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Abstract

in the RNA World hypothesis.

occurs by hopping of molecules to neighbouring sites.

(nominated by Eugene Koonin).

Background: Life depends on biopolymer sequences as catalysts and as genetic material. A key step in the Origin
of Life is the emergence of an autocatalytic system of biopolymers. Here we study computational models that
address the way a living autocatalytic system could have emerged from a non-living chemical system, as envisaged

Results: We consider (i) a chemical reaction system describing RNA polymerization, and (ii) a simple model of
catalytic replicators that we call the Two's Company model. Both systems have two stable states: a non-living state,
characterized by a slow spontaneous rate of RNA synthesis, and a living state, characterized by rapid autocatalytic
RNA synthesis. The origin of life is a transition between these two stable states. The transition is driven by stochastic
concentration fluctuations involving relatively small numbers of molecules in a localized region of space. These
models are simulated on a two-dimensional lattice in which reactions occur locally on single sites and diffusion

Conclusions: If diffusion is very rapid, the system is well-mixed. The transition to life becomes increasingly difficult
as the lattice size is increased because the concentration fluctuations that drive the transition become relatively
smaller when larger numbers of molecules are involved. In contrast, when diffusion occurs at a finite rate,
concentration fluctuations are local. The transition to life occurs in one local region and then spreads across the
rest of the surface. The transition becomes easier with larger lattice sizes because there are more independent
regions in which it could occur. The key observations that apply to our models and to the real world are that the
origin of life is a rare stochastic event that is localized in one region of space due to the limited rate of diffusion of
the molecules involved and that the subsequent spread across the surface is deterministic. It is likely that the time
required for the deterministic spread is much shorter than the waiting time for the origin, in which case life evolves
only once on a planet, and then rapidly occupies the whole surface.

Reviewers: Reviewed by Omer Markovitch (nominated by Doron Lancet), Claus Wilke, and Nobuto Takeuchi

Background

When we consider the network of biochemical reactions
that exists inside a living organism, it is important to
realize that these reactions are in a dynamical steady
state, rather than at thermodynamic equilibrium. The re-
action system is maintained out of equilibrium because
there is a continual input of energy and material (food)
and because the rates of reactions are controlled by
enzyme catalysts that permit desired reactions to occur
much more rapidly than they would in a non-living
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mixture of molecules. The presence of biopolymer cata-
lysts is an essential feature that distinguishes living sys-
tems from non-living chemical systems. Another key
feature of living systems is that they are autocatalytic,
i.e. they can reproduce and make more of their own
components. Once again, it is biopolymers that allow
organisms to do this. Cells use biopolymers to store the
genetic information that allows them to produce the
required catalysts for metabolism and to enable replica-
tion of the genetic polymers themselves. A commonly
used definition of life is that it is a self-sustained system
capable of undergoing Darwinian evolution [1]. As it
is biopolymers that allow life to be self-sustained and
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enable heredity and evolution, we take the view that it is
the emergence of autocatalytic biopolymer systems that
is the key step in the origin of life. Thus, our aim is to
understand how an autocatalytic biopolymer system
could have emerged from a non-living chemical system.

It is usually thought that the interdependent system
of DNA, RNA and proteins that sustains today’s cells is
too complex to have arisen de novo. A prime candidate
for a simpler biopolymer system that could have existed
in early organisms is the RNA world hypothesis [2-5],
which envisages that RNA sequences played both the
genetic and catalytic roles. This is supported by the fact
that RNA is the key component of the ribosome and by
a large number of experimental studies of ribozymes
in vitro [6-14]. In stronger forms of the RNA world hy-
pothesis, it is argued that RNA sequences were the first
autocatalytic biopolymers, and hence the first living
system, rather than just an intermediate step between
the origin of life and current life. It is then necessary
to demonstrate that formation of functional RNAs was
possible by non-living chemistry. Progress continues to
be made on mechanisms of prebiotic synthesis of nucleo-
tides and RNA oligomers [15-22]. In our view, the case
that the origin of life occurred via an RNA world is quite
strong, but it is still far from proven. Several authors have
emphasized the difficulties associated with the RNA
world and have considered alternative scenarios [23,24].
A review discussing why the RNA world is currently
the best theory we have for the origin of life, despite
acknowledged limitations, appeared very recently [25].

Although we will consider RNA world scenarios in this
paper, the two most important points that we emphasize
here are sufficiently general to apply if some other kind
of replicating molecular system arose prior to the RNA
world or instead of it. The first point is that the non-
living and living states are two alternative dynamically
stable states of the same chemical system. The second
point is that the origin of life is a stochastic transition
between these two states that is initiated by concentra-
tion fluctuations involving relatively small numbers of
molecules in a localized spatial region.

We previously showed that two alternative dynamic-
ally stable states exist in a chemical reaction system that
models RNA polymerization [26]. The model calculates
the concentrations of monomers and polymers of differ-
ent lengths. Monomer synthesis and polymerization
reactions can occur at a small spontaneous rate in ab-
sence of ribozymes. Polymerization can also occur at a
rapid rate due to catalysis by ribozymes, if these are
present. In one stable state, which we call dead or non-
living, the ribozyme concentration is negligible and the
reactions proceed at their spontaneous rates only. In the
other stable state, which we call living, there is a sub-
stantial ribozyme concentration and the polymerization
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rate is high, which causes autocatalytic synthesis of more
ribozymes. We calculated the phase diagram as a func-
tion of the rate parameters for spontaneous and cata-
lyzed reactions. We showed that there is a region where
the reaction system is bistable (i.e. both solutions exist
simultaneously) and also regions where only one or other
of the two solutions is stable. We subsequently showed
that a similar phase diagram exists for RNA systems with
nucleotide synthase and polymerase ribozymes instead
of polymerases [27] and in asymmetrical autocatalytic
systems describing the origin of homochiral biopolymers
[28]. In this paper, we will argue that the form of the
phase diagram is a generic feature of models describing
autocatalysis and the origin of life, and we will present a
very straightforward model that shows this in its simplest
and clearest form.

It is important that the real world must be in the
bistable region of the phase diagram. The living state
must exist in the real world, but it cannot be the only
solution, because the origin of life is a difficult and rare
event. We do not see spontaneously replicating systems
popping up easily in every test tube or puddle. The exist-
ence of two stable states is also demonstrated by the fact
that it is easy to kill an organism by depriving it of some
required substance, but the organism is not easily
brought back to life if the substance is resupplied (e.g an
organism that died of suffocation is not brought back to
life by giving it oxygen). We presume that the world
began in the non-living state, and that it was possible,
but difficult, for a transition to occur to the living state.
The question is how the transition could have occurred.

We previously argued that stochastic concentration
fluctuations are essential for the origin of life [26]. In a
large, well-mixed chemical system, we can write down
deterministic ordinary differential equations to describe
the concentrations of different types of molecule. The
non-living system is dynamically stable for ever in such
a deterministic case. In a system of finite volume, with
finite numbers of molecules, stochastic fluctuations can
occur that allow the system to jump from the non-living
to the living state. In the RNA polymerization model, it
is presumed that only fairly long RNA sequences have any
chance of being functional ribozymes. Such sequences are
very rare, and may only be present in a handful of copies,
even though monomers and short oligomers may be
common. Stochastic fluctuations in the ribozyme con-
centration are thus important, even if the monomer con-
centration is effectively deterministic.

