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Abstract

Background: Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction
of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and
eukaryotes remain unresolved.

Results: We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the
main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we
found that eukaryotic Polymerase € consists of two tandem exonuclease-polymerase modules, the active N-terminal module
and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each
other, an observation that suggests the possibility that Pol ¢ evolved as a result of insertion and subsequent inactivation of a
distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication.
The presence of an inactivated exonuclease-polymerase module in Pol ¢ parallels a similar inactivation of both enzymatic domains
in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family
polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ¢, and
the other one to the common ancestor of Pol a, Pol 3, and Pol £. The C-terminal Zn-fingers that are present in all eukaryotic
B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise
unrelated to the B family. The Zn-finger of Pole shows a markedly greater similarity to the counterpart in archaeal PolD than
the Zn-fingers of other eukaryotic B-family polymerases.

Conclusion: Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We
hypothesize that the archaeal ancestor of eukaryotes encoded three DNA polymerases, namely, two distinct B-family
polymerases and a D-family polymerase all of which contributed to the evolution of the eukaryotic replication machinery. The
Zn-finger might have been acquired from PolD by the B-family form that gave rise to Pol € prior to or in the course of
eukaryogenesis, and subsequently, was captured by the ancestor of the other B-family eukaryotic polymerases. The inactivated
polymerase-exonuclease module of Pol € might have evolved by fusion with a distinct polymerase, rather than by duplication of
the active module of Pol g, and is likely to play an important role in the assembly of eukaryotic replication and repair complexes.

Reviewers: This article was reviewed by Patrick Forterre, Arcady Mushegian, and Chris Ponting. For the full reviews, please
go to the Reviewers' Reports section.

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19296856
http://www.biology-direct.com/content/4/1/11
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Biology Direct 2009, 4:11

Background

DNA-dependent DNA polymerases (DdDps) are essential
components of all cellular life forms inasmuch as
genomes of all modern cells consist of DNA whose repli-
cation requires the activity of one or more DdDps [1,2].
Most of the DNA viruses with relatively large genomes
also encode their own DdDps [3]. The great majority of
cellular organisms possess several DdDps that operate
during DNA chain elongation during replication and/or
in diverse repair processes [4,5].

Structural and inferred evolutionary relationships
between DdDps comprise a complex network. There are
several families of DdDps that are only distantly related or
unrelated to each other [6]. The replicative polymerases
are sharply divided between the bacterial and archaeal-
eukaryotic types that appear not to be homologous [7,8].
In bacteria, replication is performed by C-family polymer-
ases that are not found in archaea or eukaryotes, whereas
all archaea and eukaryotes, as well as a huge diversity of
viruses, encode B-family polymerases that are responsible
for genome replication in all eukaryotes and some of the
archaea [6,9]. All eukaryotes, in particular, possess four
paralogous B-family polymerases denoted Pol a, Pol 3,
Pol g, and Pol ¢ involved in DNA replication and repair
[5,10]. Of these, Pol o and Pol 6 are essential components
of the DNA replication machinery; Pol ¢ has an apparent
role in replication, but its exact function is less clear,
whereas PolC is involved in translesion DNA synthesis
[11-17]. Euryarchaeota, in addition, possess a distinct D
family polymerase that seems to make a substantial con-
tribution to replication (the replication of archaeal DNA
is not understood in as much detail as bacterial or eukary-
otic replication) and is unrelated to both B and C family
polymerases [18-20]. Recently, PolD was detected also in
the putative phyla Nanoarchaeota [21], Thaumarchaeota
(formerly mesophilic Crenarchaeota) [22], and Korar-
chaeota [23], suggesting the possibility that this DdDp is
ancestral in archaea.

Here we report results of comparisons of protein
sequences of eukaryotic and archaeal DdDps that reveal
unexpected aspects of their domain architectures and evo-
lution, and lead to specific functional implications.

