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Abstract

Background: The standard genetic code table has a distinctly non-random structure, with similar
amino acids often encoded by codons series that differ by a single nucleotide substitution, typically,
in the third or the first position of the codon. It has been repeatedly argued that this structure of
the code results from selective optimization for robustness to translation errors such that
translational misreading has the minimal adverse effect. Indeed, it has been shown in several studies
that the standard code is more robust than a substantial majority of random codes. However, it
remains unclear how much evolution the standard code underwent, what is the level of
optimization, and what is the likely starting point.

Results: We explored possible evolutionary trajectories of the genetic code within a limited
domain of the vast space of possible codes. Only those codes were analyzed for robustness to
translation error that possess the same block structure and the same degree of degeneracy as the
standard code. This choice of a small part of the vast space of possible codes is based on the notion
that the block structure of the standard code is a consequence of the structure of the complex
between the cognate tRNA and the codon in mRNA where the third base of the codon plays a
minimum role as a specificity determinant. Within this part of the fitness landscape, a simple
evolutionary algorithm, with elementary evolutionary steps comprising swaps of four-codon or
two-codon series, was employed to investigate the optimization of codes for the maximum
attainable robustness. The properties of the standard code were compared to the properties of
four sets of codes, namely, purely random codes, random codes that are more robust than the
standard code, and two sets of codes that resulted from optimization of the first two sets. The
comparison of these sets of codes with the standard code and its locally optimized version showed
that, on average, optimization of random codes yielded evolutionary trajectories that converged at
the same level of robustness to translation errors as the optimization path of the standard code;
however, the standard code required considerably fewer steps to reach that level than an average
random code. When evolution starts from random codes whose fitness is comparable to that of
the standard code, they typically reach much higher level of optimization than the standard code,
i.e., the standard code is much closer to its local minimum (fitness peak) than most of the random
codes with similar levels of robustness. Thus, the standard genetic code appears to be a point on
an evolutionary trajectory from a random point (code) about half the way to the summit of the
local peak. The fitness landscape of code evolution appears to be extremely rugged, containing

Page 1 of 24

(page number not for citation purposes)


http://www.biology-direct.com/content/2/1/24
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17956616
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Biology Direct 2007, 2:24

numerous peaks with a broad distribution of heights, and the standard code is relatively
unremarkable, being located on the slope of a moderate-height peak.

Conclusion: The standard code appears to be the result of partial optimization of a random code
for robustness to errors of translation. The reason the code is not fully optimized could be the
trade-off between the beneficial effect of increasing robustness to translation errors and the
deleterious effect of codon series reassignment that becomes increasingly severe with growing
complexity of the evolving system. Thus, evolution of the code can be represented as a combination
of adaptation and frozen accident.

Reviewers: This article was reviewed by David Ardell, Allan Drummond (nominated by Laura
Landweber), and Rob Knight.

Open Peer Review: This article was reviewed by David Ardell, Allan Drummond (nominated by
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Laura Landweber), and Rob Knight.

Background

Arguably, one of the most profound, fundamental fea-
tures of all life forms existing on earth is that, with several
minor variations, they share the same genetic code. This
standard code is a mapping of 64 codons onto a set of 20
amino acids and the stop signal (Fig. 1). Ever since the
standard code was deciphered [1-3], the interplay of the
evolutionary forces that shaped the structure of the code
has been a subject of debate [3,4]. The main general fea-
tures that do not depend upon details of the code are: (i)
there are four distinct bases in mRNA - two pyrimidines
(U, C) and two purines (A, G), (ii) each codon is a triplet
of bases, thus forming 64 (43) codons, and (iii) 20 stand-
ard protein amino acids are encoded (with the notable
exception of selenocysteine and pyrrolysine, for which
subsets of organisms have evolved special coding schemes

[5])-

The structure of the genetic code is manifestly nonrandom
[3]. Given that there are 64 codons for only 20 amino
acids, most of the amino acids are encoded by more than
one codon, i.e., the standard code is highly redundant; the
two exceptions are methionine and tryptophan, each of
which is encoded by a single codon. The codon series that
code for the same amino acid are, with the single excep-
tion of serine, arranged in blocks in the code table and the
corresponding codons differ only in the third base posi-
tion, with the exceptions of arginine and leucine, for
which the codon series differ in the first position (Fig. 1).
The importance of the nucleotides in the three codon
positions dramatically varies: 69% of the point mutations
in the third codon position are synonymous, only 4% of
the mutations in the first position are synonymous, and
none of the point mutations in the second position are
synonymous. The structure of the code also, obviously,
reflects physicochemical similarities between amino
acids; e.g., all codons with a U in the second position code
for hydrophobic amino acids (see Fig. 1 where the blocks
of synonymous codons are colored with respect to the

polar requirement scale [6] (PRS), which is a measure of
hydrophobicity). The finer structure of the code comes
into view if synonymous codon series that differ by
purines or pyrimidines are compared [7]. Related amino
acids show a strong tendency to be assigned related
codons [3,4,8]. Generally, the standard code is thought to
conform with the principles of optimal coding, i.e., the
structure of the code appears to be such that it is robust
with respect to point mutations, translation errors, and
shifts in the reading frame. The block structure of the code
is considered to be a necessary condition of this robust-
ness [9].

The fundamental question is how these regularities of the
standard genetic code came into being. One of the leading
hypotheses is that the primordial code had to reduce
errors in translation in order to provide for the efficient
synthesis of functional proteins. 'At sufficiently early
stages in evolution the fundamental information-transfer-
ring processes, i.e., translation, replication, and transcrip-
tion, must have been error-ridden' [8], so the subsequent
evolution is thought to have been driven by selection for
an arrangement of the code table that would be increas-
ingly robust to translational misreading - the translation-
error hypothesis of code evolution [8,10-15]. The initial
evidence for the translation-error hypothesis consists of
the aforementioned fact that related codons (codons that
differ by one base only), typically, code for related amino
acids (amino acids with similar physicochemical proper-
ties) and the experimental observations that translational
errors occur more frequently in the first and third posi-
tions of codons [15-18]. The latter data seem to empha-
size the connection between the structure of the code and
its robustness to errors of translation as opposed to muta-
tional robustness because, in the latter case, there would
be no difference between the effects of mutations in the
three positions of the codon. However, Sella and Ardell
have argued that minimization of the effect of mutations
could be an equally, if not more, important force behind
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The standard genetic code. The codon series are shaded in accordance with the PRS (Polar Requirement Scale) values [6],
which is a measure of an amino acid's hydrophobicity: the greater hydrophobicity the darker the shading.

the evolution of the structure of the code than minimiza-
tion of the effect of translation errors [7,19,20].