In this paper, we want to investigate more carefully
the factors that determine the time required for the sto-
chastic transition to occur. We observed previously that
the transition to life occurs most easily in systems of
intermediate size [26]. If the system is too small, it is
very difficult to create sequences long enough to be
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ribozymes. If the system is too large, the concentration
fluctuations are too small to permit the transition to
occur. It is clear, however, that there is something
missing from this story. In reality, molecules have a finite
diffusion rate. Molecules have a finite lifetime before they
are broken down or destroyed. Only molecules relatively
close to one another on the surface of a planet have any
chance of interacting with one another. There must be
a length scale controlled by diffusion above which dif-
ferent regions of space are effectively independent of
one another on the time scale of the molecular lifetime.
The assumption that the system is well mixed breaks
down at larger lengths scales than this. Our aim in this
paper is therefore to study two-dimensional spatial models
(representing the surface of a planet) in which reactions
occur locally and there is a finite rate of molecular diffu-
sion. We will show that the concentration fluctuations
that lead to the origin of life can occur locally in any one
region of space. Once the stochastic transition has oc-
curred in one place, the living state can then spread
deterministically across the rest of the surface.

Results

A generic phase diagram for replicating molecules

In this section, we briefly summarize our RNA poly-
merization model [26] and show how the phase diagram is
obtained in this case. We then introduce a very simple
generic model for replicating molecules and show that the
phase diagram is equivalent.

In the RNA system, we suppose that precursor “food”
molecules are available in the environment at concentra-
tions F; and F,. We suppose that monomers, denoted
by A, can be synthesized from F; with rate constant s.
These monomers can react with F, to produce activated
monomers, A% with rate constant a. RNA polymers of
length # are denoted A,. An activated monomer can
react with a polymer to extend its length by 1 with rate
constant r. All molecules can escape from the system at a
rate u. If the system is well-mixed, it can be described by
the following ordinary differential equations:

dA

e sF) — aFA — rAA" — uA (1)
dA
dt” =rA"(A,.1 — A,) —uA, (2)
A*
ali—t =aF)A —rA" (A + P) — uA” (3)

In Equation 3, P is the total polymer concentration
of all lengths: P = Zn>2A”' We assume that there is a

minimum length m above which polymers have the
possibility to act as catalysts for the polymerization step.
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The concentration of polymers of at least length m is
P, = anmA”' The polymerization rate constant is

r:ro—l—kPm, (4)

where rj is a small spontaneous polymerization rate and
kP, is the term due to ribozyme catalysts. The constant
k is the catalytic efficiency of the long polymers, which
may be written as k = kgf, where fis the fraction of the
long polymers that function as catalysts and &, is the
catalytic efficiency of a functional catalyst.

We refer to Eqn. 4 as the feedback equation, because
it says that the presence of catalysts feeds back into the
polymerization rate and increases the rate of formation
of more catalysts. The stationary states of the molecular
concentrations can be obtained from Equations 1-4
using the methods described previously [24]. The key
point is that there is a dead (or non-living) state in
which P, is very small and r = ry, so that polymerization
occurs at the spontaneous rate, and there is a living state
in which kP,, >> ry, so that polymerization is autocata-
lytic and occurs at a much higher rate than the spontan-
eous rate. Figure 1 shows a phase diagram as a function
of k and ry We are most interested in the region where
both states are stable. The bistable region occurs if ry is
fairly small and k is fairly large. If k is too small, only the
dead state is stable, and if k is too large, only the living
state is stable. Furthermore, if 7, is large then there is
only one stable state for all values of &, and this changes
smoothly from dead to living as k is increased across the
dotted line in Figure 1. An example of this phase dia-
gram for different parameter values has previously been
given [26]. We have also considered the case where feed-
back is in the monomer synthesis rate [27] and have
extended the model to deal with the possibility of chiral
monomers [28]. Bistable regions were also found in
these cases. A bistable region equivalent to ours was
observed in related models for autocatalytic polymers
[29-31], although no explicit phase diagram was drawn.
When designing our original model, we were aware of
the toy model for the origin of life by Dyson [32]. This
model is described in a very abstract way with no expli-
cit chemical reaction equations. Nevertheless, the central
ideas of living and dead stable states and a stochastic
transition between these states exist in this model, and
the phase diagram of Dyson’s model also has a bistable
region similar to ours.

Having seen that the kind of phase diagram in Figure 1
occurs in many different models, we now wish to intro-
duce the simplest model we can that has the same phase
diagram. The simplified model will then be useful to in-
vestigate the dynamic properties of the stochastic tran-
sition to life in the following sections of this paper.
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Figure 1 Phase diagram for the RNA polymerization model as function of catalyst feedback efficiency k and spontaneous
polymerization rate r, with the other parameter set as: m=5, s=10, a=10 and u=1.
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We consider a single type of replicating molecule
whose concentration is ¢. Replicators can appear at rate
s, representing a slow rate of spontaneous synthesis by
random polymerization. This process is independent of
the replicator concentration. Existing replicators may be
copied with a rate constant r, representing a process of
non-living template-directed synthesis. This process is
proportional to the current replication concentration,
process is proportional to the current replication .
Replicators may also act as polymerases that catalyze
replication by using another replicator as a template.
The rate constant for this catalytic process is k and this
process is proportional to the square of the current con-
centration, @2, The increase in replicator concentration
is limited by finite resources. The simplest way to model
this is to assume a finite carrying capacity of the system,
corresponding to a concentration ¢ = 1, and to multiply
all the growth rates by a factor (1-¢). Finally, replicators
die (or are destroyed or removed from the system) at a
rate u. The deterministic dynamical equation for ¢ is:

62—(52 (s+rp+kp*)(1— ) —up (5)

In many models of population dynamics in evolution
and ecology, the linear growth term, r¢, is natural, and
the spontaneous term, s, and nonlinear term, ko® are
not considered. However, when considering the origin of
life, the spontaneous term is essential for generation of
the initial replicators, and the nonlinear term is essential
in order to give the possibility of two stable states. The
linear term is less important; therefore we will first

consider the case where r = 0. The stationary states are
the roots of this cubic equation. If s is small and k is
fairly large, there are two stable states, @«—; and ¢,
separated by an unstable state ¢3. The lower stable state
is a dead state, controlled by the balance between spon-
taneous generation and death: ¢~s/u. The upper stable
state is a living state controlled by the catalytic term k.
If k is large, the concentration will approach the carrying
capacity, @,~1. It is easy to obtain phase diagram for
existence of dead and living states as in Figure 2. This
has the same regions as Figure 1. If the linear growth
term 7 is non-zero, the positions of the phase boundaries

Living Only B

Catalytic Replication Rate Constant k

Dead Only

0 L 1 1 1 L 1 1 L L
0 002 004 006 008 01 012 014 016 018 02

Spontaneous Synthesis Rate Constant s

Figure 2 Phase diagram for the simple replicator model
(Egn. 5) as function of catalytic feedback efficiency k and
spontaneous synthesis rate constant s with u = 1. Boundaries
are shown for three different values of r.
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move, but shape of the diagram is qualitatively un-
changed (also shown in Figure 2). We therefore argue that
this kind of phase diagram is a generic feature of replicator
models for the origin of life, and that Equation (5) is the
simplest possible dynamical equation that has this phase
diagram.