Results and Discussion

Inactivated polymerase and exonuclease domains in the C-
terminal portion of Pol &

Pol g, one of the paralogous B family polymerases that are
conserved in all eukaryotes, is a very large protein that typ-
ically consists of 2000 or more amino acid residues [17].
The functionally characterized proofreading 3'-5' exonu-
clease (Exo) and polymerase (Pol) domains are located in
the N-terminal half of this protein whereas the C-terminal
half contains no experimentally characterized or readily
detectable domains except for two Zn-finger modules at
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the end of the sequence [11,17,24-26]. The Pol ¢ holoen-
zyme heterotetramer [27], the 20 A resolution structure of
which has been determined by cryo-electron microscopy
(cryo-EM) [28], contains, in addition to the large catalytic
subunit, three smaller subunits, DPB2-4; the DPB2 subu-
nit is essential for viability, and its proper structure is
required for high fidelity of genome replication [29]. Site-
directed mutagenesis experiments demonstrated that the
Zn-fingers of Pol ¢ are required for its interaction with
DPB2 [29]. Deletion of the other two accessory subunits
is not lethal but leads to elevated mutation rates [30,31].

The sequences of the Zn fingers in Pol o, Pol 4 and Pol ¢
are adjacent to the C-terminal portion of the catalytic
domain that is homologous to the sequences of the
Thumb subdomain in the available crystal structures of B-
family DdDps. By contrast, the Zn fingers in Pol ¢ are sep-
arated from the N-terminal catalytic domains by a large
insert that is similar in size to the N-terminal Exo-Pol
module. Examination of the Cryo-EM structure [28] indi-
cates that this insert and the DPB2-binding subdomain
(Zn fingers) are, largely, structured and bound to each
other; furthermore, the presence of this insert places the
DPB2-binding area spatially apart from the N-terminal,
catalytic Exo-Pol module. Somewhat paradoxically, it was
shown by deletion mutagenesis and site-directed muta-
genesis that the N-terminal, catalytic portion of Pol ¢ is
not required for viability whereas the uncharacterized C-
terminal portion is essential [11,16,24-26].

We employed secondary structure prediction and fold rec-
ognition in combination with different sequence similar-
ity search strategies in an attempt to elucidate the origin
and possible functions of the essential C-terminal region
of Pole. Secondary structure prediction and automated
three-dimensional model building for the N-terminal
1200 amino acids of human Pol ¢ using the Phyre server
[32], as expected, revealed a typical DNA polymerase fold
(pdb: 1wn?, 1d5a, 1s5j, 1g8i, 2gv9, 2p50) with a 100%
confidence. Strikingly, the search with the remaining
amino acids 1201-2286 of human Pol ¢ also revealed a
DNA polymerase fold for the sequences preceding the Zn
fingers with the confidence of 95% (E. coli DNA polymer-
ase II, PDB code 1¢8i), 90% (Desulfurococcus sp. tok DNA
Polymerase, 1d5a) and 85% (Thermococcus kodakaraensis
family B DNA polymerase, 1wn7). Although we did
expect to detect some Thumb subdomain-like fold that
would stabilize the positions of Zn fingers, the discovery
of the entire second polymerase and exonuclease module
was highly surprising. This unexpected finding prompted
us to initiate a further, in-depth sequence analysis in an
attempt to elucidate the origin and possible functions of
the essential C-terminal region of Pol e.

A PSI-BLAST search [33] with the C-terminal portion of
the Pol € sequence from Saccharomyces cerevisiae (amino
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acid positions from 1170 to 2085 aa) used as the query
(with E = 0.001 inclusion threshold and composition
based statistics on) reveals similarity to the sequence of
DNA polymerase II of Photobacterium profundum
(GI:90410522) of the B-family at the 3 iteration, with E-
value = 2e-05; numerous sequences of B-family polymer-
ases were detected in subsequent iterations. The same
sequence was used as a query for an HHpred search [34].
This method detects the similarity with a B-family
polymerase from the archaeon Thermococcus sp. (pdb:
1qght) with E-value = 4.9e-06 as the second top hit (the
first one is a self-hit to pfam08490: DUF1744, Domain of
unknown function) and several additional hits to differ-
ent sequences and profiles of B-family polymerases with
statistically significant E-values.