Quantitative evidence in support of the translation-error
hypothesis has been inferred from comparisons of the
standard code with random alternative codes. According
to the specified rules (see Results), for each code, a score

is calculated, which is used as a measure of the robustness
of the code to amino acid replacements induced by trans-
lational errors. Often, this score is called "code fitness"
[21-23] although it actually represents a measure of "error
cost", which is inversely related to "fitness" (i.e., the
smaller the score the more robust - or fit - is the respective
code); in other instances, the mathematical formulation
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was transformed such that fitness was calculated directly
(the greater the number the fitter the code) [22].

The first Monte Carlo simulation to compare the standard
code with random, alternative codes has been described
by Alff-Steinberger [11] and indicated that the standard
code outperforms most of the random codes if the differ-
ential effects of misreading in the first or third base posi-
tion are taken into account (two sets of 200 codes each
were produced). The first reasonably reliable numerical
estimates of the fraction of random codes that are more
robust than the standard code have been obtained by
Haig and Hurst [12] who showed that, if the PRS is
employed as the measure of physicochemical similarity of
amino acids, the probability of a random code to be fitter
than the standard code is p;;; = 10-4. The code error cost
score depends on the exact adopted rules such that differ-
ent cost functions, obviously, have the potential to pro-
duce different results. Using a refined cost function that
took into account the non-uniformity of codon positions
and the assumed transition-transversion bias of transla-
tion, Freeland and Hurst [24] have shown that the fraction
of random codes that outperforms the standard one is py,
~ 10, i.e., "the genetic code is one in a million". Subse-
quent analyses have yielded even higher estimates of the
robustness of the standard code to translation errors [21-
23].

Of course, the hypothesis that the code evolved to maxi-
mize robustness to errors of translation [14] is by no
means the only plausible scenario of the code evolution.
The frozen accident hypothesis proposed in Crick's semi-
nal paper [3] posits that, after the primordial genetic code
expanded to incorporate all 20 modern amino acids, any
change in the code would be lethal, thus ruling out further
evolution of the code. The stereochemical hypothesis that
can be traced back to the early work of Gamow [3,25-31]
postulates that codon assignments for particular amino
acids are determined by a physicochemical affinity that
exists between the amino acids and the cognate nucle-
otide triplets (codons or anticodons). Under this hypoth-
esis, the minimization of the effect of translation errors
characteristic of the standard code is thought to be an epi-
phenomenon of purely stereochemical constraints (e.g.,
similar codons display affinity to amino acids of similar
bulk and PRS). This hypothesis implies that the code did
not evolve or, in a weak form, that it evolved minimally,
adjusting the stereochemical assignments. The stereo-
chemical hypothesis, at least, in its strong form, is readily
experimentally testable. However, despite extensive exper-
imentation in this area [32], the reality and relevance of
any affinities between amino acid and cognate triplets,
codons or anticodons, remain questionable (see [33] for
a recent discussion).

http://www.biology-direct.com/content/2/1/24

The coevolution hypothesis [34-38] posits that the struc-
ture of the standard code reflects the biosynthetic path-
ways of amino acid formation. The coevolution
hypothesis agrees with the translation robustness hypoth-
esis in that the genetic code had substantially evolved but
differs in defining the main evolutionary process that
shaped the standard code table. According to this sce-
nario, the code coevolved with amino acid biosynthesis
pathways, i.e., during the evolution of the code, subsets of
codons for precursor amino acids have been reassigned to
encode product amino acids in the same pathways such
that related codons encode metabolically close amino
acids. The robustness of the code to translation errors,
then, is a byproduct of this coevolutionary process inas-
much as metabolically linked amino acids also tend to be
physicochemically similar. However, it has been shown
that the coevolution scenario alone does not account for
the observed degree of translational error-minimization
of the standard code [21,39].

Two major objections to the translation-error hypothesis
have been raised [40,41]: (i) although the estimates of p;;,
and ppy; indicate that the standard code is unusual in its
robustness to translational errors, the number of alterna-
tive codes that are fitter than the standard one is still huge,
(ii) the minimization percentage (the relative optimiza-
tion level reached during genetic code evolution) for the
standard code would have been higher (62% for the
standard code according to Di Giulio's calculations [42])
if the selection on amino acid distances were the main
force. The debate between the translation-error and the
coevolution scenarios of the code evolution remains unre-
solved. The proponents of the translation-error hypothe-
sis reasonably counter the above objections by showing
that the distribution of the code error scores (fitness val-
ues) has a Gaussian-like shape where the better, more
robust codes form a long tail such that the process of
adaptation is non-linear, so approaching the absolute
minimum is highly improbable [14,30,40,41].

The different hypotheses on code evolution, including the
stereochemical hypothesis in its weaker form, are not
exclusive. Indeed, as noticed by Knight et al. [30]: "the
combination of stereochemical interactions and strong
selection could have channeled biosynthetic expansion to
produce the current repertoire of 20 coded amino acids".
Regardless of the relative contributions of the different
evolutionary forces to the organization of the standard
code, the high level of the code optimization with respect
to errors of translation is in need of an explanation. Here,
we describe an analysis of the code fitness landscape using
particular error cost functions for codes constructed from
blocks that are inherent to the standard genetic code. Evi-
dence is presented that the standard code is a partially
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optimized version of a random code with the same block
structure.

Results

The error cost function

The results obtained in this work are closely intertwined
with the employed methods; therefore, instead of present-
ing the latter in a separate Materials and Methods section,
we start the Results section with the description of the
essential technical details of the analysis and the associ-
ated limitations and caveats.

A genetic code is a mapping a: C — A that assigns an
amino acid (or stop signal) a € A to each codon ¢ € C. The
error cost function, which is inversely related to code fit-
ness, can be written as

p(a(c)) = éZf (C)Z p(c’| e)d(a(c).a(c). (1)

This formula consists of three main terms. The matrix
p(c'|c) is the matrix of relative probabilities that codon c is
misread as codon ¢'. Considering only codons that differ
in one base position, three different matrices p(c'|c) have
been considered. Haigand Hurst [12] let p(c'|c) = 1 for any
two codons that differ by one base and p(c'|c) = 0 other-
wise, not taking into account that transitions (i.e., transla-
tional misreading between two purines or two
pyrimidines) might occur more often than transversions
(interchange between purines and pyrimidines) [43].
Freeland and Hurst [24] additionally introduced a differ-
ent scheme that incorporates an inferred transition-trans-
version bias of translational misreading. Under this
scheme, p(c'|c) = tr, if ¢ and ¢' differ by a transition, and
p(c'lc) = 1 if ¢ and ¢' differ by a transversion (tr;, > 1). Tak-
ing into account the different frequencies of translational
errors and the different magnitudes of the bias for the
three codon positions, Freeland and Hurst [24] proposed
the following form for the matrix p(c'|c):

1/N  ifc and ¢’ differ in the 3d base only,

1/N  ifc and ¢ differ in the 1st base only and cause a transition,
0.5/N
0.5/N if ¢ and ¢’ differ in the 2nd base only and cause a transition,
0.1/N
0 otherwise.

