead to the accumulation of adenosine in the extracellular
space, reporting tissue injury to the surrounding tissue in
an autocrine and paracrine manner. Another possibil-
ity is that adenosine generates tissue-protective responses
[42-44]. In its protective function, adenosine downregu-
lates the expression of adhesion molecules, the production
of oxygen radicals, degranulation and the release of cyto-
kines, consequently reducing cellular cytotoxic activities
[45-52]. In particular, ATP and UTP that have been re-
leased by apoptotic cells act as “find-me signals” that in-
duce phagocyte migration toward these cells [53]. In
neutrophils, stimulation with the chemotactic peptide
N-formyl-Met-Leu-Phe causes a rapid release of ATP in a
polarized manner. This released ATP activates P2Y2R to
modulate cellular orientation. The adenosine formed via
ATP degradation and subsequent stimulation of the A3

receptor enables autocrine signal amplification, which fa-
cilitates chemotaxis by regulating the speed of migration
[54]. Similar results have been observed in macrophages,
in which stimulation with the chemoattractant C5a in-
duced migration via the release of ATP and the activities
of the autocrine purinergic signaling system [55]. In ad-
dition, some studies have suggested that ATP acts as a
signal that induces the release of chemotactic factors
[56]. In contrast, other studies have found evidence that
nucleotides themselves function as chemotactic signals
[53,57,58]. Extracellular nucleotides are also involved in
modulating lymphocyte responses. B cells express vari-
ous P2R subtypes [38,59] and are able to release ATP
under steady-state conditions [60]. Incubating human
B cells with increased ATP concentration triggers a
dose-dependent increase in the level of inositol 1,4,5-
trisphosphate as well as an increase in the level of cyto-
solic free Ca2+. In addition, the c-fos and c-myc mRNA
levels increase, indicating that P2-receptor stimulation
was associated with this activity [61]. A transfection study
using two P2X7R non-expressing human lymphoid cell
lines (K562 and LG14 cells) showed that the heterologous
expression of this receptor enhanced cell proliferation in
the absence of growth factors and was dependent on the
level of released ATP [62].
Similarly, several stages of the life of a T lymphocyte

may be affected by purinergic signaling, including differ-
entiation, activation and proliferation. Thymocytes are
susceptible to apoptosis in the presence of extracellular
ATP via the activation of purinergic receptors in vitro
and in vivo [63-69]. The sensitivity of this cell type to
extracellular ATP is closely associated with its degree of
maturation, highlighting the importance of the puriner-
gic system in the regulation of cellular differentiation in
the thymus [70]. Recently, signaling via purinergic recep-
tors has been associated with fate determination during
T-cell development. P2X7R activation contributes to the
strength of the γδTCR signal in immature thymocytes.
The genetic ablation or pharmacological inhibition of
this receptor directs cells toward the αβ fate [71]. Per-
ipheral T lymphocytes release ATP into the extracellular
milieu under several conditions, such as TCR stimula-
tion, mechanical stimulation or osmotic stress [72-76],
via either the pannexin 1 hemichannel [77,78] or vesicu-
lar exocytosis [79]. In these cells, the binding of extracel-
lular ATP to P2Rs modulates several steps required for
complete T-cell activation, such as the influx of extracel-
lular calcium, the activation of p38 MAPK and the se-
cretion of IL-2 [72,75,80-82]. In addition to conventional
αβ T lymphocytes, the activation state of γδ T cells is
also regulated by ATP release and autocrine signaling
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via a purinergic receptor, namely P2X4R [83]. Similarly,
activation of P2X7R by ATP inhibits the suppressive
function and disrupts the gene transcription profile of
Tregs and promotes the differentiation of these cells into
proinflammatory TH17 effector cells [84].
Furthermore, purinergic signaling, particularly that in-

volving P2X7R, also acts as a potent mediator of the
release of proinflammatory cytokines. One of the best
studied examples of this correlation is the participation
of P2X7R in the processing and release of IL-1β and
IL18 [85,86]. Based on experiments performed in vitro
and in vivo using P2X7−/− mice, ATP was identified as a
strong IL-1β-releasing agent that acts via this receptor.
LPS, the strongest inducer of IL-1 secretion, is an incom-
plete stimulus in the absence of ATP, leading to the accu-
mulation of pro-Il-1β in cytoplasmic vesicles [85,87].
These findings reinforce the importance of purinergic