The results of these searches strongly support the possibil-
ity, originally brought up by the structural comparisons
described above, that the C-terminal portion of Pol ¢ is
homologous to B family polymerases. A more detailed
analysis showed that, although the C-terminal region of
Pol ¢ readily aligned with B family DdDps, the motifs that
contain the catalytic amino acid residues in both the Exo
and Pol domains are disrupted in the Pol € sequence, with
the only apparent exception of the 'DIE' motif of the Exo
domain (Figure 1). The partial conservation of this motif
might indicate that the inactivated Exo domain of Pol ¢
retains metal-binding capacity, although not the catalytic
activity. Thus, it appears that the C-terminal portion of the
eukaryotic Pol ¢ is a derived B-family DdDp in which both
the Exo domain and the Pol domain are inactivated. Inac-
tivation of catalytic domains or subunits in DNA
polymerase has been observed previously. In particular,
we recently described a family of inactivated B family
polymerases that is widespread in diverse archaea [35]. In
addition, the small subunits of eukaryotic B-family
DdDps including DPB2, the essential second subunit of
Pol ¢, are inactivated versions of the exonuclease subunits
of archaeal PolD [36-40]. However, to our knowledge, Pol
¢ is the first detected case of the combination of an active
and inactive polymerase within the same protein. Thus, it
seems particularly remarkable that both essential subunits
of Pol ¢ are inactivated derivatives of replicative enzymes.
The fusion of active and inactivated B-family polymerases
in Pole supports the prediction that active and inactive
forms function in concert in archaeae and some bacteria
although so far no fusions analogous to Pole were
detected in prokaryotes [35]. As proposed previously,
inactivated polymerase subunits are likely to perform
essential functions in the assembly of replicative com-
plexes [25,35,36].

In general, when two homologous domains follow one
another within the same protein, one would be inclined
to suspect that they evolved by tandem duplication. How-
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The conserved motifs of exonuclease and polymer-
ase catalytic domains of active B-family polymerases
compared to inactivated C-terminal domains of
polymerases €. The motifs are represented as four
sequence LOGOs, from top to bottom: all active Exo
domains of B-family polymerases from the alignment in Addi-
tional File | (archaeal, proteobacterial, and eukaryotic Pold
and N-terminal domain of Polg); inactivated C-terminal
domain of Polg; all active Pol domains; inactivated C-terminal
domain of Pole. The motifs that contribute to the active
centers are denoted Exo I-lll and Region I-lll for the Exo and
Pol domains, respectively, and the catalytic residues are
shown by #.

ever, the inactivated C-terminal part of Pole was much
more similar to a variety of B-family polymerases, in par-
ticular, bacterial ones, than to the active, N-terminal
polymerase moiety of Pol €. Moreover, the latter, active
moiety of Pole differed from other B-family DdDps
including the inactivated C-terminal part of Pole by the
presence of multiple, unique inserts (Figure 2). These
observations do not support the intuitively plausible
hypothesis of a tandem duplication in Pol ¢ and
prompted us to investigate in greater detail the domain
architectures of eukaryotic DdDps and their likely origins.

Unexpected evolutionary dffinities of the Zn-finger
modules of eukaryotic B family DNA polymerases
Eukaryotic B-family DdDps contain two Zn-finger mod-
ules at their C-termini. Unexpectedly, when examining
the results of PSI-BLAST searches with the C-terminal por-
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Figure 2

A schematic diagram of conserved blocks and spe-
cific inserts in the most conserved part of the align-
ment of polymerase catalytic domain of different
groups of B-family DNA polymerases. For the actual
alignment, see Additional File I.

