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Abstract

forces acting on the pathway evolution.

Background: Responses to extracellular stress are required for microbes to survive in changing environments.
Although the stress response mechanisms have been characterized extensively, the evolution of stress response
pathway remains poorly understood. Here, we studied the evolution of High Osmolarity Glycerol (HOG) pathway,
one of the important osmotic stress response pathways, across 10 yeast species and underpinned the evolutionary

Results: Although the HOG pathway is well conserved across the surveyed yeast species, the evolutionary rate of
the genes in this pathway varied substantially among or within different lineages. The fast divergence of MSB2
gene indicates that this gene is subjected to positive selection. Moreover, transcription factors in HOG pathway
tend to evolve more rapidly, but the genes in conserved MAPK cascade underwent stronger functional selection.
Remarkably, the dy/ds values are negatively correlated with pathway position along HOG pathway from SIn1 (Sho1)
to Hog1 for transmitting external signal into nuclear. The increased gradient of selective constraints from upstream
to downstream genes suggested that the downstream genes are more pleiotropic, being required for a wider
range of pathways. In addition, protein length, codon usage, gene expression, and protein interaction appear to be
important factors to determine the evolution of genes in HOG pathway.

Conclusions: Taken together, our results suggest that functional constraints play a large role in the evolutionary
rate variation in HOG pathway, but the genetic variation was influenced by quite complicated factors, such as
pathway position, protein length and so on. These findings provide some insights into how HOG pathway genes
evolved rapidly for responding to environmental osmotic stress changes.

Reviewers: This article was reviewed by Han Liang (nominated by Laura Landweber), Georgy Bazykin (nominated
by Mikhail Gelfand) and Zhenguo Lin (nominated by John Logsdon).

Background
Sensing and responding to their changing environmental
conditions are crucial challenges for microbes to survive
in highly divergent niches they occupy [1,2]. The effec-
tive responses to different stresses are mediated by
stress signaling pathways, which are generally composed
of three functional modules: reception module, trans-
duction module and response module [1,3]. The HOG
(High Osmolarity Glycerol)-MARK (Mitogen Activated
Protein Kinase) pathway is required for adapting to
osmotic stress in yeast and other eukaryotes [4,5].

The HOG pathway is greatly characterized in budding
yeast Saccharomyces cerevisiae [6,7]. The Hogl (stress

* Correspondence: mgf@zju.edu.cn; youdng@gmail.com
Institute of Microbiology, College of Life Sciences, Zhejiang University,
Hangzhou 310058, PR China

( ) BiolVled Central

activated MAP kinase) is the central component of the
pathway, and is regulated by Pbs2 (MAPK kinase). In
turn, the Pbs2 activity is controlled by two independent
osmosensing branches involving two transmembrane
proteins Shol and Slnl, respectively (Figure 1). The two
upstream branches of the HOG pathway are functionally
redundant in some respects, but they use different com-
ponents and seem to have slightly different sensitivities
to the concentration of external solutes [8]. In response
to hyperosmotic stress, Pbs2 becomes activated, leading
to the phosphorylation and nuclear accumulation of
Hogl, and the subsequent activation of osmo-protective
mechanisms, such as the accumulation of the glycerol
[9].

Fungi, one of the three main eukaryotic kingdoms, are
excellent models to study environmental stress
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Figure 1 An illustration of the HOG-MAPK pathway genes in S.

cerevisiae. Arrows indicate the direction of signal transduction. The

numbers on the left side represent the position of the HOG
pathway genes.

responses pathways, because they are simple and evolu-
tionarily conserved [1,10]. Fungi display significant var-
iations in their stress resistance to osmotic stress. For
example, the human pathogen, Candida albicans, tends
to be resistant to osmotic stress, while the plant patho-
gen, Ashbya gossypii, is relatively sensitive to osmotic
stress [10]. This phenomenon reflects their adaptive evo-
lution in specific niches where they have been threa-
tened by different stresses. Recent researches have
proved that fungi stress signaling pathways have evolved
rapidly in a niche-specific fashion, and the evolution of
signaling pathway is independent of fungi’s phylogenetic
relationship [1,10]. The availability of many genome
sequences from related yeast species allows us to con-
duct the evolutionary analysis of the entire pathway in
these species.