signaling mechanisms as key regulators of many aspects
of immune responses. Under normal conditions, extra-
cellular ATP (the natural agonist of most P2Rs) is pre-
sent at nanomolar concentrations, which are maintained
by extracellular nucleotide-hydrolyzing enzymes, such
as ecto-nucleoside triphosphate diphosphohydrolases
(E-NTPDases) [88-90]. However, under certain condi-
tions, such as inflammatory, ischemic and hypoxic states,
several different cell types release ATP from intracellular
storage compartments into the extracellular media, ele-
vating its external concentration to the millimolar range
and inducing predominantly proinflammatory respon-
ses [90,91]. Several mechanisms for ATP release have
been described, including cell death, vesicular trans-
port, and the activities of stretch-activated channels,
volume-regulated channels, maxi-anion channels, pan-
nexin and connexin hemichannels and P2X7R [9,13,92].
In a “stressful environment” containing damaged host cells
and the leakage of intracellular contents, purinergic recep-
tors allow immune cells to recognize the ATP that is re-
leased into the extracellular milieu. Therefore, purinergic
signaling participates in an important system that recog-
nizes “danger” signals, alerting the immune system to a
threat [93,94]. Accordingly, the damage caused by patho-
gens at the infection site induces the release of additional
ATP [95].
In this regard, it appears that a natural consequence of

stress conditions is the alteration of purinergic signaling,
which may be related to pathological processes associ-
ated with infectious conditions.

Involvement of purinergic receptors in HIV infection
Accordingly, some studies have investigated the involve-
ment of purinergic receptors, particularly P2X7R, in in-
fectious processes [96], as shown in Table 1.
Several studies have reported the involvement of puri-

nergic receptors in viral infections, either as facilitators
or as host defense factors. Purinergic receptor antago-
nists, such as suramin, pyridoxal-phosphate-6-azophe-
nyl-2’,4’-disulfonate (PPADS) and brilliant blue G (BBG),
the latter of which is a selective blocker of P2X7R, have
been used to block the infection of hepatocytes by the
hepatitis B virus [120-122]. Suramin has been demon-
strated to exert antiviral effects on other animal viruses
[123,124], although no further studies have associated
the antagonistic action of this compound with purinergic
receptors. Moreover, human endothelial cells infected
in vitro with cytomegalovirus displayed significantly in-
creased expression of P2Y1R, P2Y2R and P2X7R com-
pared to uninfected cells, although only slight effects
were found following infection with the herpes virus,
likely indicating a virus-specific effect [125].
Despite all of the efforts to control and prevent the

spread of human immunodeficiency virus (HIV) type 1
(HIV-1), HIV-1 infection and the resulting acquired im-
munodeficiency syndrome (AIDS) remain public health
problems worldwide. HIV is an enveloped virus classi-
fied into a subgroup of retroviruses termed lentiviridae
because these viruses exhibit extended clinical latency
and persistent viral replication throughout the illness
[126-130]. The continuous replication of HIV-1 and chro-
nic immune activation mediate the drastic depletion of
CD4+ T cells, a hallmark of infection with HIV-1 and
other associated immune disorders [131-134]. Throughout
the course of infection, immune responses only partially
control the level of these viruses in the blood [135].
The emergence of highly active antiretroviral therapy