if ¢ and ¢’ differ in the 1st base only and cause a transversion,

p(c’| )=

if ¢ and ¢’ differ in the 2nd base only and cause a transversion,

(2)

Here N is a normalization constant that is introduced to
ensure Y .p(c'/c) = 1 for any c. The relative probabilities
specified by (2) take into account transition-transversion
and translation biases (transitions are twice as frequent as
transversions in the first positions and five times as fre-
quent in the second position). The matrix (2) has been
used in numerous studies on the evolution of the code
[22-24,44,45]. The evidence for differences in the rates of
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misreading between codon positions comes from experi-
mental analyses ([8,17]; reviewed in [18]). The empirical
data on the rate and nature of translational errors indicate
that the details that determine the actual error frequencies
are quite complex and cannot be adequately described by
(2). The only available systematic analysis of translation
error rates suggests that the rates of missense errors
depend, primarily, on the outcome of the competition
between the cognate and non-cognate tRNAs [43]. Never-
theless, qualitatively, the matrix (2) reflects the main pat-
tern in codon misreading during translation such that
utilizing (2) instead of simpler alternatives improves the
level of optimality of the standard code.

The function f{c) in (1) quantifies the relative contribu-
tion of codon ¢ to the overall robustness of a code. In the
original studies, this factor was not considered, i.e., f(c) =
1 was assumed for any ¢ [12,24,37,46]. However, Gilis et
al. [22] argued that it is natural to expect that a codon mis-
reading event that results in a substitution of a frequent
amino acid for another frequent one leads to a greater
absolute number of errors and thus has greater conse-
quences for code robustness. Accordingly, Gilis et al. took
f(€) = fryq/n(c), where fr,, is the relative frequency of
amino acid a(c), and n(c) is the number of synonymous
codons for the amino acid a(c); taking into consideration
the relative amino acid frequencies has been shown to
increase the robustness of the standard code effect to
translation errors by up to three orders of magnitude
(however, see the next section). Another reasonable
assumption is that f{c) represents not amino acid frequen-
cies but the relative codon frequencies, and so, codon
usage differences among taxa are incorporated [45] such
that f(c) = fr.. Alternatively, the codon usage differences
were considered under the assumption that the GC con-
tent of primordial genomes was much higher than in
extant genomes, so random frequencies were assigned to
codons proportionally to their GC content [44]. Both
studies have shown that incorporation of codon usage dif-
ferences reduces the robustness of the standard code.

The distance d(a(c), a(c¢')) in (1) defines the cost of replac-
ing amino acid a(c) with amino acid a(c"). We consider
several possible choices for this function. In many cases,
the PRS is used in the form d(a(c), a(c')) = h(a(c) -
h(a(c")))? where h(a) is the value for the amino acid a in
PRS. Gilis et al. [22] proposed the function d(a(c), a(c"))
that has been inspired by computations of the change in
the free energy of a protein resulting from a given amino
acid substitution; we denote this cost measure the Gilis
scoring matrix. Another prominent choice of the distance
function is PAM74-100 [47]. This matrix has been first
proposed for quantification of code robustness by Ardell
[46]. Freeland et al. [21] discuss potential difficulties aris-
ing from the fact that this empirically derived substitution
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matrix might reflect the standard code itself, and only
indirectly, the differences between amino acids. They sug-
gest that PAM74-100 is the only potentially acceptable
choice amongst the PAM series of matrices because this
matrix was obtained from alignments of highly diverged
protein sequences unlike other PAM matrices that were
derived from close homologs and manipulated mathe-
matically to derive substitution patterns at high diver-
gence (see also [48]).

In this work, to compare the effect of different matrices on
the code optimization, we used the PRS, the Gilis scoring
matrix, PAM74-100, PAM250, and BLOSUMSO0 (see the
next section). Prior to the actual computations, all the
matrices were transformed to the form d; = (D;; + Dj; -
2D;)/2, where Dj; is the original similarity score for a pair
of amino acids, such that the resulting matrix is symmetric
with zeroes on the main diagonal. Hence larger values of
the function (1) indicate a lower robustness of a code;
d(a(c), a(c')) is taken equal to zero if a(c) or a(c') is a stop
codon.

Random codes

The total number of possible genetic codes, assuming that
each of the 20 amino acids and the stop signal have to be
coded by at least one codon, is vast: Ny~ 1.51-1084,
Therefore, to generate random codes, a subset of the pos-
sible codes is usually selected by different criteria. The
algorithm commonly used to generate random codes
keeps the block structure of the standard code intact, i.e.,
amino acids are assigned to four-codon series and two-
codon series (and two single codons) positioned as they
are in the standard code table, and the stop codons are
fixed at their positions as well (Fig. 1). The premise
behind this choice is that the block structure of the code is
a direct, mechanistic consequence of the mode of interac-
tion between the ribosome, mRNA, and the cognate
tRNA. Indeed, structural analyses of the ribosome co-crys-
tallized with cognate tRNAs have shown that the ribos-
ome recognizes the detailed geometry of the first two base
pairs of the codon but is less stringent with respect to the
third position [49-51], providing a mechanistic basis for
Crick's wobble hypothesis [2]. Accordingly, organization
of codon series identical or close to that in the standard
code is likely to have been an inherent feature of the code
that was in place already in the earliest functional transla-
tion system or, at least, at a very early stage of the code's
evolution. This is not to be taken to mean that codes with
different block structures are unviable or "impossible" but
they are likely to be substantially less fit than those with
the canonical block structure. Because, in practical terms,
the entire code space is intractable and restrictions are
required for any simulations to be completed, the choice
of codes with the standard block structure appears best
justified. The amino acids, then, are shuffled between
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these blocks such that there are 20! = 2.4-10!8 possible
alternative codes. In most of the previous studies on the
robustness of the standard code [12,22-24,44,45], this
algorithm was used to generate random alternative codes,
sometimes, with modifications to prohibit particular per-
mutations; however, analyses of random code generated
with more general algorithms, without the constraint on
the block structure, also have been reported [13,52,53].

