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Abstract

: Although most of the key components of the transcription apparatus, and in particular, RNA
polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal
homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that
orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and
a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic
crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of
eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.

Open peer review: This article was reviewed by Purificacion Lopez-Garcia and Chris Ponting.

Findings

The core components of the information-processing sys-
tems, and in particular, the transcription machinery, are
conserved between archaea and eukaryotes, and distinct
from the bacterial versions. The heteromultimeric eukary-
otic RNAPs consist of 12 subunits (Rpb1-12), of which 11
are conserved in archaea and eukaryotes whereas one,
Rpb3, is thought to be unique for eukaryotes [1-6]. Rpb8
is a small protein that typically consists of ~120-150
amino acids and shows relatively poor sequence conserva-
tion in eukaryotes. The structure of Rpb8 has been solved,
originally, by solution NMR [7] and, subsequently, as part
of the RNAP II core, by X ray crystallography [8]. The two
structures are in good agreement and indicate that Rpb8
forms a distinct version of the OB(oligonucleotide-oli-
gosaccharide-binding) fold [9] that is characterized by a
distinct pattern of 9 B-strands and a pair of invariant gly-
cines in the turn between strands 7 and 8. In the RNAP II

structure, Rpb8 interacts with the so-called pore module
of Rpbl at a defined motif that is conserved in both
eukaryotic and archaeal Rpb1 orthologs [8]. In addition,
Rpb8 genetically interacts with another small subunit,
Rpb6, that is also adjacent to the pore module in the core
RNAP structure [6]. It has been suggested that Rpb8 and
Rpb6, together with the pore module, form a distinct
functional unit [6]. The exact role of the small subunits
remains unknown although both Rpb6 and Rpb8 are con-
served in all eukaryotes, are shared between RNAP I, II
and III, and are essential for yeast growth. Regardless of
the precise function of Rpb8, the purported absence of
this RNAP subunit ortholog in archaea is the major gap in
the picture of the otherwise exact correspondence
between the core transcriptional machineries of eukaryo-
tes and archaea, and is highly unexpected considering the
conservation of all other subunits including the func-
tional partner of Rpb8, Rpb6.
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In the course of the genome annotation for the first
sequenced member of the "Korarchaeota", a putative deep
branch of archaea ([10] and manuscript in preparation),
one of us (JGE) identified a short (110 amino acids) pre-
dicted protein for which some of the best hits in a BLAST
search [11] were the eukaryotic Rpb8 subunits. Although
the sequence similarity was not statistically significant,
this observation prompted a systematic search for possi-
ble archaeal homologs of Rpb8. BLAST searches started
with the sequences of Rpb8 subunits of various eukaryotic
species, again, showed statistically not significant similar-
ity to a distinct set of crenarchaeal proteins that were sim-
ilar in size to (or slightly shorter than) Rpb8. However,
reciprocal iterative PSI-BLAST searches (inclusion E-value
cut-off 0.01) started with some of these crenarcheal
sequences showed significant similarity to Rpb8. For
example, a search with the sequence from Hyperthermus
butylicus (Hbut_0467) used as the query retrieved the
Rpb8 sequence from fission yeast Schizosaccharomyces
pombe in the 2nd iteration, with a E-value of 0.004, and
numerous eukaryotic Rpb8 sequences in the 3t iteration,
with highly significant E-values. Similarly, a search with
the sequence from Igniococcus hospitalis (Igni_1165)
retrieved Rpb8 from Entamoeba histolytica in the 5t iter-
ation, with an E-value of 4 x 10-5).

Examination of a multiple alignment of the Rpb8
sequences from diverse eukaryotes and the putative
archaeal counterparts showed remarkable conservation of
all elements of the OB-fold, in particular, the diagnostic
motif between strands 7 and 8 (although one of the two
glycines that are invariant in Rpb8 is replaced in a subset
of the putative archaeal homologs (Fig. 1a). Furthermore,
secondary structure prediction for the archaeal proteins
showed a near-perfect superposition with the secondary
structure elements extracted from the crystal structure of
Rpb8 [8] (Fig. 1a). Taken together, these findings indicate
that the detected small archaeal proteins are bona fide
homologs of Rpb8.

Small proteins homologous to Rpb8 were identified in all
10 sequenced genomes of hyperthermophilic Crenarchae-
ota and the only available korarchaeal genome. Each of
these genomes encodes a single Rpb8 homolog which
mimics the situation in eukaryotes where no paralogs of
Rpb8 are detectable. By contrast, n homologs of these pro-
teins were identified in Euryarchaeota and the mesophilic
crenarchaeon Cenarchaeum symbiosum, despite extensive
search including running a position-specific scoring
matrix for Rpb8 and their crenarchaeal-korachaeal
homologs against a dedicated database of euryarchaeal
and C. symbiosum protein sequences. Thus, we conclude
that all thermophilic Crenarchaeota and at least one
korarchaeote encode a single ortholog of eukaryotic Rpb8
whereas Euryarchaeota and C. symbiosum (the only mes-
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ophilic crenarchaeon for which the genome sequence is
currently available) do not.