tion of Pol € as a query, we detected significant similarity
to the C-terminal Zn-finger modules of the archaeal PolD
rather than to those of Pol a, Pol 3, or Pol {. Specifically,
the PSI-BLAST search with C-terminal Zn-finger sequence
of the yeast Pol ¢ (amino acids 2116 to 2199) reveals
highly significant similarity to the C-terminal Zn-fingers
of many archaeal Pol D sequences (E-value 4e-06 in the
second search iteration). By contrast, significant similarity
to the Zn-fingers of other eukaryotic B-family polymerases
could not be easily demonstrated. The reverse search with
the Zn-fingers of archaeal PolD yielded, essentially, the
same results (data not shown). The same relationship was
detected using HHpred: the Zn-finger sequence from yeast
Pol ¢ gave the top hits to several profiles of PolD with E-
value as low as 1.4e-24. The multiple alignment of the Zn-
finger domains of DdDps clearly reveal the specific simi-
larity between the distal Zn-finger of Pol € and the sole Zn-
finger of the archaeal Pol D as opposed to the limited sim-
ilarity to the Zn-fingers of other eukaryotic B-family
polymerases (Figure 3). These observations suggest an
unexpectedly complex evolutionary scenario for the ori-
gin of eukaryotic DdDps from archaeal ancestors. After
performing this analysis, we became aware of the fact that
the specific similarity between the Zn-finger of the cata-
lytic subunit of Pol € and archaeal PolD has been noticed
previously although evolutionary implications of this
finding have not been examined [40].

Origin of eukaryotic B-family DNA polymerases

Because of the high sequence divergence of the Pol € C-ter-
minal domain, we were able to construct a reliable align-
ment only for approximately 280 amino acid residues
from the Exo and Pol domains of B-family DdDps. Never-
theless, when this alignment was employed for phyloge-
netic tree reconstruction, the topology of the tree was
quite stable as demonstrated with a variety of tree-build-
ing methods and different parameter combinations (Fig-
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ure 4; see Methods for details). The results were, mostly,
compatible with those of previously published phyloge-
netic analyses of B-family DNA polymerases [35,41,42].
The tree has a complex structure, with the active, N-termi-
nal region of Pol ¢ clustered with the "major" group of
archaeal B-family polymerases (PolBI) that is represented
in nearly all archaea, whereas the rest of the eukaryotic B-
family polymerases including the inactivated C-terminal
portion of Pol ¢ are affiliated with a distinct, "minor"
group of polymerases (PolBII) found in a smaller subset
of archaea (Figure 4). These findings are in a general agree-
ment with the previous results of phylogenetic analysis of
archaeal and eukaryotic B-family polymerases [43,44].

Together with the observations on the Zn-finger domains
of archaeal and eukaryotic B-family polymerases, the
results of phylogenetic analysis suggest an unexpectedly
complicated scenario of the evolution of eukaryotic
DdDps that is not limited to duplications and diversifica-
tion as central trends at the early stage of eukaryogenesis
[45]. Instead, the results suggest distinct archaeal pedi-
grees for eukaryotic polymerases and imply that the
archaeal ancestor of eukaryotes possessed at least two B-
family polymerases as well as PolD from which the
"major" B-family form acquired the Zn-finger, either prior
to or during eukaryogenesis (Figure 5). The combination
of a B-family polymerase with the PolD Zn-finger is not
seen in any of the sequenced archaeal genomes, in accord
with the conclusions of a recent phylogenetic analysis that
derives the "archaeal" subset of eukaryotic genes from a
deep branch of archaea [46]. Under this scenario, eukary-
otic Pol € and the rest of the eukaryotic B-family polymer-
ases appear not to be ancient eukaryotic paralogs sensu
strictu, but rather, pseudoparalogs originating from paral-
ogous archaeal ancestors [45].