One feature of the above algorithm is that it changes the
number of synonymous codons coding for a particular
amino acid, e.g., in most realizations, methionine and
tryptophan, the two amino acids that are encoded by a
single codon in the standard code, are assigned to codon
series consisting of 2, 4 or 6 synonymous codons. A nega-
tive correlation has been shown to exist between the size
(molecular weight) of an amino acid and the number of
codons allocated to it, i.e., small amino acids typically
have four-codon series whereas larger amino acids tend to
have two-codon series [29,54]. Another feature of the
standard code is the strong, positive correlation between
the number of synonymous codons and amino acid fre-
quencies in proteins. Although these frequencies differ
from protein to protein and from species to species, there
is a clear, prevailing trend of abundant amino acids to
possess larger codon series than rare amino acids (e.g.,
such abundant amino acids as Leu and Ser are each
encoded by 6 codons [22,55]). Therefore, it appears rea-
sonable to consider additionally constrained random
codes that retain the degeneracy pattern of codons inher-
ent to the standard code (i.e., each amino acid is allotted
the same number of codons as in the standard code).
Accordingly, we implemented the following procedure
that generates ~ 101? random codes:

1. The stop codons and Trp are kept at their positions in
the standard code table (Fig. 1);

2. The assignments of the 8 amino acids (Ser, Leu, Pro,
Arg, Thr, Val, Ala, Gly) that are encoded by four-codon
series are distributed randomly among the 14 blocks of
the code table. A block is defined as four codons that differ
only in the third position irrespective of whether they
encode one or two amino acids. There are, obviously, 16
blocks altogether; the two blocks that contain stop codons
are excluded from the randomization procedure.

3. The assignments of the remaining amino acids (Phe,
Leu, Tyr, Cys, His, Gln, Ile, Ile+Met [operationally treated
as one amino acid], Asn, Lys, Ser, Arg, Asp, Glu) that are
encoded by two-codon series are distributed randomly
among the remaining 14 empty two-codon half-blocks
(there are 16 unoccupied half-blocks altogether but two
half-blocks containing stop codons were excluded from
the randomization procedure).
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We then estimated the fraction of random codes that out-
perform the standard code using different error cost func-
tions described in the preceding section. Briefly, (i) codon
frequencies typical of extant genomes seem to be subopti-
mal with respect to the code robustness (error cost)
because taking them into account in (1) decreases the dif-
ference between the standard code and the random codes
(see Fig. 2, cost functions ¢,, ¢ ,, ¢3); similar observations
have been reported previously [44,45,56]; (ii) for the PRS
and the Gilis matrix cost measures, the inclusion of the
inferred translation bias [i.e., the differences in misread-
ing frequencies between the nucleotide positions in a
codon together with the positional transition-transver-
sion bias as represented in (2)], improves the code robust-
ness; by contrast, for the PAM and BLOSUM matrices, the
scheme (2), usually, has no significant effect or even
reduces the code robustness when compared to calcula-
tions that take into account only the transition-transver-
sion bias [e.g., cost functions ¢s, @ ,, where ¢
incorporates transition-transversion bias only, whereas ¢
is the cost function using (2), see also pairs of cost func-
tions ¢,, ¢ 5and @, @ 4 (Fig. 2)); (iii) the PAM and BLO-
SUM matrices show a higher level of robustness for the
standard code when compared to the PRS and the Gilis
score matrix; (iv) the PAM 74-100 matrix showed results
very similar to those obtained with PAM 250 or BLOSUM
80, suggesting that it is equally inadequate as a measure
for the cost of amino acid substitutions, as previously pro-
posed by others [48,57]; (v) inclusion of amino acid fre-
quencies, according to [22], had no effect on the genetic
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code optimality, in contrast to the results of Gilis et al.
[22], this can be attributed to the fact that, in our algo-
rithm, each amino acid is coded for by the same number
of codons as in the standard code [compare the cost func-
tions ¢,, @ g @, in which amino acid frequencies are
included, with ¢,, @ 5, @, where no differential weights
are assigned to codons (Fig. 2)].

Having assessed the results of the comparisons of the
standard code with simulated random codes, we decided
to use (1) with f(c) = 1, the relative probability matrix (2)
because these forms of the cost function yielded the max-
imum differentiation of the standard code from random
codes (this cost functions is designated ¢, in Fig. 2). Spe-
cifically, the fraction of the codes that outperform the
standard one is = 4-10-¢ for PRS and ~ 1.6-10-¢ for the
Gilis matrix. These two amino acid substitution cost
matrices were the only ones employed for further analysis.
The other examined matrices, the PAMs and the BLO-
SUMs, were deemed inapplicable for modeling the code
evolution, essentially, because these matrices have been
derived from comparisons of protein sequences that are
encoded by the standard code, and so cannot be inde-
pendent of that code; as shown above, this applies to
PAM74-100 as well as to the classic PAM matrices [48].

Searching the fitness landscape

To perform a local search of the space of possible genetic
codes we implement a simple, greedy minimization algo-
rithm:

8 : ‘ ‘ I T 6
Fi S 9 8 5 'O..
o R Y- .HO-H“ Y > IRREK
6 “‘0 ............... oo o
o, L THY 4 T D T
S o P o S — o
] R i 7 o S ., oY
S 4T o i AR P I A—
......... oo €+ Polar Requirement 0
B e Qi ¢ Gilis matrix
........ o PAM74-100
. ¢ BLOSUMS0
1 i i i ¢ PAM250 ; |
Y1 Y2 3 ©Pa ©5 Y6 okrg P8 Y9
Figure 2

Comparison of the standard code with random alternatives for different amino acid substitution matrices and
cost functions (1). Z-score is the distance, measured in standard deviations, between the mean of random code costs and
the standard code cost. ¢, @,, @;are the cost functions (I) where f(c) is the frequency of codon ¢; ¢, s, ¢, are the cost func-

tions (1) for f(c) = | @, s, @gare the cost functions (1) where f(c) is the respective amino acid frequency; in @,, @4, @; p(c'|c)
= | for any c and c' that differ by | nucleotide, and p(c'|c) = O otherwise; ¢,, s, @ incorporate the inferred transition-transver-
sion bias, i.e., p(c'|c) = tr, if c and ¢' differ by a transition, and p(c'|c) = | if cand ¢' differ by a transversion (tr, = 2 in our calcula-

tions); @5, ¢, @, use the scheme (2).
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1. All possible pairwise swaps of amino acid assignments
among the 14 of the 16 four-codon blocks (except for the
two blocks that contain stop codons; Fig. 1) are consid-
ered (91 swaps altogether); the swap that yields the great-
est improvement of the code is chosen.

2. Repeat step 1 with the new code table until there is no
improvement.

3. The 8 four-codon series that encode one amino acid
each (see above) are excluded from the search, and all
possible swaps of the amino acid assignments among the
remaining 14 two-codon half-blocks are considered
(another 91 swaps), with the two half-blocks containing
stop codons excluded from the search. The swap that
yields the greatest improvement is chosen.

4. Repeat step 3 with the new code table until there is no
improvement.

5. Steps 1-4 are repeated until there is no improvement.

Using this fully deterministic algorithm we can find the
shortest evolutionary trajectory from a given starting code
to its local minimum of the error cost function (i.e., to a
local fitness peak), under the assumption that each step
involves the greatest locally available decrease of the error
cost. Each evolutionary step is a pairwise swap of codon
quadruplets that differ in the first or second position (or
both) or swap of codon pairs that may differ in any of the
three codon positions. The codes that are produced by this
algorithm have the same structure as is inherent to the
algorithm producing random codes.