(HAART) has enabled significant improvements in the
management of HIV-infected patients: the reduction of
plasma HIV-1 levels below the level of detection of com-
mercially available tests and limited immune reconsti-
tution [136-139]. The use of HAART has resulted in a
significant reduction in AIDS-related morbidity and
mortality [140]. However, although HAART efficiently
delays the onset of AIDS, its clinical utility is limited by
several barriers, such as viral resistance, non-adherence
to therapy and drug toxicity. Therefore, the search for
new targets of HIV-1 and/or host cellular proteins is es-
sential for the success of HIV-1 treatment [141-143].
Three recent reports have directly assessed the pos-

sible involvement of purinergic receptors in the immu-
nopathogenesis of HIV-1 infection, raising the possibility
of using these host proteins as targets for HIV-1 treat-
ment. Séror et al. found that infecting human cells with
HIV-1 leads to the release of ATP via pannexin-1 hemi-
channels and that this event is essential for the initial in-
fection. The ATP-degrading enzyme apyrase prevents
HIV-1 infection. Similarly, pharmacological inhibition of
pannexin-1 hemichannels or depletion of this protein using
small interfering RNAs protected the targeted cells from
HIV-1-mediated cell death and prevented HIV-1 infection.



Table 1 Involvement of purinergic in infectious processes

Microorganism Receptor Cell type Involvement Reference

Bacteria

M. tuberculosis ND monocyte ATP induced apoptosis of infected monocyte and reduced
viability of intracellular bacilli

[97]

BCG P2X7 Human macrophage Treatment with exogenous ATP caused cell death and
killing of intracellular mycobacteria within BCG infected
macrophages

[98]

M. tuberculosis P2X7 Human macrophage Treatment with ATP reduced viability of three virulent
strains of mycobacteria within human macrophages, what
was associated with stimulation of phospholipase D
activity

[99]

BCG P2X7 and
P2Y

Human macrophage Apoptosis of infected cells and killing of intracellular bacilli [100]

M.bovis P2X7 Bovine macrophage ATP induced killing Mycobacterium bovis in bovine
macrophages in a mechanism P2X7R-dependent

[101]

BCG P2X7 Murine bone-marrow derived macrophages
and murine macrophage cell line

P2X7R stimulation with ATP induced rapid fusion of
BCG-containing phagosomes with lysosomes, resulting in
formation of multibacillary vacuoles. Also, P2X7R resulted
in progressive acidification of BCG-containing phagosomes
in infected macrophages

[102]

BCG P2X7 Human macrophage Loss-of-function polymorphism 1513A → C abolished
apoptosis of infected macrophages and mycobacterial
killing

[103]

BCG P2X7 Human macrophage The 1513C allele was associated to increased susceptibility
to extracellular TB and ATP-mediated killing of
mycobacteria in macrophages was absent in homozygous
subjects and impaired in heterozygous subjects

[104]

BCG P2X7 Human macrophage Loss-of-function polymorphism 1096C → G (change Thr
(357) to Ser (T357S)) associated to reduced or near to
absent ATP-induced killing of intracellular mycobacteria

[105]

M. tuberculosis P2X7 Human PBMC PBMC from TB patients presented different pattern of
gene expression in response to ATP when compared to
healthy contacts

[106]

M. tuberculosis P2X7 Human monocyte/macrophages Mycobacterial infection induced an increase of P2X7
expression, higher release of ATP and an increment of
intracellular ATP accumulation

[107]

BCG P2X7 THP-1 and monocyte-derived macrophage ATP treatment activated autophagy pathway via a
Ca2 + −dependent process. This effect was associated
with a phago-lysosomal fusion and of mycobacteria-
containing phagosomes, resulting in reduction in
intracellular BCG viability

[108]

C. psittaci P2X7 Murine macrophage cell line ATP but no other nucleotides was able to induce
reduction in viability of intracellular bacteria and
chlamydial infection prevented ATP-mediated apoptosis

[109]

C. trachomatis P2X7 Murine peritoneal macrophage cells and
macrophage cell line

Chlamydial killing upon ATP treatment of infected cells
required phospholipase D activation, which is mediated by
P2X7R stimulation that leads to lysosome fusion with
mature Chlamydia vacuoles

[110]

C. muridarum, P2X7 Human cervical adenocarcinoma cell line Extracellular ATP or other P2X7R agonists induced a
decrease in chlamydial viability in epithelial cells, which
was dependent on phospholipase D activity and blocked
by treatment with P2X7R antagonists and butan-1-ol
(PLD inhibitor). Also, vaginal infection was more efficient in
P2X7R-deficient mice, what was correlated to higher level
of acute inflammation

[111]