The subsequent events in the evolution of eukaryotic B-
family DdDps that occurred prior to the radiation of the
major lineages of eukaryotes included not only two dupli-
cations of the Pol-Exo block that led to the origin of
polymerases a8, and ¢, but also the duplication of the Zn-
finger, probably, in the ancestral Pole, with the subse-
quent acquisition of the two-finger module by the com-
mon ancestor of Pola, Pol3, and Poll. The inactivated C-
terminal portion of the Pole is more likely to result from
a fusion of two distantly related B-family polymerases as
opposed to the intragenic duplication scenario. The topol-
ogy of the phylogenetic tree suggests that the source of the
C-terminal portion of Pol € could be a proteobacterial (or
bacteriophage) B-family polymerase (Figure 4) although,
given the long Pol ¢ branch, its origin cannot be deter-
mined with any confidence. In principle, a long-branch
artifact could even obscure a duplication of the N-termi-
nal portion of Pol &; however, this seems unlikely consid-
ering that the N-terminal sequence shows a distinct
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Multiple alignment of the two-Zn-finger modules of eukaryotic Pol q, , 5, and ¢, and the single Zn-finger of
archaeal PolD. The sequences are denoted by their Gl numbers and species names. The positions of the first and the last res-
idues of the aligned region in the corresponding protein are indicated for each sequence. The numbers within the alignment
represent poorly conserved inserts that are not shown. The cysteine residues that are essential for Zn-binding are shown by
reverse shading. The coloring is based on the consensus shown underneath the alignment; 'h' indicates hydrophobic residues
(ACFILMVWY), 'p' indicates polar residues (EDKRNQHTS). Additional consensus line at the top of archaeal polymerase Il
alignment indicates additional conservation between polymerase ¢ and archaeal polymerase II: 's' indicates small residues
(ACDGNPSTV). The predicted secondary structure is shown above the alignment and is compared to the NMR structure that
is available for human Pol o (pdb: IN5G) [67] that is shown on top of the Pol a alignment; 'H' indicates a-helix, 'E' indicates

extended conformation (f-strand) and 'T" indicates a turn.

pattern of indels as opposed to a common pattern in the
C-terminal sequence and the rest of the eukaryotic B-fam-
ily polymerases (Figure 2).

Conclusion

The analysis described here reveals the complexity of the
evolution of only one, although biologically central,
group of eukaryotic proteins, the B-family DNA polymer-
ases involved in genome replication and some repair
processes. Evolution of the eukaryotic B-family polymer-
ases seems to have involved several previously unnoticed
events. At face value, eukaryotic B-family DdDps appear
to be chimeric with respect to their archaeal ancestors,
with the catalytic portion (Pol and Exo domains along

with the N-terminal uracil-binding domain [47]) derived
from archaeal B-family polymerases and the Zn-finger
derived from PolD (Figure 5). The derivation of the small
subunits of eukaryotic B-family polymerases, such as
DPB2, from the exonuclease subunits of the archaeal
PolD further emphasizes the joint contributions of the B-
family and D-family archaeal polymerases to the evolu-
tion of the eukaryotic replication machinery. It is unclear,
however, at what stage of evolution the chimeric polymer-
ases evolved. The possibility remains that this fusion of
domains that, in archaea, so far have been detected sepa-
rately, is characteristic of the hypothetical (extinct or
extant but not yet discovered) deep lineage of archaea that
provided the archaeal heritage of eukaryotes [46].
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Unrooted phylogenetic tree of B-family DNA polymerases. The tree was constructed using the conserved blocks from
the Exo-Pol alignment (see Additional File 1). The tree is rendered as a scheme, with only the major groups denoted; for the
complete tree, with all species indicated, and trees constructed with alternative methods, see Additional File 2. The tree is
overlaid with schematics of domain architectures which are given for representatives of each group (Saccharomyces cerevisiae
sequences for polymerases a, §, 5, € and those from Sulfolobus solfataricus, Pyrococcus furiosus (pdb:2|GU), and Escherichia coli
(pdb:1Q8I) for archaeal minor, archaeal major and proteobacterial groups, respectively). The domains are shown roughly to
scale. Inactivated C-terminal domains of polymerases ¢ are crossed. Dashed line indicates the portion of the sequences corre-
sponding the adjacent tree branch. Zn-finger 2* denotes the distinct version of this module in Pole that is highly similar to the
Zn-finger of archaeal PolD (see text for details). The proposed position of the root is shown by an arrow.