The evolution of individual genes or gene families has
been studied extensively, and many factors have been
found to determine the evolution of genes, such as pro-
tein length, codon usage, gene expression, and protein
interaction [11-13]. Recently, a few researches have
found that the position of the genes in metabolic path-
way affected their evolutionary rate, and the upstream
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elements tended to evolve faster than the downstream
elements [14]. In contrast, several studies also showed
that central components of signaling pathways were
generally well conserved, whereas upstream sensors and
downstream transcriptional regulators had diverged to a
greater extent [1,10]. However, the mechanisms underly-
ing the pathway gene evolution remain largely unknown.
Therefore, more pathways with different topologies are
needed to disentangle the underlying evolutionary forces
that affect the molecular evolution pattern of the ele-
ments in pathways [15]. The HOG pathway, which has
specific topology with two input branches, provides an
excellent system for exploring the mechanisms of path-
way evolution.

In this study, we studied the molecular evolution of
the HOG pathway genes and the relationship between
evolutionary rates with pathway position. Our results
showed that the functional constraints play a large role
in the overall rate variation in HOG pathway, and the
position of gene in pathway was negatively correlated
with evolutionary rate. In addition, the pathway evolu-
tion may also be influenced by protein length, codon
usage and gene expression.

Results and Discussion

The distribution of HOG pathway genes in yeast genomes
According to the well-characterized HOG-signaling
pathway [1,7], we identified 19 HOG-MAPK pathway
genes from S. cerevisiae to be analyzed in our study
(Figure 1). The initial set of S. cerevisiae HOG-signaling
pathway genes were used to identify candidate orthologs
in the genomes of remaining yeast species, and a total
of 203 putative orthologs in 10 yeast genomes were
identified (Table 1). Generally, the orthologs identified
in this study were consistent with that of Krantz et al.
[7], despite that we used the method based on gene
synteny.

The HOG-MAPK pathway is well conserved across
the available genomes of 10 yeast species. Most genes
have orthologs in all the yeast species studied and were
identified as unique singletons in most cases. Together,
8 HOG pathway genes had a 1:1 orthology relationship,
while the remaining 11 genes underwent a number of
duplication or loss events (15 duplications, 2 loss, and 4
pseudogenization events; Figure 2). The loss or pseudo-
genization of orthologs may be due to the uncompleted,
low quality genome sequencing of the species, because
partial sequences of the lost orthologs were found in the
species’ contig sequence by BLAST searching. The
genes whose ortholog were lost (SLN1 and STE1I) or
included stop codons (SSK2, PBS2 and SKOI) in a given
species were not used in further analysis.

With the 8 conserved 1: 1 orthologs, we build the
phylogenetic tree of yeast species by Bayesian method
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Table 1 Copy number of the HOG signaling pathway
genes in 10 fungi genomes

Gene Scer Spar Smik Sbay Scas Agos Kwal Klac Cgla Calb
SINT 1 0/1° 0 1 1 1
YPD1 1 1 1 2 1

SSK1 1 1 1 1 1
SSK2/ T 2 2
22
PBS2
HOG1
HOT1
GPDI1

1
1
1
1

1
1
1
1

N — —

1
1
1

1 0/1 01
1 0/1 011
1 01 1
2 1 0/1
SHO1 1 1 1
MSB2 1 1 1
CDC42 1 0/1 01
cbCc24 1
STE20 1
STE50 1
STET1 1
SKO1 1
2

MSN2/
4

TPS1 1 1 1 1 2 1 1 1
SFAT 1 1 1 1 1 1 1 1 1 01

RN > J i S O NG TN
N — — = N — o s s N —
N — — = N — s N — . s

2 “0/1" represents the orthologs were identified by BLAST search.
® DNA sequence included stop codons.

(Figure 2), and the topology of the phylogenetic tree is
consistent with previous study [16]. As Saccharomyces
species are derived from an ancestral yeast that under-
went a whole genome duplication (WGD) [17], the gene
duplication events we observed in HOG pathway mostly
occurred in post-WGD species (Figure 2).

The variation of dy/ds values among genes of the HOG
pathway

The natural selection acting on genes is inferred by the
ratio of nonsynonymous substitutions (dy)/synon-
ymous substitutions (ds). By using MO model, a single
dn/ds value for all lineages was estimated for each
gene in the HOG pathway. The result show that diver-
gence across species is not uniformly distributed along
the pathway, but varies greatly among genes (Figure 3).
Within sensor module genes, there is a 17-fold differ-
ence in the level of divergence between the most con-
served (CDC42) and the most divergent (MSB2) gene.
Moreover, the pattern of divergence exhibited by dy
values precisely matches the pattern of dy/ds value
(Figure 3).