Protozoan

L. amazonensis P2X7 Murine macrophage cell line Native and recombinant Leishmania nucleoside
diphosphate kinase (NdK) prevented ATP-induced cell
death

[112]
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Table 1 Involvement of purinergic in infectious processes (Continued)

L. amazonensis P2X7 Murine peritoneal macrophage Leishmania infection leads to increased expression of
P2X7R and higher responsiveness to ATP treatment. Also,
incubation with ATP reduced the parasite load, which was
reverted by pre-treatment with oxidized ATP and was not
not dependent of cell lysis or NO production

[113]

L. amazonensis P2X7 Murine peritoneal macrophage Macrophages infected with L. amazonensis exhibit higher
apoptosis rate and parasite degradation upon ATP
treatment and presented differential modulation of the
uptake of cationic and anionic dyes

[114]

L. amazonensis P2Y Murine peritoneal macrophage Uridine nucleotides reduced parasite load and induced
morphological damage of intracellular parasites and
infected cells. They also induced significant levels of
apoptosis, ROI and RNI in infected cells.

[115]

T. gondii P2X7 Murine peritoneal cell and macrophage
cell line

ATP or BzATP treatment reduced parasite load. Parasite
load was not reduced in P2X7R-deficient mouse.
Furthermore, ATP treatment caused ultrastructural changes
in tachyzoite inside macrophages, increased lysosome
fusion with parasitophorous vacuole and ROS production

[116]

T. gondii P2X7 Human macrophage and murine bone
marrow-derived macrophage and
macrophage-like cell line

Infected macrophages obtained from homozygous
individuals for loss-of-function polymorphism 1513A → C
had no significant alteration in parasite load after ATP
treatment. Similarly, macrophages from P2X7R knockout
mice were not able to kill T. gondii upon ATP treatment

[117]

T. gondii P2X7 Human Peripheral blood cells SNP 1068T→C was found positively associated with
resistance to both congenital and ocular toxoplasmosis

[118]

T. gondii P2X7 Murine peritoneal cell In vivo infection of P2X7-deficient mouse resulted in a
more severe acute infection, higher parasite burdens and
pronounced liver pathology

[119]
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General inhibitors of purinergic receptors blocked the re-
plication of X4-tropic and R5-tropic HIV in activated T
lymphoblasts and that of R5-tropic HIV in macrophages
and dendritic cells. The selective depletion of mRNAs
encoding diverse purinergic receptors using interfering
RNAs facilitated the identification of P2Y2R as a recep-
tor related to HIV infection. Immunohistochemistry has
revealed elevated levels of P2Y2R in lymphoid tissue,
the frontal cortex and circulating leukocytes in untrea-
ted carrier patients compared with uninfected patients.
Immunofluorescence microscopy has shown that P2Y2R
is polarized at the virological synapse. Pharmacological in-
hibition or genetic ablation of P2Y2R has reproduced the
effects of general purinergic receptor blockers. Ultimately,
proline-rich tyrosine kinase 2 (Pyk2), a downstream ef-
fector of P2Y2R, was found to be a critical mediator of
HIV-1 infection [144].
The second study demonstrated that inhibiting the

purinergic receptors of macrophages resulted in a sig-
nificant reduction in the rate of HIV replication. Macro-
phages are indispensable in HIV pathogenesis because
they are susceptible to productive infection, often in the
absence of cytopathic or deleterious effects, thus serving
as long-lived virus reservoirs [145,146]. Therefore, im-
proving the understanding of the mechanisms by which
HIV infects and replicates within macrophages is crucial
for designing appropriate strategies to reduce the latency
and spread of HIV-1 [147]. Using oxidized ATP, a P2XR
antagonist, Hazleton et al. detected significant inhibition
of HIV replication in macrophages in a dose-dependent
and viral strain-independent manner, indicating that puri-
nergic receptors may be required for HIV replication. To
further discriminate which P2Rs may be involved, macro-
phages were treated with specific pharmacological P2R
antagonists. This approach revealed the requirement of
at least three purinergic receptors, P2X1R, P2X7R and
P2Y1R. Moreover, using a β-lactamase HIV entry assay,
P2X1R was demonstrated to participate in the viral entry
of macrophages. Finally, treating primary cultures of hu-
man macrophages with HIV gp120 resulted in significantly
increased release of ATP, indicating the possible autocrine
regulation of critical events in the viral life cycle [148].
In the third study, P2XR antagonists inhibited HIV-1