The unexpected observation that triggered this analysis is
the presence, in the C-terminal regions of the large, cata-
lytic subunits of all eukaryotic Polg, of apparently inacti-
vated versions of the Exo and Pol domains. These
sequences are conserved in all eukaryotes and, notably,
have been identified as essential by deletion mutagenesis
[11,25,26]. Thus, it appears certain that, despite the inac-
tivation of both catalytic activities, the C-terminal portion
of Pol ¢ plays a key role in DNA replication of all eukary-
otes, conceivably, as a structural component that is indis-
pensable for the assembly of replication complexes at the
origins [48], with likely additional functions in repair and
cell cycle regulation [16]. Inactivation of enzymatic activ-
ities of polymerase subunits is becoming a rather general
theme in the evolution of the architecture of the replica-
tion machinery, two other cases being the inactivation of
the nuclease domain in the small subunits of eukaryotic
B-family polymerases [36,40,49], and the inactivation of

both catalytic domains in a distinct family of archaeal
polymerase homologs [35]. Strikingly, the evolution of
Pol ¢ seems to have involved a concerted inactivation of
both the Exo and Pol domains of a B-family polymerase
(possibly, one that fused with the ancestral B-family
polymerase) and of the exonuclease subunit of PolD, sug-
gesting that selective pressure exists for the utilization of
these inactivated derivatives of replicative enzymes as
structural components of replicative complexes.

Another case of functional inactivation despite structural
conservation is the uracil recognition domain that is con-
served in archaeal and eukaryotic B-family polymerases
(Fig 4) but lost the capacity to sense uracil in front of the
moving polymerase in eukaryotes [50]. Mechanistic char-
acterization of the inactivated polymerase subunits and
domains is expected to shed new light on the functions of
the replication apparatus.
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Pol ¢

Proto-eukaryote/LECA

Ancestral archaeon

A putative evolutionary scenario for the origin of eukaryotic B-family DNA polymerases from prokaryotic
ancestral forms. The scheme is rendered within the framework of the symbiotic scenario of the origin of eukaryotes
whereby the symbiosis of an archaeon with an o-proteobacterium gave rise to the mitochondrion and triggered eukaryogene-
sis. The domains are designated by unique shapes as in Figure 4. PolBM, the "major" form of archaeal B-family DNA polymerase
(PolBI [43]); PolBm, "minor" form of archaeal B-family DNA polymerase (PolBIl [43]; PolDs, small subunit of archael PolD
(active exonuclease). Inactivation of PolDs in the protoeukaryote (the Last Eukaryotic Common Ancestor, LECA) is denoted
by crosses. The origin of Pol ¢ is depicted as insertion of a bacterial B-family polymerase between the catalytically active mod-
ule derived from the archaeal PolB-M and the Zn-finger derived from the archaeal PolD.

On a more general note, the present analysis indicates that
footprints of undetected evolutionary events with impor-
tant functional implications are still lurking in even sup-
posedly well-characterized proteins. Conceivably, a
variety of non-trivial evolutionary connections between
eukaryotic proteins and their prokaryotic ancestors
remain to be discovered, leading to unusual evolutionary
scenarios.

Methods

All analyzed sequence were from the NCBI's RefSeq data-
base [51]. Multiple alignments of protein sequences were
constructed by combining the results obtained with the
PROMALS program [52] and the MUSCLE program [53],
followed by a minimal manual correction on the basis of

local alignments obtained using PSI-BLAST (see Addi-
tional File 1). Protein sequence motifs were represented
using sequence LOGOs where the height of the amino
acid symbols is a function of the frequency of the given
amino acid in the given position [54,55]. Protein second-
ary structure was predicted using the PSIPRED program
[56]. Protein fold recognition was performed using the
Phyre server [32].

Maximum likelihood (ML) phylogenetic trees were con-
structed from the alignment of the most conserved posi-
tions of the Pol and Exo domains of the B-family
polymerases (279 positions altogether, with only a few
gaps within the conserved blocks) by using the MOLPHY
program [57,58] with the JTT substitution matrix to per-
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form local rearrangement of an original Fitch tree [59].
The MOLPHY program was also used to compute RELL
bootstrap values. The topology of the tree was validated
using independent ML methods implemented in the
Treefinder [60] and RaxML [61] programs with optimized
JTT, WAG and RtRev substitution matrices (see Additional
File 2).
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Reviewers' reports