The two’s company model

The main aim of this paper is to consider the influence
of spatial concentration fluctuations and limited diffu-
sion rate on the stochastic transition that leads to life.
Therefore, we will now define a spatial lattice model,
which we call the Two’s Company Model, that is a
spatial version of Eqn. 5, and reduces to Eqn. 5 when the
system is well mixed.

We consider a 2D square lattice of LxL sites. The
number of molecules on any one site may be n = 0, 1, 2
or 3 only. The carrying capacity of the whole lattice is
therefore 3L°. If there are N molecules on the lattice, the
mean concentration relative to the carrying capacity is
@ = N/(3L?). There are 3-n vacancies on a site with 7
molecules. Vacancies are treated as resources, and the
rates of spontaneous, linear, and replicative growth are
all proportional to the number of vacancies. The rate of
adding a molecule by the spontaneous reaction is
defined as s times the number of resources, i.e. s(3-n).
The rate of adding a molecule by the linear growth
process is defined as r/2 times the number of molecules
times the number of resources, ie. rn(3 —n)/2. This is
equal to r when n = 1 or 2, and zero otherwise. The
rate of catalytic replication is defined as k/2 times the
number of ways of picking a replicator-template pair
times the number of resources, ie. n(n-1)(3 -n)k/2.
This is kK when # = 2 and zero otherwise. The replication
process in the model can only occur when n = 2. “Two’s
company, three’s a crowd”; hence the name of the model.
Combining the three birth processes, we obtain the
total birth rate of molecules on a site with #» molecules,
as summarized in Figure 3. The death rate of a molecule
on a site with # molecules is un (i.e. u per molecule).

Hopping of molecules between sites is implemented
using either local or a global hopping rules in the fol-
lowing way. Each molecule attempts to hop at rate /. A
destination site is chosen for the molecule. In the case
of local hopping rules, the destination is chosen at
random from the 8 neighbouring sites of the original site.
In the case of global hopping rules, the destination site
is chosen at random from all the other sites on the lat-
tice. The molecule hops successfully to the destination
site if it finds a vacancy there, i.e. the hop is successful
with probability 1-n/3 (as shown in Figure 3). If the hop
is unsuccessful, the molecule remains on its original site.
Further details of the stochastic dynamics used to imple-
ment the model are given in the Methods section.
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Figure 3 (a) Transition rates in the Two’s Company model due
to birth and death events on a single site. (b) Each molecule
attempts to hop to a neighbouring site at rate h and is successful
with a probability equal to the fraction of vacancies on the
neighbour.
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The local hopping rules simulate local molecular dif-
fusion, which is an important part of this model. The
global hopping rules are intended as a comparison that
helps to illustrate the importance of local hopping. The
introduction of local hopping rules means that correla-
tions exist between the numbers of molecules on neigh-
bouring sites. However, if 4 is sufficiently large, the
system reaches a well-mixed limit where molecules are
randomly positioned over the whole lattice and there is
no remaining correlation between sites. In the case of
global hopping, there is no correlation between sites,
even when /7 is small. Below, we will discuss the mean
field approximation, which is exact for the global hop-
ping dynamics but it is only an approximation for the
model with local hopping dynamics. In the Methods sec-
tion, we show that when / is very large, both global and
local hopping models reach the same well-mixed limit,
which corresponds to the generic replicator model in
Equation 5.

Simulations are initiated in the dead state and followed
until a transition to the living state occurs. The concen-
tration in the dead state should be close to the stable so-
lution ¢; of Equation 5. In order to initiate the stochastic
simulation in the dead state, each lattice site is seeded
with molecular numbers sampled from a binomial distri-
bution with average concentration ¢;. In a typical simu-
lation, the system remains in the dead state for a long
time until a localized patch of high concentration arises
that is sufficiently large to be stable in the living state.
The origin of this living patch is a rare stochastic event.
However, once it is formed, the living patch then spreads
deterministically across the whole lattice.

A snapshot of a simulation shortly after the transition
to life is shown in Figure 4. Molecules that were
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Figure 4 Snapshot of a simulation of the Two’s Company model shortly after the transition to life. The living state is a dense patch of
replicators that have been synthesized catalytically (red). The non-living state is characterized by a low density of replicators created by
spontaneous synthesis (coloured grey) with small isolated denser patches. Once the living patch is big enough to be stable, it spreads
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synthesized by the spontaneous process are coloured
grey, and molecules that were synthesized by the catalytic
process are coloured red. These colours are used for
illustration, but all the molecules have identical proper-
ties. In Figure 4, a living patch has arisen in one region.
Within this region, there is a high concentration (most
sites have # = 2 or 3), and most molecules are red, indi-
cating that this patch is sustained by catalytic replication.
The rest of the lattice is still in the dead state, where
there is a low concentration (most sites have n = 0 or 1),
and most molecules are grey. Small clusters of red mole-
cules are nevertheless visible within the dead region.
These clusters appear and disappear rapidly. The origin
of life occurs when a cluster of this kind becomes large
enough to be stable and to continue to grow. If the
spontaneous rate s is suddenly switched to zero in the
configuration shown in Figure 4, then the isolated mole-
cules in the dead state rapidly disappear, but the living
patch remains virtually unaffected and continues to
spread. The spontaneous process is not necessary to sus-
tain the living state because the living state is autocata-
lytic. Of course, the spontaneous rate must be non-zero
in order to allow the transition to the living state in the
first place.

We performed many simulations of this model in
order to measure the way the time taken for the transi-
tion depends on the parameters. We define Ty = T +
Tspreads Where T, is the time until a local transition
occurs in any one region of the lattice, and T, is the
time for the living state to spread from one region across
the rest of the lattice, and T, is the time required for
the full lattice to reach the living state. These times were
measured as described in the Methods section.

Figure 5 shows the average T, as / is varied with a
fixed system size. A comparison of the transition times
with local and global hopping rules is shown for a small
lattice with L = 10. For large / the measured times for
local and global hopping converge, showing that the sys-
tem is well mixed. For smaller /, the transition time with
local hopping is always shorter than that with global
hopping. This shows that the local concentration fluc-
tuations that arise in the local hopping model make the
transition much easier. It can be seen that if / is very
small, the transition time becomes very long, both for
local and global hopping. It should be remembered that
the spontaneous generation rate s is very small, so the
concentration of molecules in the dead state is very
small. For the catalytic process to occur, it requires two
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Figure 5 Effect of hopping rate on transition time for fixed
system size with other parameters set as: s=0.02, r=0, k=9.

molecules on the same site. If / is too small, molecules
do not encounter one another frequently. Furthermore,
if molecules do encounter one another and a replication
occurs, there will now be three molecules on one site,
which blocks further replication. It is necessary for one
of these molecules to hop away before a second replica-
tion can occur; hence, /1 should not be too small. It can
be seen that, for the local hopping rules, there is an
optimum diffusion rate at which the transition is fastest.
This effect is not very strong in the small lattice (L = 10),
but is very pronounced in the larger lattice (L = 100) also
shown in Figure 5. The transition time decreases by
several orders of magnitude in the middle of the range
of 4. It is not possible to show the transition time for the
global hopping case for the larger lattice size because it is
too long to measure accurately in the simulation with
these parameters. In summary, Figure 5 shows that local
diffusion is essential in order to allow the transition to
life to occur at a reasonable rate in large systems, and
when diffusion is local, there is an optimal intermediate
rate of diffusion.