from infecting CD4+ T lymphocytes via both cell-free and
cell-to-cell contact in a dose-dependent manner. Add-
itionally, exploration of a library of purinergic antagonists
demonstrated that P2XR antagonists are the most potent
inhibitors of HIV-1 fusion, providing evidence of a new
therapeutic target to prevent HIV-1 infection of CD4+ T
lymphocytes [149].
Purinergic receptors have also been associated with the

neurotoxicity caused by HIV in infected individuals. In the
central nervous system, microglia are activated by HIV-1,
and in response, these cells release neuroinflammatory
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and excitotoxic products that are associated with the
pathogenesis of neuroAIDS in many infected individuals
[150]. Because P2XRs are key regulators of microglial
functions, Sorrel and Hauser investigated whether these
receptors are involved in the neurotoxic effects of HIV
and morphine in infected individuals, as it has been re-
ported that opioid-dependent microglial activation is me-
diated by P2X4R signaling. Pretreatment of microglia with
TNP-ATP, a nonselective stimulator of P2XRs, inhibited
Tat- and/or morphine-related neuronal death in a dose-
dependent manner and prevented the increase in cytosolic
free Ca2+. They also detected a rise in the level of ATP in
the medium of neuron-glia co-cultures after 30 minutes of
incubation in Tat and morphine, either individually or in
combination. Finally, using P2XR antagonists and ago-
nists, P2X4R was identified as the receptor responsible for
neurotoxicity in HIV-infected individuals [151]. Similarly,
large amounts of ATP, ADP and AMP and small amounts
of adenosine and glutamate were detected in the super-
natant of HIV-infected macrophage cultures. Applying di-
luted aliquots of these supernatants to neuronal cultures
increased the amount of extracellular glutamate and de-
creased the neuronal spine density via mechanisms that
are dependent on purinergic and glutamatergic receptor
activation [150].
Previous investigations have also explored the role of

adenosine receptors in the pathogenesis of AIDS. Pingle
et al. demonstrated a protective effect of stimulating the
A1A receptor (A1AR) against HIV-1 Tat-induced toxicity
in primary cultures of rat cerebellar granule neurons and
in rat pheochromocytoma (PC12) cells. Activation of
A1AR ameliorated the Tat-mediated changes in PC12
cells, such as the increase in the intracellular Ca2+ con-
tent, the release of NO and the expression of inducible
nitric oxide synthase (iNOS). Furthermore, pretreatment
with an A1AR agonist reduced the level of activation of
NF-κB by Tat and the number of apoptotic cells [152].
Moreover, A2AR stimulation inhibited the Tat-induced
production of TNF-α, a cytokine that plays a patho-
logical role in HIV-associated dementia, by macrophages
[153]. Together, these studies suggest that modulating
the activity of the adenosine receptor may be helpful in
preventing HIV-1-associated abnormalities [154]. Fur-
thermore, another report showed that stimulating the
A2A receptor using a monoclonal antibody reduced the
level of expression of the chemokine receptors CXCR4
and CCR5 in CEM T-cells, indicating a putative me-
chanism that could be exploited to block the entry of
HIV-1 [155].

Conclusion
Purinergic receptors are considered to be powerful
modulators of several physiological and pathological
events, making them attractive molecular targets for
pharmacological research. Although great advances in
the management of HIV-infected patients have been
achieved due to the emergence of HAART, barriers
such as drug resistance, drug toxicity and the cost of
treatment necessitate the development of new antivirals
[156]. Accordingly, recent reports of the role of puri-
nergic receptors in the immunopathogenesis of HIV-1
infection indicate that they are putative pharmacological
targets that should be further explored. In addition, ATP
could strengthen the function of the innate and adaptive
immune systems because it modulates immunological
events that are crucial for the anti-HIV response. For in-
stance, prostaglandin E2 (PGE2) inhibited HIV-1 replica-
tion in macrophages via a protein kinase A-dependent
mechanism [157]. Interestingly, P2X7R stimulation by
ATP is required for the release of PGE2 and other auta-
coids [158]. Additionally, Leal and colleagues found a
significant increase in the expression level of CD39
(NTPDase-1) in lymphocytes from HIV-patients, which
correlated to a significant increase in the ATP- and
ADP-hydrolytic activities [159]. These findings indicate
that extracellular nucleotides might be closely associa-
ted with the immune response to HIV infection.
Therefore, further studies must be conducted to im-