The maximum-fitness amino acid substitution matrix for
the given code

It is instructive to analyze the relationships between the
genetic code and its fitness from a reverse perspective, i.e.,
to derive the best matrix of amino acid substitution costs
for a given (e.g., standard) code. A comparison of such
hypothetical, optimal score matrix with known matrices
would highlight the sources of "sub-optimality" of the
standard code.

Formally, let us consider the following problem:

min

d(a(c),a(c))
for the standard genetic code a(c), ¢ (d) is given by (1).
The function ¢in (1) is linear with respect to unknown d;;,
so the trivial solution is d = 0. To impose reasonable con-
straints on d;; we used either the matrix d”, obtained from
the PRS, or the Gilis matrix d¢. The choice of possible con-
straints is broad and wide open; we decided to set the
average cost of the substitution of any other amino acid

¢(d) 3)

http://www.biology-direct.com/content/2/1/24

for amino acid i to be equal to the average cost from d” or
dS; in addition, it was required that the cost of substitu-
tion of any other amino acid for amino acid i was equal to
or less than the substitution maximum cost for amino
acid i in d? or d<:

zdij = ng foranyi=1,...,20,

j j

dij < maxdl? foranyi,j=1,...,20.

J

Here the superscript C stands for P (polar requirement) or
G (the Gilis matrix). Additional constraints are given by d;;
20, d;j=dj; d;j= 0, so there is a well-posed linear program-
ming problem for each cost measure.

Although the matrix d, in general, has 190 different ele-
ments, in (3) only 75 of these are included because the
error cost function (1) takes into account only pairs of
amino acids whose codons differ by one nucleotide. A
random code will almost always have a different set of sin-
gle-substitution elements than the standard code. There-
fore, although the matrix d obtained by solving (3) for the
standard code does not guarantee that the standard code
becomes the most robust one, it is reasonable to expect
that, in general, the optimization level of the standard
code with this new matrix will be higher than with the
matrix that was used to write down the constraints for the
optimization problem.

In Table 1, we compare the performance of the standard
code when using simultaneously a given cost measure
(PRS or the Gilis matrix) and the solution of (3) obtained
with the constraints inferred for this cost measure. As
expected, substitution of the solutions of (3) into (1)
makes the standard code more robust to translational
errors than substitution of the PRS or the Gilis matrix.
Whereas the new, optimized matrix d reduces the error
cost (increases the fitness) of the standard code, the mean
of the random code cost distribution remains the same, so

Table I: Comparison of the standard code with random
alternatives

Cost measure ) Y7 o z-score R
PRS 2.65 6.87 097 434 0.92
Optimized solution 2.11 6.85 098 483

Gilis matrix 4,01 4.68 0.12 5.67 0.60
Optimized solution 29 4.63 0.2 8.59

Note: The solutions of problem (3) compared with the cost measures
(PRS and Gillis matrix) from which the constraints were inferred. ¢ is
the error cost value of the standard code, x is the mean of random
code costs, o is the standard deviation for the distribution of random
code cost values, z-score is the distance from ¢ to u in standard
deviations: z = (1 - ¢)/c; R is the correlation coefficient between those
entries of the cost function that are present in (3)
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the distance from the standard code to this mean increases
when measured in standard deviation units (Table 1). The
PRS proves to be more robust to the matrix optimization
procedure as the correlation between the solution of (3)
and the original matrix was much greater (R = 0.92) than
for the Gilis matrix (R = 0.67).

Using the solutions of (3), it is possible to identify those
pairs of amino acids for which the cost of replacement in
the PRS or the Gilis matrix is too high, leading to the sub-
optimality of these amino acid substitution matrices vis-a-
vis the standard code. Consider, e.g., the matrix df
obtained from the PRS and the solution of (3) d with the
corresponding constraints. Examination of the difference
A =d - d? allows one to identify those pairs of amino acids
i and j for which the cost of replacement should be
decreased at the expense of other amino acids, in order to
optimize the matrix; these are the negative elements in A
(Table 2). The list of these "suboptimal" amino acid pairs
is distinctly non-random. Most of the amino acids in these
pairs come from the 4th (middle G) and, to a lesser extent,
the third (middle A) columns of the standard codon table
(Fig. 1). Indeed, the juxtaposition of arginine with tryp-
tophane, glycine, cysteine and serine in the 4th column of
the standard code is an obvious source of the most costly
translation errors, given the major differences in the phys-
ico-chemical properties of these amino acids (which
translated into high costs in empirically derived substitu-
tion matrices, such as PAMs and BLOSUMs). Intuitively, if
one were given the task of improving the code, it would
seem a natural idea to start with changing the position of
arginine such that it is not linked to the above amino acids
through single nucleotide substitutions. Indeed, the sub-
optimal encoding of arginine in the standard code has

Table 2: The pairs of amino acids that show the highest negative
impact on the standard code fitness

PRS Gilis score matrix Average

Arg Cys -1.00 Arg Gly -1.00 Arg Trp -0.70
Arg  Trp -0.82 Leu Phe  -1.00 His  Tyr -0.60
His Leu -066 Ala Thr  -093 Arg Gly -0.54
Asn Tyr -052 Arg Ser -0.71 Leu Phe -0.50
His Tyr -049 Asn Lys -0.71 Arg Cys -0.50
Glu Lys -031 Asp Glu -0.71 Ala  Thr -047
Lys Thr  -0.18 GIn His -0.71 Arg Ser -043
Leu Pro -0.16 His Tyr -0.71  Glu Lys -04I
Arg  Ser -0.14 lle Met -057 Asp Glu -0.36
Phe Ser -0.13 Arg Trp -057 GIn His -0.36
GIn Lys -0.12  Glu Lys -0.50 Asn Lys -0.36
Ala Val -0.11  Asn Asp  -043 His Leu -0.33
Lys Met -0.11 Leu Val -043 lle Met -0.29
Gly Trp -009 Al Ser -0.36 Leu  Val -0.23
Met Thr -0.09 Pro Ser 029 Asn Tyr -0.19

Note: The negative elements were normalized such that the smallest
one equals -1; the 15 most significant pairs are shown.

http://www.biology-direct.com/content/2/1/24

been noticed previously, leading to the suggestion that
arginine was a late addition to the code [58-61].

Modeling the evolution of the code along the path of
increasing robustness to errors of translation

In the previous section we identified the pairs of amino
acids whose placement in the standard code table is the
worst with respect to the error cost. These findings suggest
that the standard code and, obviously, the huge majority
of random codes can be improved by a series of simple
amino acid swaps. However, the actual sequence of swap-
ping steps that would lead to increased code fitness
remained to be determined. To this end, we developed the
simple, greedy minimization algorithm described above.