The estimates of the dy/ds ratio, using the free-ratio
model, also show that the dy/ds values of the HOG
pathway genes vary substantially in each lineage, ranging
from 0.0001 (CDC42 of Smik) to 1.19 (MSN2 of Calb).
However, the mean dy/ds value equals 0.196, suggesting
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Figure 2 The phylogenetic tree showing the evolutionary
relationships of the 10 yeast species studied. The black star
shows the timing of the whole genome duplication (WGD). Gene
duplication (black triangle), loss (black circle), and pseudogenization
(black square) events detected in the HOG pathway across the yeast
species were shown above each branch.

strong functional constraints acting at most of the HOG
pathway genes. The very high degree of divergence
observed at the MSB2 gene indicates that this gene is
subjected to positive selection. By using the maximum
likelihood method to detect positive selection, we identi-
fied gene MSB2 may experience positive selection (LRT
= 35.72, p < 0.001). As this gene is located at the start
point of the HOG pathway and involved in sensing the
environmental changing, it tends to undergo positive
selection [18].
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Figure 3 Maximum likelihood estimates of the rates of amino
acid replacements (dy) and synonymous changes (ds) across
the phylogenetic tree. The genes are listed in order of their

relative position within the pathways.
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Regulatory genes exhibit higher levels of divergence, but
MAPK cascade genes are highly conserved
Recently, transcription factors have been reported to
show evidence of rapid evolution [19,20]. We also
observed that transcription factors Hotl, Msn2 and
Skol, at the position 7 of the pathway, evolve substan-
tially faster than their surrounding genes in HOG path-
way (Figure 3). Only one structural gene MSB2, which
has been identified as positively selected gene, show
comparable levels of amino acid replacement changes.
On average, the transcription factors are more divergent
than the structural genes (Wilcoxon rank sum test, P =
0.014). The higher levels of divergence can be either the
result of relaxed selection and accumulation of neutral
or slightly deleterious substitutions or the result of posi-
tive selection leading to the fixation of beneficial muta-
tions [13,19]. However, we do not find any evidence of
positive selection on these transcription factors by using
the maximum likelihood methods (see Methods).
According to an engineering view of dynamical con-
trol, gene function in HOG-signaling pathway can be
classified into three functional roles: “sensor”, “regula-
tor”, “actuator” (Figure 1) [3,21]. The dy/ds values of
the MAPK cascade genes (regulator module) was signifi-
cantly smaller than upstream sensor module (Wilcoxon
rank test, P = 0.00115) and downstream module (Wil-
coxon rank test, P = 0.000539) (Figure 4). This is consis-
tent with the view that the MAPK cascade is highly
conserved and under stronger functional constraints,
because it’s involved in many other processes ranging
from mating to invasive growth [22].

The selective constraints was correlated with pathway
position of those genes in signal transduction process
Several earlier studies have shown that the architecture
of pathway, in particular, pathway position, shapes the
evolution of its genes [14,23,24]. However, how the
topology of the pathway affects the pathway evolution

08 10

08
1

a/ds
04
1

02
1

I
——
T T T
Sensor Regulator Actuator

— N

———

00
|

Figure 4 Box plot of the dy/ds values of the HOG pathway
modules in yeast species. The difference between regulator
module (MAPK cascade) and other modules was significantly
different (Wilcoxon rank sum test, P = 0.001154 for sensor module,
P = 0.000539 for actuator module). Dots represent the dy/ds values,
and black line respresent the mean value.
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remains elusive. During the HOG signal transduction
process, the external osmotic stress was sensed by Slnl
and Shol, and the signal was propagated via a MAPK
cascade that finally caused nuclear import of Hogl [22].
As shown in Figure 5, variation of dy/ds was correlated
significantly with pathway position in the HOG-signal-
ing pathway (Spearman’s rank correlation coefficient:
p = -0.313, P = 0.0189). However, the relationship does
not hold if including these genes in position 7 and 8 of
HOG pathway. For signal transduction pathway receive
signaling inputs from a number of pathways (i.e., at
least two branches Slnl and Shol of HOG pathway) and
share single response output (MAPK module), the
downstream genes are expected to be more pleiotropic,
and hence be subjected to greater selective constraint
than the upstream genes. Therefore, the pathway posi-
tion correlated with functional constraint levels can be
explained by the information flux theory that the ele-
ments located at branch point of pathway exert a greater
flux control and subjected to stronger selective con-
straints [14,23].