In retrospect, we became aware that the protein we identi-
fied as the crenarchaeal ortholog of Rpb8 has already been
described as one of the 13 experimentally defined subu-
nits of the RNAP of the crenarchaeon Sulfolobus acido-
caldarius and designated RpoG [12], and the ortholog
encoded in the genome of S. solfataricus has been accord-
ingly annotated [13]. Given these data, it appears sensible
to adopt the designation RpoG for the archaeal orthologs
of Rpb8. In a subsequent global analysis of mRNA stabil-
ity in the two Sulfolobus species, it has been shown that the
RpoG mRNA is markedly more stable than mRNAs of
other RNAP subunits, and the apparent uniqueness of this
subunit in Sulfolobus has been emphasized [14]. The
present analysis clarifies the situation by showing that
RpoG is conserved throughout the hyperthermophilic
Crenarchaeota (and at least one korarchaeote).

Although the small size of Rpb8 and its archaeal orthologs
(RpoG) hampers reliable phylogenetic analysis, the maxi-
mum likelihood tree we constructed shows a clear separa-
tion of the eukaryotic and crenarchaeal branches, and
within the latter, the split between Thermoproteales and
Sulfolobales (Fig. 1b). Interestingly, the korarchaeal
RpoG clustered with Thermoproteales in a strongly sup-
ported branch (Fig. 1b). Broader implications of this
observation for the evolution of the "Korarchaeota"
remain to be investigated.

In the archaeal genomes, the rpoG gene is embedded in a
notable, partially conserved genomic context (Fig. 1b).
With few exceptions, rpoG forms either a codirectional or
a divergent but potentially coregulated gene pair with a
gene encoding a small RNA-binding protein (COG1958)
that is orthologous to eukaryotic Lsm6 and is implicated
in RNA-processing. In most of the Sulfolobales, the latter
gene is adjacent to a gene for a tRNA modification
enzyme, queuine/archaeosine tRNA-ribosyltransferase.
Another common neighbor of 7poG is the gene for tran-
scription elongation factor TFIIIB, with a divergent orien-
tation in the majority of Thermoproteales and a
codirectional orientation in the korarchaeote. Finally,
Thermofilum pendens appears to have a more complex
operon organization, with the genes for another RNAP
subunit, a transcription factor and a ribosomal protein in
the same predicted operon with rpoG (Fig. 1b). This
genomic context suggests that, in Crenarchaeota, RpoG is
likely to be involved in a tight functional cooperation
with TFIIB, and could also contribute to coupling tran-
scription with RNA processing and modification.

The finding described here fills the last gap in the one-to-

one correspondence between the RNAP subunits of
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Orthologs of Rpb8 in archaea. (a) Multiple alignment of eukaryotic Rpb8 subunits and their archaeal orthologs (RpoG). The alignment was
constructed using the combination of the results obtained with PROMALS [15] and MUSCLE [16], followed by manual correction on the basis of second-
ary structure prediction that was obtained using PSIPRED [17] and local alignments generated by PSI-BLAST. Sequences are denoted by their numeric
Genbank Identifiers (Gl numbers) and species names. The full species names are given in Figure 2. The positions of the first and the last residues of the
aligned region in the corresponding protein are indicated for each sequence. The numbers within the alignment represent poorly conserved inserts that
are not shown. The numbers of omitted amino acids for T. pendens and G. lamblia are indicated by reverse shading. Positions with identical amino acids in
all aligned sequences are in bold face. The coloring is based on the consensus shown underneath the alignment; 'h' indicates hydrophobic residues
(ACFILMVWYH), 'p' indicates polar residues (STEDKRNQH), 's' indicates small residues (AGCVDS). Secondary structure is shown for the crystal struc-
ture of human Rpb8 (pdb 2F3l); 'H' indicates a-helix and 'E' indicates extended conformation (B-strand). The PSIPRED secondary structure prediction is
shown underneath the experimental secondary structure. The glycine doublet that is invariant in eukaryotic Rpb8 sequences is boxed. (b) Phylogenetic
and genomic contexts of Rpb8/RpoG. The maximum likelihood phylogenetic tree of Rpb8/RpoG was constructed by local rearrangement of an origi-
nal minimum evolution (Fitch) tree [18] using the MOLPHY program [19]. MOLPHY was also used to compute RELL bootstrap probabilities, which are
indicated (as percentages) for selected major branches. Each terminal node of the tree is labeled by the full species name and the Gl number. The genomic
neighborhoods of the rpoG gene in Crenarchaeota and the "korarchaeal" genome are shown to the right of the respective branches of the tree. Ortholo-

gous genes are shown by arrows of the same color.
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archaea and eukaryotes, with the implication that the
archaeal "parent" of eukaryotes already possessed the
intricate 12-subunit organization of RNAP. Surprisingly,
however, Euryarchaeota and the only available genome of
a mesophilic crenarchaeon appear to lack an ortholog of
Rpb8, a conclusion that is compatible with the report on
the reconstruction of a fully active RNAP of the euryar-
chaeon Methanocaldococcus jannaschii from 12 recom-
binant proteins which, obviously, did not include Rpb8
[1]. Depending on the adopted evolutionary scenario, it is
conceivable that Rpb8 emerged in the crenarchaeal line-
age or, perhaps, more plausibly, that it was already present
in the common ancestor of all extant archaea but lost at
the base of the euryarchaeal branch. Regardless of the
solution to this conundrum, experimental study of func-
tional differences between RNAPs of Euryarchaeota and
Crenarchaeota should be illuminating, given the unusual
difference in their predicted subunit composition.
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RNAP: RNA polymerase.
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