prove the understanding of the extent and impact of
purinergic signaling activities during all stages of HIV-1
infection.
First round

Reviewer’s report
Reviewer 1: Neil S. Greenspan, Case Western Reserve
University, United States of America

Reviewers’ comments
Pacheco et al. review several aspects of purinergic signal-
ing including the receptors and ligands and their roles in
immune responses, bacterial infections, protozoal infec-
tions, and HIV infection. A quick survey on PubMed of
recent reviews on purinergic signaling reveals none fo-
cused precisely on the roles of purinergic ligands and re-
ceptors in HIV infection. Thus, the role of purinergic
signaling in HIV infection is a topic deserving of review.
The sections on the effects of purinergic signaling in

the context of either bacterial or protozoal infections are
too brief to be of much use and distract from the main
focus on the connections between purinergic signaling
and HIV pathogenesis. Similarly, at the beginning of the
section pertaining to HIV infection, mentions of effects
of purinergic receptor antagonists on infection by “hepa-
titis virus” (which one, A?, B?, C?, D?) or the effects of
cytomegalovirus on expression of purinergic receptors
seem gratuitous and can be deleted.
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Answer 1: We did the alterations recommended and
focused the text in the HIV-1.
The focus needs to be more specifically on how puri-

nergic ligands and receptors participate in HIV patho-
genesis. Greater integration of the material addressing
effects of purinergic molecules on immune responses in
general and on HIV infection in particular would streng-
then the article. The authors would also add value to their
review by identifying specific experimental questions de-
serving further exploration.

Answer 2: We did the alterations recommended.
Quality of written English: Not suitable for publication

unless extensively edited.

Answer 3: We sent the paper to American Journal
Experts. The certificate is attached.
Reviewer’s report
Reviewer 2: Rachel Gerstein, University of Massachusetts
Medical School, United States of America
Report form:
Overall, this review needs considerable revision to be

more effective and readable.
Some specific comments that might guide the revision –
Abstract: An abstract should stand alone, and not

require specialized knowledge to be understood by the
reading audience. And most important, it must give a
good idea of what the article is about. To state that
there is a “relationship between […] purinergic signal-
ing […] and immunopathogenesis of HIV-1” is very
vague.

Answer 1: We did the alterations recommended.
Intro and body of review:
1. Is purinergic signaling important in immune **re-

sponses** ? is ATP a DAMP for mature functional im-
mune cells ? I was not convinced.

Answer 2: We did the alterations recommended.
3. The section on thymocytes does not seem relevant

to a discussion of response to a virus.

Answer 3: In the process of HIV-1 infection, one of the
consequences is the reduction of the timopoiesis. The
maturation and differentiation of thymocytes are modu-
lated by IL-7 / IL-7 receptor (IL-7R) signaling pathway.
During infection by HIV-1 occurs reduction in the level of
IL-7 (Young and Angel, 2011).
Young CD1, Angel JB. HIV infection of thymocytes

inhibits IL-7 activity without altering CD127 expression.
Retrovirology. 2011 Sep 16;8:72. doi: 10.1186/1742-4690-
8-72.
4. The mention of TH17 profile, the context (ie “this
condition”) is unclear.

Answer 4: We changed this in the text.
5. If the authors want to highlight work most related

to HIV-1, the inclusion of the sections on bacterial and
protozoan infections are not needed.

Answer 5: We changed this in the text.
6. In the last part of section 4, in the “neuroAIDS” sec-

tion, citations are needed to document the connection
and data indicating that ATP levels rise in the brain and
that this is tied to cognitive impairment.