Figure 6 shows the variation of transition time with
system size when the hopping rate is kept fixed. For the
global hopping case, it is only possible to do these simu-
lations for fairly small lattice sizes, because the transition
time increases very rapidly with L. For the local hopping
case, it is possible to carry out simulations over a much
wider range of L, and it can be seen that the transition
time actually decreases with L, if L is sufficiently large.

As shown in left part of Figure 6, when the system is
small, it is more or less well mixed. Hence the transition
will happen globally across the whole system at the same
time. When the system is larger, it is no longer homoge-
neous. The transition will happen at a local region first,
then it will spread out to the whole system. The number
of independent local regions should be proportional

T T T
Local Hopping System Transition Time h=45 —<—
Local Hopping Region Transition Time h=45 —&—
107 £ Global Hopping Transition Time h=45 —&— o
Local Hopping System Transition Time h=24 —+
Local Hopping Region Transition Time h=24

Average Transition Time

100 N PR | PR " Il 1 1 L
10 102 10% 10t 108 108 107
System Size L2
Figure 6 Average transition time from dead state to living
state as function of system size with parameters set as: s=0.02,
r=0, k=9, u=1. The straight line illustrates a scaling of 112,
.

J

to L?. The average time taken for the transition to occur
in any one of these regions should vary inversely with the
number of regions, ie T ~ 1/I2 If the spread of the
living state is rapid, the spreading time, T, cqq is small
compared with the time taken for the transition to occur,
Teq- In this case the time taken for the whole system to
go through the transition is close to T, It can be seen
that there is an intermediate range of L in Figure 6,
where T, and T, are very close to one another and
where both scale as 1/L% as expected from this argu-
ment. Comparison of the results with /7 = 24 and & = 45
shows that when diffusion is slower, the transition from
homogeneous system to heterogeneous system happens
for a smaller system size.

If the system size is extremely large, there comes a
point where Tj,,..q is comparable to T, and the curves
for T, and T,., separate in Figure 6. At this point it is
possible for the transition to life to occur in a second
region independently before the living state from the first
transition has spread across the lattice. Beyond this point,
T,eq continues to decrease, but Ty, reaches a constant
value, which is what we expect if there are multiple ori-
gins happening in different places.

A useful way to understand the effects of the limited
diffusion rate in this model is to calculate the mean field
solution. In the Methods section, we calculate the prob-
ability P, that there are # molecules on a site, using a
mean field approximation that ignores correlations be-
tween neighbouring sites. The mean field solution
depends on % and it is not equivalent to the well-mixed
case, except for the limit of large /1, where both the lat-
tice model and the mean field approximation converge
to the well-mixed case. We expect that the mean field
approximation will be fairly good for the local hopping
model if 7 is large, because correlations between neigh-
bouring sites should be small in this limit. For the global
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hopping model, the mean field solution is exact, even for
small 4.

In Figure 7, we compare the solutions of the mean
field equations with dynamical simulations. The black
curve is the homogeneous solution from the roots of the
cubic Equation 5. This is the well mixed limit of the
spatial model. The solid black lines illustrate the stable
living and dead states and the dashed line is the unstable
intermediate state. The red, green and blue lines show
the stable and unstable solutions of the mean field equa-
tions with three values of /. For large /, the mean field
solution is close to the well-mixed limit, as expected.
The symbols show average concentrations of molecules
obtained from simulations of the lattice model with local
hopping. For the living state, the mean field theory
gives a fairly good approximation to the result with local
hopping, even for the smaller values of /. This is because
the density is quite high across the whole lattice in the
living state and correlations between neighbouring sites
are quite weak. On the other hand, there are large devia-
tions between the mean field theory and the results of
the local hopping model in the dead state when it is close
to the bistable region, which shows that there are import-
ant local spatial correlations in this case.

Figure 7 illustrates that reduction in the local diffusion
rate has both positive and negative effects on the replica-
tion process. As & is reduced, the concentration of the
living state is reduced because there is more local inter-
ference between molecules on fully occupied sites. Also
the minimum value of k required for the living state to
be stable increases as & decreases. Thus, rapid diffusion
is favourable for the living state, if the living state is
already established. However, we have already seen in
Figure 5 that high diffusion rates cause the system to be

' Homogenous Solution oot

G
*

: H Mean Field | =

Gt h=100

“=—h=5 \
h=1——="

0.1 7

Stable State Value of ®

Catalytic Replication Rate Constant k

Figure 7 Comparison of stable state solution between local
diffusion model, mean field theory and homogeneous model
as function of replication rate k. Other parameters are set as:
$=0.02, r=0, u=1, L=100.
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well mixed, in which case the transition time is extremely
long. It is therefore important to have a diffusion rate
that is not too large in order for the transition to the
living state to occur at an appreciable rate in the first
place.

A spatial model for RNA polymerization

The Two’s Company model is the simplest model that
can be used to study the stochastic transition to life in a
spatially distributed system. However, we wish to show
that the same behaviour occurs in other models. We will
return to the model of RNA polymerization described in
Equations 1-4 in order to study the effects of diffusion
and spatial concentration fluctuations in this case.

The simulation is carried out on 2D square lattice
composed of L x L sites, with each site defined to have a
size [ = 1. We keep track of how many molecules of each
kind there are on each site. The reactions of monomer
synthesis, activation, and polymerization all occur locally
on individual lattice sites. The implementation of sto-
chastic dynamics for this model using the Gillespie
algorithm is described in our previous paper [26] for a
non-spatial model. In the spatial case, the same method
is used to define reaction rates on each site as a function
of the numbers of molecules of each type on each site.
For simplicity, molecules of all kinds are assumed to hop
with the same rate 4. Hopping may either be local
or global, as with the Two’s Company model. However,
there is no need to impose a maximum number of mole-
cules per site, because concentration is limited by food
input rather than by a carrying capacity. Therefore every
attempted hop is successful, and hops are not blocked
by the molecules on the destination site, as they are for
the Two’s Company model.

Figure 8 shows snapshots of the distribution of cata-
lytic polymers across the lattice. Three time points are
chosen in order to illustrate the way the catalyst concen-
tration increases over time. As shown in first row of
Figure 8, when system is small (L=30), the system is
fairly well mixed. Hence the transition happens across
the whole system at the same time. When system is
larger (L=100), the system is no longer homogeneous.
The transition happens at a local region first, then it
spreads out to the whole system as shown in second row
of Figure 8. When the system is very large (L=1000), the
time it takes to spread across the whole system is longer
than the regional transition time. Hence, multiple origins
occur, as in third row of Figure 8.

When the transition occurs, the increase in the catalyst
concentration is accompanied by a sharp decrease in the
activated monomer concentration. As there are many
more activated monomers than catalysts, the activated
monomer concentration varies more smoothly than the
catalyst concentration. Therefore, we used the decrease
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Parameters are set as: m=5, s=10, a=10, r,=0.02, k=2, u=1, h=50, f=1.
AN

Figure 8 Snapshots of the catalytic polymer concentration in the RNA polymerization model at the beginning(t,), during(t,), and after
(t3) the transition from the dead state to the living state for different system sizes (L=30, 100, 1000) and with local hopping rules.