Even the pooled dy/ds data was separated into each of
the pathway branches Slnl and Shol, they also displayed
the same trends (Spearman’s rank correlation coefficient
for Slnl: p = -0.427, P = 0.0261; for Shol: p = -0.412,
P = 0.00833). However, the position of genes in Shol
branch was not clearly determined, especially position 2
(CDC24 and CDC40) and position 3 (STE20 and STE50)
[5,25]. Although we changed the positions of these
genes, the evolutionary pattern was not affected by their
related locations. What’s more, if these data were sepa-
rated into each lineage of the surveyed yeast taxa, the
pattern of dy/ds variation correlated significantly with
pathway position still holds in S. parodoxus, S. miketae
and A. gossypii. The lack of coordinated evolution in
each lineage had been observed in anthocyanin and
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Figure 5 Correlation between the dy\/ds value and the position
during the HOG signal transduction process from SIn1 (Sho1)
to Hog1. The position of the HOG pathway genes was as shown in
Figure 1. The downstream elements have higher levels of selective
constraint than the upstream elements (Spearman'’s rank correlation
coefficient: p = -0313, P = 0.0189).
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terpenoid biosynthetic pathway genes among plant
lineages [23,24].

The other factors affecting the evolution of HOG pathway
genes

The selective constraints on the pathway genes are also
affected by other evolutionary factors. We studied the
association between molecular evolution of the genes in
HOG-MAPK pathway with codon usage, gene expression,
protein length, and protein interaction in S. cerevisiae
(Table 2). Selective constraint on genes was measured as
o (dn/ds) and codon bias was measured as the frequency
of optimal codon (Fop). Using simple Spearman rank cor-
relation analyses, the o (dn/ds) shows significant corre-
lated with codon bias (p = -0.578, P = 0.00959) and
protein length (p = 0.47, P = 0.0426), whereas not signifi-
cantly associated with other factors. Generally, natural
selection is expected to affect codon usage, and higher
codon bias indicates stronger constraints acting on a gene
[13]. An earlier study have also documented that the pro-
tein length play an important role in shaping the evolution
of proteins in P. tremula [12].

However, these factors are inter-correlated, and some
of the observed correlations might actually result from
indirect effects rather than from direct effects. Path ana-
lysis was used to better characterize the direct and

Table 2 Summary statistics used in the multivariate
analysis

Gene Position  Protein d\® ®® PPI° Fop® Eavg®
length?®
SINT 1 1220 00156 00534 23 0435 1784.290
YPD1 2 167 0.000014 0.0001 31 0534 1017443
SSK1 3 712 0.0208 0.0767 31 0414 2416.731
SSK2 4 1579 0.00758 00316 29 0445 2156.276
PBS2 5 668 0.00731 00276 45 0456 1829.891
HOGT 6 435 0.00122 00057 82 0487 3725510
HOTT 7 719 00364 0109 16 0407 1135488
GPD1 8 391 0.00115 00072 5 0744 7653448
SHO1 1 367 0.00702 0.0298 90 0463 1998.004
MSB2 1 1306 00677 02496 20 0457 5044.198
D24 2 854 0.0028 00093 78 0442 2105747
CDC42 2 191 00049 0011 113 0495 6086.679
STE20 3 939 00161 0.0748 141 0463 1619444
STE50 3 346 00155 0.1138 61 0464 1441888
STETT 4 717 00118 0.0425 105 0443 1512138
SKOT 7 647 0.0253 00676 19 0408 2101.820
MSN4 7 630 00108 0.0467 10 0462 1855669
SFAT 8 386 0.00923 0.0303 11 0553 3738413
TPST 8 495 0.000025 0.0001 60 0549 7123245

@ Number of amino acids in the S. cerevisiae protein.

P The dy and o values in the S. cerevisiae lineages.

€ PPI: protein and protein interaction; Fop: Frequency of optimal codons; Eavg:
Average gene expression levels.
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indirect effects of these factors. As shown in Figure 6,
dn/ds show a significant correlation with codon bias,
protein length and gene expression. The position do not
correlate with dy/ds directly, thus their relationship
might actually result from indirect effects, connected
by codon usage Nevertheless, these factors affecting
protein evolution in HOG pathway are complex, with
interplay of a large number of factors.

Conclusions

The availability of complete genome sequences from
many fungal species presents a good opportunity to
examine the evolution of pathway genes. In this study,
we investigated the genetic variation of HOG-signaling
pathway genes across 10 yeast species and underpinned
the evolutionary forces acting on the pathway evolution.
Our results showed that nearly all the pathway genes
existed in the surveyed species and subjected to rela-
tively high selective constraints, suggesting that the
HOG pathway is functional across all these species.
However, the high levels of evolutionary rate variation
of HOG pathway genes among and within different
lineages are consistent with the hypothesis that stress
signaling pathways have evolved rapidly in a niche-speci-
fic fashion [1,10].