Reviewer I: Patrick Forterre, Institut Pasteur

The paper by Tahirov and colleagues reports a very excit-
ing observation: they have shown convincingly, using a
combination of in silico approaches based on structural
comparison and iterative Psi-BLAST analyses, that the C
terminal domain of the eukaryotic DNA polymerase g,
corresponds to an inactivated DNA polymerase of the B
family. The eukaryotic DNA polymerase ¢ thus appears to
be formed by the fusion of an active DNA polymerase B
(in N-terminal) and an inactive DNA polymerase B (in C-
terminal). Amazingly, the inactive DNA polymerase B
does not seem to have originated from a duplication of
the active one, but by the fusion of a bacterial-like DNA
polymerase B (such as E. coli DNA polymerase II). This is
a very interesting observation that deserves publication.
The authors also notice that the two Zinc fingers of the
eukaryotic DNA polymerase € are more related to Zinc fin-
gers of archaeal DNA polymerases D than to those of
other DNA polymerases B. This is in line with the fact that
archaeal DNA polymerases D and eukaryotic DNA
polymerases & both interact with homologous subunits in
Archaea and Eukarya. From these two observations, the
authors speculate about the origin and evolution of
eukaryotic DNA polymerases. I think that the authors
should more clearly distinguish between their observa-
tions and evolutionary hypotheses. For instance, in the
abstract, the hypotheses are described in the "result sec-
tion" and even introduce this section as if they were bona
fide results. The main and exciting result is only presented
as an additional observation!!! "In addition, we found

http://www.biology-direct.com/content/4/1/11

that.....". 1 think that the hypothesis favoured by the
author should be mentioned only in the conclusion.

Authors response: We appreciate these constructive sugges-
tions and have revised the Abstract accordingly. In the main
text, the description of the inactivated module of Pol & already
preceded the rest of the analysis, so no change was necessary.

Ideally, the authors should have discussed their observa-
tions in the context of alternative hypotheses on the origin
of eukaryotes and the eukaryotic DNA replication appara-
tus (see below). In my opinion, in discussing evolutionary
scenarios, terms such as "archaeal ancestor" (already in
the title and abstract conclusions) (see Figure also 5)
should be avoided. The term archaeal ancestor is confus-
ing since the common ancestor of Archaea and proto-
eukaryotes was probably neither a proto-eukaryote nor an
archaeon. Similarly, the Human does not descend from
Apes, but Apes and Human have a common ancestor.

Authors response: This point is often brought up, and a
reminder, we hope, will be helpful to the reader. 1t is true that
Homo sapiens did not evolve from Pan troglodytes or any other
living great ape species but rather shares a common ancestor
with them. However, that common ancestor was, necessarily,
an ape (distinct from any extant ape, of course), so the phrase
"ape ancestor of humans" is not confusing, in our opinion.
Ditto regarding "archaeal ancestor of eukaryotes".

From our own analysis of the evolution of the DNA repli-
cation apparatus (unpublished), it is indeed likely that the
last common ancestor of Archaea had two DNA polymer-
ases of the B family and one of the D family (as suggested
in Figure 5A) and this was possibly also the case for the
last common ancestor of Archaea and proto-eucaryotes
(as suggested by the authors). The authors imagine a sce-
nario of evolution going from this "simple" ancestor to
modern eukaryotes (transformation of the two ancestral
polymerases B in four polymerases B and loss of the
polymerase D in the lineage of modern eukaryotes). How-
ever, one cannot exclude other scenarios, such as the pres-
ence of more than two polymerases B in the common
ancestor of archaea and proto-eucaryotes (with loss of
DNA polymerase D in Archaea and of some DNA
polymerase B in Archaea), and/or introduction of DNA
polymerases of viral origin in Archaea and/or in the line-
age of proto-eucaryotes [62]. Since viral DNA polymerases
of the B family are intermixed with cellular DNA polymer-
ases in phylogenetioc tree [63,64], it should be in any case
interesting to extend the present analysis to viral DNA
polymerases as well.