0

in the activated monomer concentration as a marker for
the transition time. This concentration was averaged over
a sliding time interval, and this was used to define re-
gional and system transition times, in the same way as
for the Two’s Company model (see Methods section).
The transition time is shown as function of system
size in Figure 9. For global hopping, the transition time
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Figure 9 Average transition time from dead state to living
state as function of system size with parameters set as: m=5,
5s=10, a=10, r,=0.02, k=2, u=1, h=50, f=1. The straight line
illustrates a scaling of 1/L°.

follows a U-shaped curve, for the same reasons as for the
non-spatial model of RNA polymerization (Figure seven
of [26]). If the system is too small, polymers long
enough to be catalysts do not easily arise, and if the
system is too big, the concentration fluctuations are too
small in the global case to allow the stochastic transition
to occur. In contrast, when hopping is local, the transi-
tion occurs easily for large system sizes. When the lattice
is very small, the time for the transition with local hopping
is close to that with global hopping, but when the lattice
size is larger, the transition is much faster with local
hopping. The transition time follows the same shape
curve for this model as for the Two’s Company model in
Figure 6. There is an intermediate range where the tran-
sition time scales as 1/L? and where Tsys = Tyeqr and there
is a range for very large lattice size where multiple origins
occur and where T > T
Discussion and conclusions

The models we have discussed here have features in
common with various theoretical models discussed by
other authors. There has been a lot of work on mainten-
ance of replicators in the face of accumulation of muta-
tions. The standard error threshold problem [33] deals
with linear replicators in a non-spatial model. A spatial
lattice version of this problem has been studied [33] and
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this has been compared to the case of catalytic replica-
tors in a spatial system [34] using a model similar to the
Two’s Company model. The fundamental difference be-
tween linear and catalytic replicators is that when a rep-
licator acts on another sequence as template it is being
altruistic. Evolution of catalytic replicators is therefore
related to the evolution of cooperation. A large number
of studies have shown that cooperation can evolve in
spatial models when the equivalent non-spatial models
would be invaded by parasites [35-43]. These models
make it clear that formation of clusters of cooperating
molecules and formation of spatial patterns is generally
very important for evolution and survival of catalytic
replicators. However, none of these papers dealt with the
origin of the replicating system. Our work also shows
that incorporation of local diffusion and spatial concen-
tration fluctuations is essential to enable the origin of life
to occur with an appreciable probability. Other models
[44-46] that deal with prebiotic replicators and consider
the transition to a replicating state are closer to our
work. Spatial effects are also apparent in these models.
Another approach to the origin of the RNA world [47]
uses very complex sets of reaction equations for the
emergence of RNA replication and also makes a link
with nucleation phenomena. Models for the origin of
replication [29-31] have been studied previously that are
very similar to ours, however the stochastic dynamics
and spatial effects were not looked at by these authors.

Despite important differences in their details, the
Two’s Company model and the RNA polymerization
models exhibit surprisingly similar behaviour, both for
the phase diagram (Figures 1 and 2) and the dynamics of
the transition to life (Figures 6 and 9). The similarity
arises because the models share the features of nonlinear
feedback and limited resources. For the Two’s Company
model, the replication rate of the molecule depends non-
linearly on the concentration of the molecule because of
the ko term, and limited resources are modelled by the
rule that there can be no more than 3 molecules on the
same site. For the RNA polymerization model, the nonli-
nearity arises because of the feedback in polymerization
(Eqn. 4) because of the way the ribozyme concentration
depends on the polymerization rate (see [26]). The lim-
ited supply of food molecules from the environment is
included in the model, and this prevents the ribozyme
concentration increasing indefinitely in the living state.
Given these two features, both models have two stable
states and a bistable region in the phase diagram.

The two models exhibit essentially the same stochastic
transition arising as a result of concentration fluctua-
tions. When the system is well mixed, fluctuation will
decrease with increasing system size due to increasing
number of molecules in the system. Hence the transition
becomes increasingly difficult for larger system sizes.
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With limited diffusion, the system is no longer well
mixed and breaks down into many weakly interacting
regions. The larger the system, the more such independ-
ent regions there are in which the transition can occur.
Therefore the transition becomes faster for larger sys-
tems in a 2D model with limited diffusion.

Both models illustrate that multiple origins of life
could occur if the system is large enough. As far as we
know, however, all current life on Earth is descended
from a single origin. The size of the Earth is very much
larger than the distance over which a molecule could
easily diffuse. However, the window of time during
which life arose is narrowed to a few hundred million
years by geological evidence [48]. If the origin of life is a
rare event taking hundreds of millions of years, it is still
perfectly possible that it occurs only once (or not at all)
on a large planet. Once the living state has arisen, the
time for multiplication and spread across the planet is
determined by molecular time scales (replication and
diffusion) which are likely to be very much faster than
the waiting time for the rare event that creates life in the
first place. In other words, it is likely that the real world
falls in the intermediate part of Figure 9, where the tran-
sition time varies like 1/L* and there is a single origin.
However, the scenario involving multiple origins could
still be compatible with the view of single tree of life if
there were competition between different forms of life
and only one remained, or if there were symbiosis and
merging of features that derived from different origins.

Two parameters that are important in the RNA
polymerization model are m, the minimum sequence
length required to be a catalyst, and f, the probability
that a sequence of length n > m is a catalyst. In this
paper, we ran many simulations for each set of para-
meters in order to study the way the mean transition
time depended on / and L. For this reason, it was neces-
sary to choose parameters for which the transition oc-
curred fairly easily. Therefore, we made the length short
(m = 5) and chose the easiest case where f = 1. In our
first paper, we looked at much longer ribozymes (m = 50)
with f much less than 1, which seems more realistic if
we are looking for ribozymes that would have specific
sequences and structures, and the essential behaviour is
very similar. In reality, we do not know how long the
first catalytic sequences might have been. We are used
to thinking of enzymes hundreds of amino acids long in
current organisms, and currently known polymerase
ribozymes are all well over 100 nucleotides long [7,9,14].
Hence, we tend to think of biopolymers as rather long
and very specific in their sequence. It seems reasonable
to suppose that the earliest catalysts must have been
much shorter and less sequence specific if they were
to have had any chance of arising in prebiotic condi-
tions. Short sequences would be relative common, and
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relatively easy to replicate even if the fidelity was quite
low. These are important advantages of short sequences,
even if they have only very limited catalytic ability com-
pared to much longer, well-adapted ribozymes.

In all our models of RNA polymerization, we have
made the simplification of ignoring nucleotide sequences
and keeping track only of polymer length. It is supposed
that polymerase ribozymes catalyze all polymerization
reactions equally. Hence, they will catalyze the formation
of random non-functional sequences in addition to in-
creasing their own formation rate. This would be ex-
tremely inefficient, and it seems likely that real ribozymes
could have done better than this by being more specific.
Nevertheless, an autocatalytic living state arises even in
this simple non-specific case, and there is a clear differ-
ence between the living and the dead state, which is the
aspect of the model we wish to emphasize. The case of
non-specific polymerases has sometimes been called
“pre-life” [29-31], and the term “life” has been reserved
for a specific polymerase that catalyzes only the steps that
lead to formation of its own sequence. Such a specific
polymerase would have been much more efficient, as it
would not waste its time making non-functional polymers.
However, it is difficult to see how a specific polymerase
would distinguish between the polymerization steps that
contribute to its own formation and those that do not. In
fact, polymerases in modern organisms are general, not
specific. They can synthesize any general sequence, but
they make specific sequences because they make use of
templates, not because they distinguish between the reac-
tion steps that link different kinds of monomers.