As the signal pathway could be grouped into three
functional modules (sensor, regulator, actuator) [1,6],
the most dramatic variation in HOG pathway was con-
centrated to the evolution of sensor genes (Figure 3).
Since these genes are involved in sensing environmental
changing, their high genetic variation was possibly due
to adaptive evolution. For instance, MSB2 was identified
as positively selected genes. In contrast, the MAPK cas-
cade was the least variation module in the HOG path-
way, which is consistent with the view that it is well
conserved in eukaryotes, and involves in multiple stress
tolerance processes (salt, H,O,, low and high tempera-
ture) [4,22].

Furthermore, the position of the genes in HOG path-
way significantly correlated with their dy/ds value varia-
tion. Some recent studies also have demonstrated that
selective constraint levels are correlated with the posi-
tion of the elements in metabolic pathways or signal
pathways [14,24]. Signal transduction pathways receive
signals from many other pathways and transmit them
into single output (i.e., Hogl in HOG pathway) to acti-
vate transcription reprogramming. Therefore, there are
stronger selective constraints acting on the downstream
genes than the upstream ones. The evolution pattern of
HOG pathway supported that natural selection primarily
targets enzymes that have the greatest control on fluxes
[14,24].

Notably, the transcription factors in HOG pathway
tend to evolve faster, which is consistent with a large
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relationships, respectively.
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Figure 6 Graphical representation of the path analysis used to analyze the relationships among pathway positions, nonsynonymous
substitution (dy), dn/ds ratio, gene expression level, codon bias (measured by Fop), protein length and protein interaction. Pathway
position, protein length and connectivity were treated as exogenous variables, while the rest were treated as endogenous variables. The
numbers on the arrows represent the standardized path coefficients (B). Solid and dotted lines represent significant and non-significant

number of recent studies [19,20]. To respond sensitively
to the change of environment, stress response pathways
are composed of intricate gene regulation networks [20].
Generally, transcription factors tend to be the hub node
in regulation network and under stronger functional
constraints. However, the fast evolution of transcription
factors in HOG pathway may be the result of their cen-
tral roles in controlling regulation network to adapt
with the changing of environmental pressures. More-
over, the evolutionary rate variation of the HOG path-
way was correlated with codon bias, protein length and
gene expression, suggesting that the genetic variation
may be influenced by quite complicated factors. Never-
theless, further work will be needed to assess the gener-
ality of the pathway evolution pattern we observed in
yeast species.

Methods

Identification of HOG pathway genes in yeast genomes
The HOG pathway genes of S. cerevisiae and their inter-
action (Figure 1) were generated according to Bahn et
al. (2007) and Krantz et al. (2006) [1,7,26]. The full list
of HOG pathway genes included in this study is pre-
sented in Table 1. There are 10 yeast species were used
in our study: 6 post-whole genome duplication (WGD)
species (S. cerevisiae [Scer], S. parodoxus [Spar], S. mike-
tae [Smik], S. bayanus [Sbayl,S. castelii [Scas], and Can-
dida glabrata [Cgla]), and 4 pre-WGD species
(Kluyveromyces waltii [Kwal], K. lactis [Klac], Ashbya
gossypii [Agos], and C. albicans [Calb]). The protein
coding sequences (CDS) of the HOG pathway genes in

the S. cerevisiae genome were retrieved from Saccharo-
myces Genome Database (SGD) [27]. Orthologous
sequences of these genes in Candida albicans were
obtained from CGD http://www.candidagenome.org[28],
and in other species were obtained from Yeast Gene
Order Browser website http://wolfe.gen.tcd.ie/ygob/[29]
or the yeast comparative genomics website http://www.
broadinstitute.org/annotation/fungi/comp_yeasts[30].
These orthologs were curated based on gene positional
synteny and sequence similarity. For those genes with-
out ortholog annotation, their orthologs were identified
based on the Reciprocal BLAST best hits between S. cer-
evisiae and other species, with an E-value cutoff of 10,
an identity = 40% and at least 75% alignable region [31].
All sequence alignments are available on request.

Sequence alignment and phylogenetic reconstruction
We generated a multiple sequence alignment (MSA) of
the protein sequences of each orthologs using the soft-
ware Clustalw 2.01 [32]. The resulting alignments were
manually improved using the software bioedit 7.0.9 [33].
The aligned amino acid sequences were reversely con-
verted into nucleotide sequences by in-house Perl script
for further analysis. In the cases in which there was
more than one gene copy in a given species, we used
the gene with the same synteny location. The orthologs
with stop codons were not used in further analysis (see
Table 1).