Using this minimization algorithm and the algorithm for
producing random codes, we generated four sets of
genetic codes for each of the two error cost functions: r,
random codes (300 random codes were generated); o, the
codes obtained from r as a result of minimization; R, ran-
dom codes that outperform the standard code (100 codes
were found as a result of random search); O, the codes
obtained from R as a result of minimization. We then
compared the standard code with each of these four sets
in an attempt to determine whether or not the standard
code is likely to be a result of evolutionary optimization
for translation robustness.

When the error cost of random codes was minimized by
using the straightforward procedure described that
includes only pairwise swaps at each step, 81% of the ran-
dom codes for the PRS and 94% of the random codes for
the Gilis matrix reached error cost values that were lower
than the cost of the standard code (Fig. 3). More strik-
ingly, 50% of the random codes for the PRS and 40% of
the random codes for the Gilis matrix could be minimized
to cost values that were lower than the cost of the code
reached upon minimization of the standard code (Fig. 3).

Thus, in spite of the fact that we start with random codes
(within the restrictions of the block structure of the code
table imposed by the randomization algorithm), the sim-
ple minimization procedure we employ, in most cases,
leads to codes that have a greater fitness than the standard
code. Moreover, approximately half of the random codes
reach fitness levels that are greater than the maximum fit-
ness attainable when the error cost of the standard code is
minimized using the same procedure. Thus, although the
standard code is much more robust to translation errors
than an average random code, the employed minimiza-
tion procedure brings the standard code to about the same
level of optimality as a randomly picked code; of course,
for the latter, to reach that minimal level, takes more
swapping steps. These observations suggest that the code
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fitness landscape is highly rugged, i.e., consists of numer-
ous fitness peaks of, approximately, the same height.

We then explored the results of minimization of the sub-
set of the random codes, R, that outperform the standard
code (Figs. 4, 5). For each of the codes from R, we also
computed the minimization percentage, i.e., the degree of
optimization that is attainable for the given code along its
specific evolutionary trajectory on the fitness landscape.
For example, for the standard code, if ¢, is the error cost,
@min 18 the error cost of the best code that was obtained
from the standard code using the minimization algo-

rithm, and g is the mean of the distribution of random
code scores, than minimization percentage MP is given by
MP = (1 - ¢4)/ (1 - Pmin)- The minimization percentage of
the standard code is 91% for the PRS and 80% for the
Gilis matrix.

For almost all codes from R, the minimization procedure
led to codes (O) that were better than the optimized ver-
sion of the standard code (100% for the PRS, 98% for the
Gilis matrix, see Figs. 4b, 5b). The minimization percent-
age of most of these codes was lower than that of the
standard code (100% for PRS, 85% for the Gilis matrix).
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The results of optimization of the random codes with cost values lower than the cost of the standard code (set
R). The PRS was used as the measure of amino acid substitution cost. (a) Distribution of the code scores from R; the green
line is the cost of the standard code; (b) Distribution of the scores for the codes obtained by optimization of the codes from R
(set O), the blue line is the cost of the code obtained by optimization of the standard code; (c) Minimization percentage of the
codes from O (see text for details); the blue line is the minimization percentage of the standard code.
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The results of optimization of the random codes with cost values lower than the cost of the standard code (set
R). The Gillis matrix was used as the measure of amino acid substitution cost. (a) Distribution of the code scores from R; the
green line is the cost of the standard code; (b) Distribution of the scores for the codes obtained by optimization of the codes
from R (set O), the blue line is the cost of the code obtained by optimization of the standard code; (c) Minimization percentage

of the codes from O (see text for details); the blue line is the minimization percentage of the standard code.

Thus, on the fitness landscape, the standard code was
found to be closer to its local peak than most of the more
robust random codes were from theirs.

To visualize the relationships between the four sets of
codes, we employed the following procedure. For each
code, we define its map as the vector of the shortest muta-
tional distances between amino acids (there are 190 ele-
ments in this vector). The distance between any two
codons is calculated as the weighted sum of the number
of nucleotide substitutions involved, with the weights
assigned according to (2). For instance, in the standard
code, Ala is encoded by four codons {GCU, GCC, GCA,
GCG}, whereas Arg is encoded by six codons { CGU, CGC,
CGA, CGG, AGA, AGG}, and, hence, at least two nucle-
otide substitutions are required to replace an Arg with an
Ala. The distance between these two amino acids, then, is
D(Arg, Ala) = 1(first position, transition) + 10(second
position, transversion) + O(third position). The code map
takes into account these distances without specifying the
exact positions of the codons for individual amino acids
in the code table. Using principal component analysis
(PCA), the code maps for the sets r, R, 0, and O were pro-
jected onto the plane of the first two principal compo-
nents; the first two principal components account for 20%
of the variation in the data in the case of the PRS (Fig. 6a)
and for 27% of the variation in the case of the Gilis matrix
(Fig. 6b).

The results shown in Fig. 6 indicate that the standard code
belongs neither to the set of random codes, r, nor to the
set O, which is the result of minimization of random
codes that outperform the natural one. When the dis-
tances between the standard code and the codes from the
sets 0 and R are compared, it is difficult to differentiate

between these two sets; however, the code that was
obtained as a result of the minimization of the standard
code clearly belongs to o (the distances from this code to
other sets are much greater). Thus, it seems plausible that
the standard code belongs in or at least is closest to o, i.e.,
it is a (partially) optimized random code.

We further examined the length of the evolutionary path
to convergence (on a locally optimized code) measured as
the number of pairwise swaps that are required to reach
the minimum error cost (Figs. 7, 8). For a random code to
reach its local minimum, when the PRS is used, 19 swaps
are necessary on average (Fig. 7b), and the maximum
number of swaps among the 300 tested codes was 30; for
the Gilis matrix, the corresponding numbers were 17 and
28 swaps (Fig. 8b). The standard code reached the local
minimum after 9 and 11 swaps for the PRS and the Gilis
matrix, respectively, which is significantly fewer than the
means for the random codes (Figs. 7b, 8b). Notably, on
average, the random codes reached, at convergence, the
same level of robustness as the standard code although
the latter required fewer steps to get there (Figs. 7a, 8a).
Put another way, it takes a random code, on average, 8 or
7 swaps (depending on the matrix) to reach the robust-
ness level of the standard code and, then, another 11 or 10
steps to reach the local minimum. Thus, these results sup-
ported the notion that the standard genetic code is a par-
tially optimized random code and suggest that it had gone
about half of the way along a typical optimization path.
We then examined the optimization paths of random
codes with a fitness greater than that of the standard code
and found that a substantial fraction of these (Figs. 7cd
and 8cd) converged at much higher levels of robustness
(higher fitness peaks) than the standard code. Again, this
result emphasizes the "mediocrity" of the standard code.
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Projection of the code maps onto the plane of the first two principal components (see text for details). Red 'x' signs, random
codes, r; red circles, codes resulting from optimization of random codes, 0; green squares, random codes that perform better
than the standard code, R; green asterisks, codes resulting from optimization of the set R, O; blue square, the standard code;
blue asterisk, the code resulting from the optimization of the standard code. (a) PRS; (b) the Gilis matrix.