Of course, not all sequences are equivalent in the real
world, and whether a molecule can function as a catalyst
depends on its sequence and structure. It would be pos-
sible to consider a model for polymerization of four
nucleotides in which the base sequence of each polymer
in the mixture is stored in memory. One could then de-
termine whether a sequence was a catalyst using criteria
based on secondary structure or whether it contained a
specific sequence motif within it. This would be more
realistic than simply giving each sequence a probability
f of being a catalyst, as in our current model, but the
essential point that the formation of catalysts causes a
feedback in the polymerization rate would remain un-
changed in a more complex model that considered RNA
sequence and structure in more detail. However complex
and realistic we try to make a model, there will always be
factors that must be left out. In some cases, simplicity is
a virtue in computational models if this helps to show
the essential points clearly. We believe that the simple
models studied here illustrate several essential features
of the origin of life problem as it occurred in the real
world, ie. the origin of life is a transition between two
alternative steady states of a chemical reaction system
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that is driven by stochastic concentration fluctuations
involving relatively small numbers of molecules in a loca-
lized region of space.

Methods

We simulated the stochastic dynamics of the Two’s
Company Model using the Gillespie algorithm. At each
time step, one elementary reaction was chosen at random
with a probability proportional to its rate. The duration
of the time step was a random time 7, chosen from an
exponential distribution P(r) = Re ®’, where R is the
sum of the rates of all the elementary reactions that
could occur at that point in time.

Simulations were performed to measure the mean
time until the transition to the living state occurred. The
simulations were stopped when the global concentration
became close to ¢, the solution of Equation 5 corre-
sponding to the living state. In order to insure that the
system was stable in the living state, ¢ was averaged over
a sliding time interval of width 20, which is 20 times the
average life time of a molecule. The simulation was
stopped when the sliding average density reached 90%
of ¢,. This time was then recorded as the system tran-
sition time of one trial. The average system transition
time, T, was obtained from 1000 trials for each set of
parameters. When the local hopping rule is used, the
transition happens at one place then spreads across the
whole system. We may write Tyys = Tyoq + Topreaa » Wwhere
T)eq is the time until a local transition occurs in any one
region, and Tj,,..s is the time for the living state to
spread from one region across the rest of the lattice.
The system was divided into multiple regions of size
10x10 lattice sites. The concentration was calculated
within each region and averaged over a time window in
the same way as the global concentration. T, was
defined as the point at which the sliding window concen-
tration of any one region reached 90% of ¢,.

We will now demonstrate that the well mixed limit of
the lattice model corresponds to the generic replicator
model in Equation 5. The total birth rate of molecules,
a,, on a site with #n molecules is

ag = 3s
ay =2s+r (6)
a) =s+r+k

The death rate of a molecule on a site with #» mole-
cules is nu. Let P, be the fraction of sites that have n
molecules. The rate of change of N due to birth and
death processes is

dN
— = Lz(ﬂop() + (Cll — M)Pl —+ (ﬂz — 2M)P2 — 3MP3)

dt
(7)
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Hence

d 1
d(f - g(“opo + (a1 — u)Py + (a2 — 2u)P; — 3uPs).
(8)

Note that these equations do not depend on the hop-
ping rate because the hopping process does not change
the total number of molecules. However, the P, prob-
abilities do depend on 4. If both N and L are large and 4
is large enough to be in the well-mixed limit, where
molecules are randomly distributed between lattice sites,
P,, has a binomial distribution:

P, =" (1~ @)Bfnnl(gg—in)! 9)

Substitution of these probabilities into Equation 8 gives
Equation 5. Thus, the lattice model reduces to the desired
continuum model if there is rapid mixing of molecules.

We now consider the rates of gain and loss of mole-
cules due to molecules hopping to and from a site with
n molecules. Let g, be the conditional probability that
there are m particles on the neighbouring site, given that
there are n on the first site. The rate that # increases by
1 due to a molecule arriving from a neighbouring site is

Py = h(gm + 2qu + 3qu3) (1 - g) = 3(1 - g)h@m
(10)

where ¢, = (@1 + 2q.2 + 39,3)/3 is the mean density on
sites that are neighbours of sites with # particles. Note
that there are 8 neighbours from which a molecule could
come, but only 1/8 of the hops from any one neighbour
move to the site in question. Therefore these two factors
of 8 cancel out.

The rate at which n decreases by 1 due to a molecule
leaving the site is

b, = hﬂ<<1 - %)%1 + (1 - %)%12 +(1- l)qns>

=hn(l-o,),
(11)
We may now write a set of equations for the rates of
change of P, that include birth, death and hopping.

dP, _

d_to = —aoPy + uPy + p; P\ — p§ Po

daP _

d_tl = ﬂopo — ﬂ1P1 =+ M(2P2 — Pl) +p2 P2 _p;rpl
—pi P +p§Po

dapP, _

I = 611P1 — ﬂng + M(3P3 — 2P2) +p3 P3
— P3Py —py Py +pi Py

apP.

d_t?’ = ﬂzpz — 314P3 —pgpg +p2+P2 (12)
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This set of equations is not closed, because the hop-
ping rates depend on the conditional probabilities g,,,,,.
A standard way of approximating the solution to lattice
models is to make a mean field approximation that
ignores correlations between neighbours. We assume
that ¢,,,,, = P,,, in which case:

1 2
—p=-P + P, + P
Pp =@ 3 1+3 >+ Ps3

(13)

With this approximation, we get the following equa-
tions, which are a closed mean field approximation to
the dynamics.

% = —3sPy + uPy + h((1 — )P, — 3pP)
% = 3sPy — (2s + )Py + u(2P, — Py)
+h(2(1 — @)Py — 2Py — (1 — )Py + 3¢Py)
% = (2s+r)Py — (s+ 7+ k)Py + u(3P; — 2P,)
+h(3(1 — @)Ps — @Py — 2(1 — @)P; + 2¢Py)
%: (s+r+ k)P, — 3uPs

+h(=3(1 — @)P3 + P3) (14)

The mean field solutions shown in Figure 7 are the sta-
tionary states of these equations. The simulation with glo-
bal hopping rules follows the mean field solution exactly
because there are no correlations between sites when hop-
ping is random. The mean field solution is an approximate
solution for the case with local hopping rules.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MW designed the models, carried out numerical analysis and simulations of
the RNA polymerization models and wrote the paper. PH designed the
models, carried out simulations of the Two's Company model and wrote the
paper. Both authors read and approved the final manuscript.

Reviewers’ reports

Reviewer 1: Omer Markovitch, Weizmann Institute of Science (nominated
by Doron Lancet).