The genes with 1:1 orthologs in all the species were con-
catenated for building consensus phylogenetic tree [34].
We conducted a bayesian phylogenetic reconstruction
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using the software MrBayes 3.1.2 [35], applying the
nucleotide substitution model that best fits the data
according to the Akaike information criterion. The Find-
Model program http://hcv.lanl.gov/content/sequence/find-
model/findmodel.html was used for model selection, and
the best-fitting model was the GTR+I" model. All analyses
were conducted allowing for a proportion of sites to be
invariable (I). The phylogenetic tree was used for further
analysis.

Estimation of Evolutionary rate and detection of positive
selection

We evaluated the impact of natural selection by estimat-
ing nonsynonymous (dy) and synonymous substitution
(ds), and their ratio (0 = dy/ds) using the program
codeml of the PAML 4.1b package [36]. The MO model
(which assumes a single ® value for all lineages) and M1
model (to give separate dy/ds values for each lineage),
were used for evolutionary analyses, with cleandata = 1
(remove sites with ambiguity data) and get SE =1
(obtain standard errors of ® estimates) [18]. Saturation
effects were avoided by discarding pairwise gene com-
parisons for which dg > 2 and dg < 0.005 [24]. We also
restricted this analysis to the five Saccharomyces group
species to avoid saturation at synonymous sites, which
could bias the dy/dg estimates because the sequence
alignments of these 5 species were more reliable than
that of all species.

To determine whether there are codons evolving
under positive selection, we compared the M7 and M8
models using the likelihood ratio test, which had been
shown to be more powerful than other branch-site mod-
els [18,37]. The Bayes Empirical approach was used to
identify the codons evolving under positive selection
(posterior probability = 95%). We conducted all likeli-
hood estimations using three different o starting values
(0.01, 0.3 and 3) to overcome the problem of multiple
local optima. All these analyses were conducted using
the F3x4 codon frequency model [38]. We corrected for
multiple testing by using false discovery rate (FDR) of
0.05 for these analyses.

Statistic analysis

All statistical analyses were performed by using statisti-
cal package R http://www.r-project.org. The statistical
significance for the difference was determined by Wil-
coxon rank sum test and the Spearman rank correlation
was used for correlation analysis. The influence of para-
meters, such as expression level, codon bias, protein
length, and protein interaction (PPI), on evolutionary
rate was analyzed in this study [39]. Protein length,
expression level and codon usage were obtained from
the Saccharomyces Genome Database and references
[27,39]. The number of PPIs was obtained from GRID
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(General Repository for Interaction Datasets). First, we
evaluated whether these parameters are correlated using
Spearman’s rank correlation coefficient (p). Later, we
analyzed the data using path analysis, an extension of
multiple regression analysis that allows decomposing the
regression coefficients into their direct and indirect
components by considering an underlying user-defined
causal model [14]. Before performing path analysis,
these data were log-transformed to improve normality.
The path analysis was performed using the sem package
in R.

Reviewer’ comments

Reviewer’s report 1

Han Liang, Department of Bioinformatics & Comp Biology,
University of Texas M. D. Anderson Cancer Center
(nominated by Laura Landweber)

Understanding the evolutionary patterns in the context
of biological pathways is a topic of great importance.
Wu and colleagues performed a comprehensive analysis
on a well-characterized pathway in yeasts, HOG-signal-
ing pathway. They found that the evolutionary rate of
different components shows great variation, and the var-
iation is influenced by many factors. This is an interest-
ing study, providing useful insights into the evolution of
a key pathway.

My comments are as follows:

1. As for the distribution of HOG pathway genes in
the yeast phylogeny, does the gene duplicability (i.e.,
gene copy gain or loss) correlate with the pathway
position?

Author’s response: There are no correlation was
observed between pathway position and gene duplicabil-
ity. We observed the gene duplication events in HOG
pathway mostly occurred in post-WGD species.

2. The authors detected positive selection on MSB2
gene. Is it possible to pinpoint the amino acids under
adaptation and infer the functional effect of the amino
acid changes?

Author’s response: Thanks for the valuable suggestion.
Besides the fast evolution of MSB2 gene, we also find
that there is large insert/deletion in some strains of Sac-
charomyces cerevisiae. We will investigate the functional
effect of these sequence changes in future work.