Discussion and Conclusion

In this work, we examined possible evolutionary paths of
the genetic code within a restricted domain of the vast
parameter space that is, in principle, available for a map-
ping of 20 amino acids over 64 nucleotide triplets. Specif-
ically, we examined only those codes that possess the
same block structure and the same degree of degeneracy as
the standard code. It should be noticed, however, that this

choice of a small part of the overall, vast code space for
further analysis is far from being arbitrary. Indeed, the
block structure of the standard code appears to be a direct
consequence of the structure of the complex between the
cognate tRNA and the codon in mRNA where the third
base of the codon plays a minimum role as a specificity
determinant. Within this limited - and, presumably, ele-
vated - part of the fitness landscape, we implemented a
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Figure 7

Evolutionary dynamics of mean code scores in the course of minimization using the PRS as the measure of
amino acid substitution cost. (a) The black circles show the mean score of the evolving random codes in the course of

minimization vs arbitrary time units (pairwise swaps). Crosses show the mean values * one standard deviation. The green line
shows the cost of the standard code, and the blue shows the cost of the code that was obtained by minimization of the stand-
ard one. The top x-axis is the number of codes that did not reach their local minimum at the preceding step (starting from 300
random codes). The evolution of each code was followed until the code could not be improved anymore. (b) The number of

codes that need exactly k pairwise swaps to reach minimum vs k; the blue line is the number of steps for the standard code to
reach its local fitness peak (9); the red line is the mean of the distribution (19). (c) Same as (a) but the search started with 100
random codes that outperform the standard code. (d) Same as (b) but the search started with 100 random codes that outper-

form the standard code.

very simple evolutionary algorithm by taking as an ele-
mentary evolutionary step a swap of four-codon or two-
codon series. Of course, one has to realize that the model
of code's evolution considered here is not necessarily real-
istic and, technically, should be viewed as a "toy" model.
It is conceivable that codon series swaps were not permis-
sible at the stage in the code's evolution when all 20
amino acids have been already recruited. Nevertheless, we
believe that the idealized scheme examined here allows
for meaningful comparison between the standard code
and various classes of random codes.

The evolution of the standard code was compared to the
evolution of four sets of codes, namely, purely random
codes (r), random codes with robustness greater than that

of the standard code (R), and two sets of codes that
resulted from optimization of the first two sets (o and O,
respectively). With the above caveats, the comparison of
these sets of codes with the standard code and its locally
optimized version yielded several salient observations
that held for both measures of amino acid replacements
(the PRS and the Gilis matrix) that we employed.

1. The code fitness landscape is extremely rugged such that
almost any random initial point (code) tends to its own
local optimum (fitness peak).

2. The standard genetic code shows a level of optimization
for robustness to errors of translation that can be achieved
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Figure 8

Evolutionary dynamics of mean code scores in the course of minimization using the Gillis matrix as the meas-
ure of amino acid substitution cost. (a) The black circles show the mean score of the evolving random codes in the course
of minimization vs arbitrary time units (pairwise swaps). Crosses show the mean values + one standard deviation. The green
line shows the cost of the standard code, and the blue shows the cost of the code that was obtained by minimization of the
standard one. The top x-axis is the number of codes that did not reach their local minimum at the preceding step (starting
from 300 random codes). The evolution of each code was followed until the code could not be improved anymore. (b) the
number of codes that need exactly k pairwise swaps to reach minimum vs k; the blue line is the number of steps for the stand-
ard code to reach its local fitness peak (9); the red line is the mean of the distribution (19); (c) Same as (a) but the search
started with 100 random codes that outperform the standard code; (d) Same as (b) but the search started with 100 random
codes that outperform the standard code.

easily and exceeded by minimization procedure starting  code is much closer to its local minimum (fitness peak)

from almost any random code. than most of the random codes with similar levels of
robustness (Fig. 9).

3. On average, optimization of random codes yielded evo-

lutionary trajectories that converged at the same level of 5. Principal component analysis of the between amino

robustness as the optimization path of the standard code; ~ acids distance vectors indicates that the standard code is
however, the standard code required considerably fewer  very different from the sets r (all random codes) and O
steps to reach that level than an average random code. (highly optimized codes produced by error cost minimi-

zation for random codes that are better than the standard
4. When evolutionary trajectories start from random  code), and more similar to the codes from o (optimized
codes whose fitness is comparable to the fitness of the = random codes) and R (the robust subset of random
standard code, they typically reach much higher level of = codes). More importantly, the optimized code produced
optimization than that achieved by optimization of the by minimization of the standard code is much closer to
standard code as an initial condition, and the same holds  the set of optimized random codes (o) than to any other
true for the minimization percentage. Thus, the standard  of the analyzed sets of codes.
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Evolution of codes in a rugged fitness landscape (a cartoon illustration).r|, r, € r: random codes with the same block
structure as the standard code. 0, 0, € 0: codes obtained from r|, r, € r: after optimization. R|, R, € R: random codes with fit-
ness values greater than the fitness of the standard code. O, O, € O: codes obtained from R|, R, € R: after optimization.

6. In this fitness landscape, it takes only 15-30 evolution-
ary steps (codon series swaps) for a typical code to reach
the nearest local peak. Notably, the average number of
steps that are required for a random code to reach the peak
minus the number of steps necessary for the standard
code to reach its own peak takes a random code to the
same level of robustness as that of the standard code.

Putting all these observations together, we conclude that,
in the fitness landscape explored here, the standard
genetic code appears to be a point on an evolutionary tra-
jectory from a random point (code) about half the way to
the summit of the local peak. Moreover, this peak appears
to be rather mediocre, with a huge number of taller peaks
existing in the landscape. Of course, it is not known how
the code actually evolved but it does seem likely that
swapping of codon series was one of the processes
involved, at least, at a relatively late stage of code's evolu-
tion, when all 20 amino acids have already been recruited.
If so, perhaps, the most remarkable thing that we learned,

from these modeling exercises, about the standard genetic
code is that the null hypothesis on code evolution,
namely, that it is a partially optimized random code,
could not be rejected. Why did the code's evolution stop
where is stopped, i.e., in the middle of the slope of a local
fitness peak (Fig. 9), rather than taking it all the way to the
summit, especially, as the number of steps required to get
there is relatively small? It appears reasonable to view the
evolution of the code as a balance of two forces, the posi-
tive selection for increasing robustness to errors of trans-
lation and the negative selection against any change, i.e.,
the drive to "freeze an accident". Indeed, codon series
swapping is, obviously, a "macromutation" that simulta-
neously affects all proteins in an organism and would
have a deleterious effect that would become increasingly
more severe as the complexity of the evolving system
increases. This is why, in all likelihood, no such events
occurred during advanced stages of life's evolution, i.e.,
after the cellular organization was established. Conceiva-
bly, such an advanced stage in the evolution of life forms
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was reached before the code reached its local fitness peak,
in support of a scenario of code evolution that combines
selection for translational robustness with Crick's frozen
accident.