Authors response: We agree that alternative scenarios are
imaginable. They might somewhat less parsimonious but parsi-
mony is at best a rough guide in the study of such complex evo-
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lutionary scenarios. Analysis of viral polymerases is interesting
although it is complicated by the typical high rate of evolution
of viral proteins, even essential ones.

Reviewer 2: Arcady Mushegian, Stowers Institute

The authors discuss the compelling evidence for the com-
plex evolutionary history of eukaryotic Family B DNA
polymerases. Observations and their analysis are techni-
cally sound, and I have only minor questions.

1. Abstract: "of archaeal, eukaryotic, and bacterial B-fam-
ily DNA polymerases, the main replicative polymerases in
archaea and eukaryotes" is awkward.

Authors' response: corrected to a (hopefully) less awkward
phrase

2. Ibid. "eukaryotic B-family polymerases, most likely,
originate from two distinct archaeal ancestors" - perhaps
change to "there are two subgroups of eukaryotic B-family
polymerases, each most likely originating from its own
archaeal B-family ancestor". Otherwise. "two distinct
archaeal ancestors" can be mistaken for the description of
B+D chimera in the following sentence.

Authors' response: modified for clarity

3. "As proposed previously, inactivated polymerase subu-
nits are likely to perform essential functions in the assem-
bly of replicative complexes" (also Conclusions) - a
bolder suggestion may be that these proteins still facilitate
a subset of catalytic reactions, if the maintainance of a
proper conformation of subsrates/ligands is sufficient for
catalysis - processive synthesis may not work well that
way, but perhaps some sort of proofreading or ejection of
abortive products might — discuss?

Authors' response: a bold proposal, indeed, in our opinion, too
bold to be considered justified at this time. Actually, it has been
shown that the 145 kDa proteolytic fragment of Pol &, missing
the C-terminal Pol Exo module, is indistinguishable from the
four-subunit complex with respect to the exonuclease and
polymerase activities but less rapidly dissociates from primer-
template [65]It is also known that the C-terminal domain of
Pol2p and]or the auxiliary subunits are specifically involved in
dsDNA-binding [66]. Obviously, the C-terminal domain of Pol
&1s critically important for replication but the complete elucida-
tion of its specific functions requires much more experimenta-
tion. Nevertheless, in the revised version of the manuscript we
are more specific about the possible role of the conserved DIE
motif of the inactivated module of Pol &.

4. Evolutionary scenario and Fig. 5: Why proteobacterial-
type PolB, the source of the C-terminal domain tandem in
eukaryotic Pol epsilon, has to be the symbiogenetic/mito-
chondrial acquisition - can it be a phage contribution
instead?

http://www.biology-direct.com/content/4/1/11

Authors' response: in principle, it could be a phage contribu-
tion but we do not see any specific indications of such an origin
of the inactivated polymerase module of Pol &.

Reviewer 3: Chris Ponting, Oxford University

This manuscript reports the identification of a tandem
exonuclease-polymerase homology module within the C-
terminal regions of DNA polymerase epsilons. The
authors propose these domains arose by gene fusion
rather than intra-gene duplication and that they dis-
pensed with their enzymatic activities. Also discussed are
the evolutionary implications of similarities between zinc
fingers of DNA polymerase epsilon and archaeal PolD.

This is a well-written and compelling report that contrib-
utes significantly to our understanding of the evolution of
cellular DNA replication and repair. The sequence similar-
ity methods and the statistical analyses used are entirely
appropriate. These findings should now re-focus attention
on the molecular mechanisms of these apparently inacti-
vated domains in Pol-epsilon.

Authors' response: We appreciate these constructive com-
ments and cannot agree more with regard to the importance of
experimental investigation of the functions and mechanisms of
the inactivated module of Pol &. Moreover, such experiments
are currently underway in the laboratory of one of us (YIP) at
the University of Nebraska Medical Center.

Additional material

Additional file 1

Multiple alignment of Exo-Pol modules of B-family DdDps (text).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-4-11-S1.txt]

Additional file 2

Phylogenetic trees of B-family DdDps (in Newick format) constructed
with different methods (text).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1745-
6150-4-11-S2.txt]
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