3. The authors reported that the MAPK genes are
under stronger functional constraints and that the evo-
lutionary rate is negatively correlated with the positions
in the pathway (positions 1-6). These two points are
actually redundant because the MAPK (regulator mod-
ule) is in the downstream of sensor module. So within a
module, does the evolutionary rate depend on the
position?

Author’s response: According to an engineering view of
dynamical control, gene function in a signaling pathway
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can be classified into three functional roles: “sensor’,
“regulator”, “actuator”. In each module, the downstream
elements have higher levels of selective constraint than
the upstream elements. For regulator module, p = -0.89,
P = 0.006 (Spearman’s rank correlation). The correlation
of other two modules is more clearly (Figure 3).

4. In the last section, the authors examined the corre-
lations of dy/ds with a series of factors. Since these fac-
tors are often interrelated, it would be better to use
principal component analysis or partial correlation ana-
lysis to estimate the relative contributions of each
factor?

Author’s response: We agree with the reviewer that the
suggested statistical analysis should be better to estimate
the relative contributions of each factor. In this study, we
used simple Spearman rank correlation analysis to esti-
mate the correlation, and the path analysis to estimate
the indirect effects of these factors. Therefore, we tried to
findout which factors affect the evolution, but not consid-
ering which factor play main role in the evolution.

Minor points:

“Most genes have orthologs in all the yeast species
and were identified as unique singletons in most cases.”
How can 8 out of 19 genes become “most”?

Author’s response: There are 10 yeast species surveyed
in this study. The total number of genes is 190. As shown
in Table 1, the singleton gene number is 169 (190 - (15 +
2 + 4)). So we say that most genes were singleton.

I declare that I have no competing interests.

Reviewer’s report 2

Georgy Bazykin, Department of Bioinformatics, Russian
Academy of Science (nominated by Mikhail Gelfand)

The manuscript by Wu et al. is an addition to the exist-
ing literature on correlations between the pathway posi-
tion of the gene and its evolutionary rate. The authors
show that the genes located downstream in HOG path-
way are under stronger negative selection.

My main concern is that there seems to be a number
of flaws in the statistical analyses supporting the
authors’ main conclusions.

1. Multiple testing. The authors test all 19 genes of
the HOG pathway with the free-ratio model of codeml
(apparently for a total of ~19*7 comparisons), and iden-
tify a single gene at a single branch (MSN2 of Calb)
with dy/ds > 1. They then test MSB2 gene for positive
selection using LRT, and detect positive selection. How-
ever, due to the sheer number of multiple tests involved,
detecting a single gene with dy/ds > 1 could occur due
to chance effects. There is no built-in correction for
multiple testing in codeml (Yang 1998 Mol Biol Evol 15
(5):568-573), and the results of multiple comparisons
should be interpreted with more caution. In Methods,
the authors write that they used the FDR rate of 0.05,
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but this apparently only applies to comparisons of
codons using M7 and M8 models (which apparently is
never implemented, see below).

Author’s response: We agree with the reviewer, and as
this comment says, we first test all 19 genes of the path-
way with the free-ratio model, then identify positive
selection using likelihood ratio test (LRT) test to compare
M7 and M8 model. However, the gene with dy/ds>1 is
not used as evidence to detect positive selection, which is
applied by the comparisons of codons using M7 and M8
models in this study. We have described this analysis in
Methods (Estimation of evolutionary rate and detection
of positive selection). Furthermore, considering 1 out of
19 tests to be positive, and FDR cutoff = 0.05, the P
value should be P < 0.0026 (1 * 0.05/19). As the MSB2
with P < 0.001, so it’s selected as positive selection gene.

2. Arbitrariness in selection of data. In analysis of the
correlation between the pathway position and dy/ds,
the authors exclude genes in position 7 and 8 of HOG
pathway. Why these genes should be excepted is not
explained, and the authors include them in the rest of
the tests.

Author’s response: The exception of position 7 & 8
could be explained by two reasons: first, it made sense
that the external signal is transmitted into nuclear from
Slnl/Shol to Hogl, which changed gene transcription.
The HOG signal transduction process is restricted in
genes from SLNI1 to HOGI, but transcription factors are
involved in many other biological processes. Second, the
increased divergence of transcription factors in postion 7
had been observed. If the position 7 and 8 was included,
the correlation didn’t hold again.

I declare that I have no competing interests.