The authors argue that a phase diagram, exhibiting living and non-living
states (when the templating rate is respectively bigger or equal to the
spontaneous polymerization rate), is a generic feature of replicator-first origin
of life models. The authors then develop a simple lattice model in which a
site can contain up to 3 molecules, templating can occur when exactly 2
monomers exist in a site and diffusion between adjacent sites is allowed.
Their spatial model exhibits patches of replicating molecules, some of which
can eventually grow to dominate the system akin to a percolation transition,
in analogy to a bistable diagram. They find that rapid diffusion in a large
lattice inhibits the non-life to life transition because fluctuations are smaller.
The manuscript deals with spatial effects in replicating polymers, which did
not receive full attention before, and presents the results in a clear manner,
thus deserves publication.
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The discussion of 3-molecules-limit vs. no-limit is suggested to be
extended. The authors should consider performing an intermediate test in
order to verify that carrying capacity is qualitatively similar to concentration
limit.

Response: We would not call this a percolation transition. The analogy we are
making is with a nucleation phenomenon, such as nucleation of solid crystals
in a liquid followed by subsequent rapid growth of the crystals.

In the RNA polymerization model, resources are explicitly modelled, and
therefore no carrying capacity is necessary. In the Two's Company it is
necessary to impose a carrying capacity in order to avoid unbounded
growth. It would also be possible to add a resource molecule explicitly to
the Two's Company model, but this would go against our intention of
making this model as simple as possible.

1) The abstract will benefit from being toned down, example given from
"The key step is..." to "A key step is...".

Response: We changed this to A in the abstract.

2) Providing information on the existence of alternative views to the RNA
world is suggested.

Response: We added citations to Shapiro [23] and Segre and Lancet [24] in the
introduction.

3) Section 2 (A Generic Phase Diagram for Replicating Molecules) is too long.

It is suggested to provide fewer details of a previously published work and
stress the stress the conclusion right at the beginning.

Response: We have made only very slight reductions in this section. All the
equations are necessary for what follows in this paper, and the textual
discussion is important. The first two sentences already state the purpose and
conclusion of this section.

4) The reader could benefit from an illustration / diagram of the “Two is a
company” model.

Response: A new Figure 3 has been added showing the rules for this model.
Reviewer 2: Claus Wilke, University of Texas, Austin.

Comment: This article uses mathematical modeling and computer
simulations to study a simple origin-of-life model. The two main
contributions this article makes are (i) a simplified model of the origin of life
that maps in a straightforward fashion to a more complex model and (ii) a
detailed analysis of the origin-of-life model in a spatial setting. The authors
address the conditions under which a living state can emerge from a non-
living state, and find that a spatially extended system with moderate
diffusion can greatly facilitate the emergence of the living state. Most
importantly, in this regime, the probability of emergence scales with the size
of the system, so that the emergence of life somewhere is virtually
guaranteed for sufficiently large systems. Overall, this is a very nice
contribution. The modeling is sound, and the authors use multiple avenues
(different models, different modeling approaches) to support their theory.

In the expression k = k.f, wouldn't f be vanishingly small for standard RNA
sequences, possibly so small that even a large k, would not be sufficient to
yield a reasonable k? The authors give some qualitative discussion of this
topic towards the end of their paper, and I'd like to see the arguments
fleshed out a bit more and possibly made quantitative. Do we have a sense
of what a reasonable k, would look like, and what k needs to be to make
the origin of life happen within, say, a billion years? What would the
corresponding f be, and is it reasonable?

Response: We agree that if only a single sequence is functional and if the
sequence is very long, then f would be very small. We also agree that if f is very
small then ko must be large. However, it is probable that many sequences
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folding to the same secondary structure would have had similar functions,
which makes f larger. This argument also suggests that it may be easier to
begin with rather short ribozymes with a rather low catalytic ability than with
longer, but rarer sequences that are better catalysts. These questions are clearly
important, but we do not know how to put concrete numbers on these
quantities. To give a quantitative answer to the time scale and required reaction
rates, we would need to the concentrations of reagents on the primitive Earth,
the reaction pathways by which nucleotides and RNAs were synthesized, and
the temperature, pressure and pH at which these reactions were occurring.
Current knowledge of these things is very incomplete.

Comment: | think the manuscript would improve if it had a separate
Methods section containing some of the more technical details of the
simulations and derivations. Section 4 in particular mixes results with highly
specific implementation details that don't move the story forward. Similarly,
other sections contain material that doesn't directly impact the overall story,
such as the proof that the Two’s Company model agrees with Eq. (5). 'm not
asking the authors to delete this material, just reorganize it such that the a
reader can get the most important results without also having to read all the
supporting evidence and materials.

Response: A methods section has been added at the end of the paper and the
technical sections have been moved to the methods. The separate sections on
the Two's Company have now been merged into one main section.

Reviewer 3: Nobuto Takeuchi, National Center for Biotechnology
Information, National Library of Medicine, National Institutes of Health,
USA. (Nominated by Eugene Koonin).

Comment: In their manuscript, Wu and Higgs present a minimal replicator
model that exhibits a stochastic transition from a “non-living” to a “living”
state. Such a transition was originally proposed and investigated by Dyson in
a different model [32,49]. Using this minimal model, the authors investigate
the factors determining the waiting time for such a transition. In particular,
the authors calculate the waiting time as a function of the diffusion rate of
replicators. The calculation reveals that the waiting time is smallest when the
diffusion rate assumes an intermediate value. This result is intuitively
explained by the authors as follows: Too strong diffusion diminishes the
stochasticity of dynamics and so impedes the transition, whereas too weak
diffusion prevents replicators from encountering each other and, thus, from
catalyzing each other's replication. Moreover, the authors examine the
waiting time as a function of the system size. The calculation shows that the
waiting time decreases as the system size increases, provided that the
diffusion is finite. This result sharply contrasts with that obtained for infinite
diffusion. The authors again give an intuitive explanation: If diffusion is finite,
a non-living-to-living transition first occurs in a local region and then
propagates through the entire system; thus, the larger the system, the
greater the number of local regions (assuming finite diffusion), and so is the
probability of a transition per unit time. Also, the authors check this result in
a more complex model that considers RNA polymerization.

The manuscript describes its content in a clear manner. | obtained only one
specific question regarding the results (more general comments to follow).
The transition time is shortest when the diffusion rate takes an intermediate
value in the minimal replicator model. Does this result also hold in the RNA
polymerization model in general?

Response: Yes, although we have not fully investigated the regime of very low
diffusion rate in the RNA polymerization model. Very low diffusion rate should
be unfavourable because the catalysts can only be effective if monomers and
growing chains encounter the catalysts and if newly created catalysts can
spread beyond the site in which they were created.

Comment: | have three general comments (and a question). First, the non-
living-to-living transition exhibited by the models rests on the combination
of the two processes: the stochastic occurrence of rare events and the
subsequent deterministic amplification thereof. Interestingly, such a
combination also plays an important role for the stability of a spatially
extended RNA-like replicator system [40]. Namely, the stable coexistence
between catalysts and parasites is enabled by the formation of traveling
wave patterns, whose emergence rests on the combination of the two
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processes: rare stochastic events in which a few catalysts are spatially
segregated from parasites and the subsequent expansion of these catalysts
through replication (followed by infection with parasites). This kind of
dynamics, in which rare stochastic events are deterministically amplified,
might be a generic feature of (life-like) systems that have a finite system size
and positive feedback (see also the last paragraph).