Answer 5: We added the reference below in the text.
Luis B. Tovar-y-Romo & Dennis L. Kolson & Veera

Venkata Ratnam Bandaru & Julia L. Drewes & David
R. Graham & Norman J. Haughey. Adenosine Triphosphate
Released from HIV-Infected Macrophages Regulates
Glutamatergic Tone and Dendritic Spine Density on
Neurons. J Neuroimmune Pharmacol. DOI 10.1007/s11481-
013-9471-7.
7. Recent papers should be mentioned:
PMID:24842759, PMID:24158495 and especially: Idzko

M, Ferrari D, Eltzschig HK., Nature. 2014 May 15;509
(7500):310–7. doi: 10.1038/nature13085. PMID:24828189

Answer 6: We commented and added the reference above
in the text.
Quality of written English: Not suitable for publication

unless extensively edited.

Answer 7: We sent the paper to American Journal
Experts. The certificate is attached.

Second round

Reviewer’s report
Reviewer 1: Neil S. Greenspan, CaseWestern Reserve
University, United States of America
Comments to Authors:
Pacheco et al. have responded substantively to the pre-

vious reviews by tightening the focus of the manuscript
to emphasize the role of purinergic receptors in the
pathogenesis of HIV-1 infection of humans. The writing
has also been substantially improved, although there are
still a small number of passages requiring revision. The
following comments note areas of the text requiring
author responses.
1. In the abstract, the last two sentences are in need of

editing.
“Three recent reports have examined the relationship

between the level of extracellular ATP, the mechanisms
underlying purinergic receptors participating of in the
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infection mechanism of HIV-1 in the cell. Although pre-
liminary, these results indicate that purinergic receptors
are putative pharmacological targets to that should be
further explored in future studies.”
2. The second-to-last sentence at the end of the first

paragraph continuing onto the top of page 4 appears to
make more sense if “Although” and “it” are deleted. “Al-
though The detailed signaling process that is triggered
by the activation of most P2XRs, it has yet to be com-
pletely elucidated.”
3. On the top of page 5, in the sentence beginning “A

large body of evidence …,” the word “responses” might
better be replaced by “phenomena,” as immune “res-
ponses” are most typically referred to by immunologists
to indicate specifically coordinated events involving the
proliferation and differentiation of lymphocytes and not
separately for every sort of molecular or cellular mech-
anism that arises in the course of an immune response.
4. The mediator adenosine is referred to as a “danger”

molecule. While I recognize that this usage is wide-
spread, I would advise not using it especially when, as
here, “danger” is not defined. Frequently, molecules that
are taken to correspond to “danger signals,” with minimal
to no justification are in fact, in some circumstances, causes
of danger. For example, I just saw a report that the massive
tissue damage that characterizes Ebola virus infection is
largely attributable not to direct virus-mediated effects
but to the host response, in particular so-called cyto-
kine storm (http://www.npr.org/blogs/goatsandsoda/2014/
08/26/342451672/howebola-kills-you-its-not-the-virus)
from my perspective, calling the release of adenosine a
danger signal adds no insight not gleaned from a careful
delineation of the effects of adenosine on various receptors
and signaling pathways and can easily lead to incorrect
conclusions and sloppy thinking.
5. On page 9, in the first full paragraph, it is stated that

about HIV-1 infection that: “viruses in the blood, which
remains measurable throughout the course of infec-
tion …” The next paragraph seemingly contradicts that as-
sertion (“…the reduction of plasma HIV-1 levels below the
level of detection of commercially available tests and lim-
ited immune reconstitution (139–142).”).
6. On page 13, I would add one word to the sentence

quoted below, “Accordingly, recent reports of the role of
purinergic receptors in the immunopathogenesis of
HIV-1 infection indicate that they are putative pharma-
cological targets that should be further explored”.

Quality of written English: Acceptable
Authors’ response
We accept all of the reviewer’s suggestions. The text has
been changed to accommodate them.
Reviewer’s report by Rachel Gerstein
University of Massachusetts Medical School, United
States of America.
This reviewer provided no comments for publication.
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