Reviewer’s report 3

Zhenguo Lin, Department of Ecology and Evolution, The
University of Chicago (nominated by John Logsdon)
Different organisms may respond differently to the spe-
cific stress. It is of great interest to study how such dif-
ference was evolved by examining the evolution of the
related stress response pathways. The yeast S. cerevisiae
cells respond to increased intracellular osmolarity by
activating of the high osmolarity glycerol (HOG) MAPK
pathway. This manuscript indentify the orthologous
genes of HOG pathway from 10 closely related yeast
species, and examined the evolutionary rates of genes at
each step of this pathway. The authors also investigated
the other factors that may affect the evolutionary rates
of these genes. The authors found that the HOG path-
way is conserved in hemiascomycete yeasts, but the evo-
lutionary rates vary greatly in different lineages. One
interesting observation is that the evolutionary rates of
genes tend to be negatively correlated with their posi-
tions in the pathway, suggesting a stronger selection
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constrains at the downstream genes. Overall, this is a
well-executed analysis and well organized manuscript,
although more work need to be done to improve the
quality of writing.

Major comments

1. The authors claimed that the MSB2 genes have
been under positive selection. Although the ® = 0.2496
value is probably the largest among all genes in the
pathway, it is still far below 1. However, if MSB2 was
under positive selection does not affect the conclusion
of this paper.

Author’s response: Although the dy/ds value of the
whole sequence of MSB2 is below 1, but some sites
(codons) of this gene may evolve fast and under positive
selection. We used the site model M7 and M8 compari-
son to detect positively selected genes, which allow dy/dg
to vary among codons.

2. In the introduction, the authors said C. albicans
and A. gossypii have different sensitivity responding to
environmental osmolarity stress. Are the evolutionary
rates of HOG genes different between the two species?
It would make this study more valuable if the results are
correlated with different osmolarity stress responses
among different species.

Author’s response: Thanks for the reviewer’s useful
comments. We did observe the difference of evolutionary
rates of these two species (Wilcoxon rank sum test, P =
0.00213). However, the omostic stress resistance have
been compared in only a few species, and the resistance
capability cannot be quantified, so we cannot analysis
the correlation relationship between evolutionary rate
and stress resistance quantitatively.

3. The Figure 5 shows a negative correlation between
the dy/ds value and the position during the HOG signal
transduction process. As said by authors, the evolution-
ary rates are quite different among different lineages. I
am not sure if it is a good idea to mix data from all
lineages to study the correlation. Does the correlation
still exist in each individual species or how many species
have such pattern?

Author’s response: Following the reviewer’s suggestion,
we have considered evolutionary rate of each lineage of
the surveyed yeast taxa, and found the pattern of dy/ds
variation correlated significantly with pathway position
still holds in S. parodoxus, S. miketae and A. gossypii.

Minor comments

“are characterized extensively” — “have been charac-
terized extensively”

Author’s response: Following the reviewer’s suggestion,
we haved changed “are characterized extensively” to
“have been characterized extensively’.

“10 yeast genomes” — “10 yeast species”
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Author’s response: Following the reviewer’s suggestion,
we haved changed “10 yeast genomes” to “10 yeast
species’.

“Among them” is not clear to the context. “them”
could be misleading as the three functional modules.

Author’s response: Following the reviewer’s suggestion,
we have removed these two words.

fungi is more “evolutionary conserved” is that true?
any reference?

Author’s response: Following the reviewer’s suggestion,
we have added two references. “proofed” proof is not a
verb

Author’s response: Following the reviewer’s suggestion,
we have changed “proofed” to “proved”.

“The aligned amino acid sequences were reversely
translated into nucleotide sequences by in-house Perl
script for further analysis”. Did you mean convert pro-
tein alignment into DNA alignment using their original
DNA sequence? It is impossible to “Translate” amino
acid sequences to translated nucleotide.

Author’s response: Following the reviewer’s suggestion,
we have changed “translated” to “converted’.

“we generated 19 HOG-MAPK pathway genes” it is
not appropriate to use “generated” here.

Author’s response: We agree with the reviewer and
have changed “generate” to “identified”.

“their surrounding genes” it is misleading. it could be
neighboring genes on the chromosome.

Author’s response: Following the reviewer’s suggestion,
we have add “in HOG pathway” in this sentence.

“Several earlier studies”, only one reference is listed.

Author’s response: Following the reviewer’s suggestion,
we have added two references.

“fungi” — fungal

Author’s response: Following the reviewer’s suggestion,
we have changed “fungi” to “fungal”.

I declare that I have no competing interests.

Abbreviations

HOG: High Osmolarity Glycerol; WGD: Whole Genome Duplication; LRT:
Likelihood ratio test; Fop: Frequency of optimal codons; PPI: Protein and
protein interaction; MSA: Multiple sequence alignment.
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