Response: We agree that it is interesting to note that stochastic effects and
limited spatial diffusion favour both the origin of life and the stable coexistence
of replicators and parasites.

Comment: My second comment is concerned with the implication of the
current study in relation to Dyson’s study [32,49]. Dyson’s model is conceived
under the metabolism-first scenario for the origin of life: it is created as a
simplest model of metabolic systems and assumes no replicators. By
contrast, the minimal replicator model investigated in the current study, of
course, assumes replicators. The RNA polymerization model of Wu and Higgs
is conceived under the RNA world hypothesis, but does not actually assume
replicators (i.e, it does not assume template-directed polymerization).
Despite these differences, all these models exhibit essentially the same
general result: two stable states that are regarded as non-living or living and
stochastic transitions between them. Therefore, the general result seems to
be independent of whether the model assumes metabolism, replicators, or
the RNA world. This independence is also implied by the reason why these
models produce the same result. Wu and Higgs identify two features shared
by their models that are essential for the general result: resource limitation
and nonlinear (positive) feedback—the latter does not necessarily imply
replication. These features are clearly shared by Dyson’s model as well. Taken
together, the results of the current study seems to imply that Dyson's
proposal of identifying the origin of life as a stochastic transition between
two stable states is orthogonal to whether one considers the metabolism-
first scenario, the replicator-first scenario, or the RNA world hypothesis.

Response: Although we like the idea of the stochastic transition to life that was
introduced first by Dyson, we feel that Dyson was not clear on what was meant
by the active’ and ‘inactive’ states and why the active state corresponds to life.
In both our RNA polymerization model and the Two’s Company model, the high
concentration of catalysts in the living state is maintained by the reactions
carried out by the catalysts. The definition of the living state in our models is
that it has autocatalytic biopolymers. Although we could presumably write
down a metabolism-only model without biopolymers and without replication
that would have two stable states and a possibility of a stochastic transition,
this would be a purely chemical system and it would not constitute a transition
to life, in our view, because the high-concentration state would not have
replication, heredity and evolutionary potential.

Comment: My last comment is concerned with the authors’ treatment of the
linear growth term in the minimal replicator model. In investigating this
model, the authors regard this term as less important than the other terms.
However, | find three arguments to challenge this view. First, the linear
growth term can play an important, though negative, role for the reported
results of the model. Namely, if the linear growth rate r is greater than the
decay rate u, the model has only one stable state (Figure 2 shows results for
r < u). Second, replicators whose growth is described by a linear term
(exponentially growing replicators, for short) are theoretically the simplest
possible replicators [50]. Moreover, they have been experimentally
synthesized [12].

The last argument concerns the very core of the current study. The non-
living-to-living transition conceived by the authors entails rare stochastic
events and the deterministic amplification thereof. Such a transition might
be exhibited by exponentially growing replicators as well if one abandons
the presupposition that the non-living state must be dynamically stable, as
follows. Let us suppose that RNA molecules are randomly synthesized as
assumed in the RNA polymerization model. Moreover, some RNA sequences
are capable of self-replication; however, these sequences form but a tiny
subset of the sequence space. Now, the non-living state corresponds to the
state in which the system hardly contains any self-replicating molecules; the
living state, the state in which the system contains self-replicating molecules
in abundance. The rare stochastic event corresponds to the emergence of a
(few) self-replicating molecule(s) through random synthesis; the deterministic
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amplification, the expansion of the nascent population of these molecules
through self-replication. This argument suggests a topic for further
discussion: Must “non-living” states be dynamically stable?

Response: If r > u in our Two’s Company model, there will be no non-living
state and there will be spontaneous multiplication of replicators without any
waiting. This does not seem redlistic to us. It is important to have non-linearity
in some way in order to have two stable states. In the Two’s Company model
there is only one way to do this, which is the quadratic term representing a
two-molecule replication process. However, in more complex models there are
many ways to do it. In the RNA polymerization models, the nonlinearity can
arise either by feedback in the polymerization rate or in the monomer synthesis
rate [27]. It is true that the ligase reaction in [12] corresponds to an
exponentially growing replicator, but this system only works if it is supplied with
very specific complementary oligomer strands. This example does not seem very
close to the r reaction in our model. For the r reaction, we envisage a template
directed process (e.g. on the surface of a clay catalyst) in which a single strand
acts rather passively as a template. Although the template ability of different
RNAs might depend to some extent on the sequence, it seems likely that most
sequences could act as a passive template to some degree. If the mineral
catalyzed r process was already good enough to support exponential growth (r
> u), then there would be immediate multiplication of large numbers of RNAs
with no sequence specificity, which seems unreasonable. The reviewer's
suggestion that the non-living state need not be dynamically stable makes
sense as a logical possibility, but it seems unlikely to us, because the origin of
life would just be too easy in this case.

The possible interplay between template directed processes and ribozyme-
catalyzed processes is interesting and is not fully captured in the models we
studied so far. In our view, a non-specific r process could be important in
generating diversity of RNA strands prior to life, but life itself would only
arise when specific ribozymes came along to carry out the k process. Note
that the ligase replicator in [12] is not acting as a template to specify the
sequence of the new strand, because the sequence is already specified in
the oligomer strands that are supplied to it. For an RNA strand to act as a
catalyst it needs to fold to a specific structure. It is difficult to see how any
strand could be a folded catalyst and an unfolded template at the same
time. Therefore we are led almost inevitably to consider two-molecule
replication processes.

Reply to the authors' reply: Given the persistent differences in the definitions
of life, it is all the more interesting that these models—conceived under
different views of life—produce the same general result based on the same
principle. The authors consider that there is unlikely to be a replicator that
grows exponentially and requires specific sequence patterns to act both as a
catalyst and as a template (I assumed such replicators when | suggested
that the non-living state need not be dynamically stable). The ligase
replicator of Lincoln and Joyce (2009) is an example of such replicators as
elaborated below. Although it does not answer the question | raised (its
growth requires substrates prepared by humans), it suggests great
possibilities of what RNA molecules can do (it was generated by (only) six
rounds of in vitro selection).

Contrary to the authors’ interpretation, the ligase replicator of Lincoln and
Joyce (2009) does act as a template to specify the sequence of the new
strand as follows. Their replicator consists of two ligases (denoted by E
and E), each composed of two substrates (denoted by A and B, and A’
and B, respectively). The substrates A and B’ contain sequences
complementary to each other, and so do the substrates A" and B. Based
on this complementarity, each ligase (say E) forms a complex with two
substrates (A" and B') and catalyzes the ligation between them,
synthesizing the other ligase (E). In this way, a ligase acts both as a
template and as a catalyst for the synthesis of the other ligase. More
important, Lincoln and Joyce (2009) generated 12 sets of distinct
substrates (denoted by An, Bn, A'n, and B'n where n ranges from 1 to 12).
During a serial transfer experiment, base pair mismatches generate
“recombinants” such as a ligase composed of A5 and B3 (denoted by
E5,3). Such a recombinant can replicate; for example, an E5,3 forms a
complex with A3 and B'5 and catalyzes the synthesis of an E'3,5, which,
in turn, catalyzes the synthesis of an E5,3. In this way, the replicator can
transmit “genetic information”, thanks to the ability to act as a template.
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