Reviewers' comments
Reviewer 1: David Ardell, The Linnaeus Centre for Bioin-
formatics, Uppsala University

General comments

With this manuscript Novozhilov et al. bravely enter the
contentious field of modelling the evolution of the
genetic code. Novozhilov et al. have contributed some
original approaches, concepts and techniques to the field
in this work. Although the details of the method are omit-
ted, they convincingly use linear programming to address
the question of which amino acid cost matrix would min-
imize the cost of mistranslation assuming a fixed pattern
of translational misreading error. Having solved this
problem they then apply their solution to estimate which
codon assignments are most deleterious in the standard
code. Their conclusion that the placement of arginine is
exceedingly maladaptive echoes several earlier uncited
works, although their have reached this conclusion by
original means. The uncited earlier works include Tolstrup
et al. (1994) JMB 243:816, who showed that an artificial
neural network trained to learn the standard code segre-
gates amino acids in its internal representation in groups
that perfectly correspond to a measure of their
hydrophilicity with the exception of arginine. Tolstrup et
al. themselves cite earlier work indicating the misfitting
assignment of arginine, including Swanson(1984) Bull.
Math. Biol. 46:187, Taylor and Coates, and T.H. Jukes
(1973) Nature 246:22 who discussed evidence that
arginine was a late addition to the genetic code. Finally,
arginine is the only amino acid for which strong evidence
has been made of a stereochemical association of an
amino acid with its codons (Knight and Landwe-
ber(2000) RNA 6(4):499).

Authors' response: We appreciate Ardell pointing out this
earlier work concerning arginine's position; cited in the revi-
sion.

I also appreciated the application of principal compo-
nents analysis on representations of genetic codes based
on the "codon distances" of amino acids. This is a nice
way to measure genetic code similarity in the face of the
large equivalence classes of genetic codes under the cost
metric that they used (for instance, swapping the two
purines or the two pyrimidines in either the first or second
codon positions or both, while holding the amino acid
assignments fixed, will yield codes with the same cost).

http://www.biology-direct.com/content/2/1/24

Finally, in terms of incremental improvements to the
field, the authors promote an original model for the space
of possible genetic codes, and an original mechanism of
genetic code change. Their conclusion that the genetic
code is a partially optimized random code, is appealing
and not controversial to me, although I am quite sure it
will continue to be controversial (and perhaps ignored)
by others.

However, I take issue with some assumptions and lines of
reasoning in this work, which I now outline in decreasing
order of relevance to its overall impact:

1. Have the authors meaningfully analyzed a fitness land-
scape and plausible evolutionary trajectories of genetic
codes? This would require adequate measures of 1) fitness
and 2) a mechanism of evolutionary change. The authors
repeatedly confuse the distinction between "cost" and "fit-
ness" throughout this paper, despite pointing out the dis-
tinction themselves at one point in the paper. They also
rightly conclude that a true treatment of fitness requires
consideration of the population of genes that the genetic
code is translating. The important point they neglect is
that these genes will also influence how genetic codes can
change. Because of this evolutionary constraint that genes
place on genetic codes, the likelihood of a swap of amino
acids or anticodons between two alloacceptor tRNAs is
virtually nil, especially after translation evolved to be
accurate enough, so that 20 amino acids could be trans-
lated consistently. This precondition is necessary for such
a swap (as modelled) to even be meaningful. Perhaps that
is why we see no evidence of such radical variation in
genetic codes on Earth today. The fact that fitness is not
adequately measured in this work and the way that codes
change is misrepresented, leaving the basis of their con-
clusions in doubt. To this I may add that the ruggedness
of the cost landscape that they describe is an inevitable
consequence, at least in part, of the aforementioned sym-
metries in the cost metric that they used (leading to equiv-
alence classes of codes as mentioned previously).

On the other hand, the authors' postulated mechanism of
swaps of amino acids between pairs of codon blocks is
adequate to show that the standard code is sub-optimal,
although this has been shown before by others.

Authors' response: There are two distinct points in this com-
ment. One is the alleged confusion between costs and fitness.
On this count, we plead not guilty. The cost is defined unequiv-
ocally, and the inverse relationship between this cost and fitness
is explained right after this definition. In the rest of the text, we
speak of reduced cost in the more technical sense and of
increased fitness where it comes to a more biologically oriented
discussion. We believe this creates clarity rather than confusion.
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The second point is that the model of code evolution might not
be realistic. Here, we plead guilty. The model is deliberately
oversimplified to allow straightforward conclusions on the rela-
tionships between the standard code and various random codes,
and we emphasize this in the revised Discussion.

2. Is the block structure of the standard genetic code inev-
itable? There are two components to the block structure:
the number of codons assigned to each amino acid and
the clustering of redundant codons by the third codon
positions. Certainly the "wobble" rules in the third codon
position might reasonably be assumed invariant through-
out the history of the code. But different tRNA isoaccep-
tors may be altered in their reading capacity through
mutations and modifications of their first anticodon
bases, i.e. changed in which wobble rule they use. Further-
more, extant altered genetic codes vary in the number of
codons assigned to different amino acids. Our own earlier
claim (Ardell and Sella, 2001) not withstanding, there is
clear evidence in extant life that certain amino acids have
most likely inherited or invaded codons from others, thus
neither the block structure of the genetic code nor its
amino acid expressivity has been invariant throughout its
evolution.

Authors' response: In the revised version of the manuscript,
we added a caveat emptor (in the discussion section) where we
emphasize that we, essentially, explore a toy model of the code's
evolution that ignores the expansion of the number of amino
acids and involves only codon series swaps. The gist of this paper
is the determination of the place of the standard code in the
code space, in relation to various classes of random codes, and
we believe that, in this respect, the model we employ is ade-
quate.

3. Using the code itself to decide among different meas-
ures of the cost of amino acid replacements, or to infer the
nature of translational error, without other evidence, is
fallacious. Especially considering the author's own con-
clusions that the code is non-optimal.

Authors' response:We do not actually use the code itself to
decide among cost measures. It is another matter that some
such measures (e.g., PAM or Blosum matrices) are themselves
dependent on the code and therefore hardly appropriate. We do
not believe there is anything fallacious in this.

4. Even though it is widely used, the cited experimental
justification for the translational misreading probability
scheme in equation 2 is weak, especially in that transla-
tional misreading is more transition-biased in misreading
of the second codon position than in the first. The data are
extremely limited on these points! The cited references
are: Friedman and Weinstein, 1966, Woese, 1965 and
Parker 1989. In the first reference, only the data translat-
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ing poly-U are directly interpretable (the poly-UG data
has as its highest incorporation Phenylalanine, demon-
strative that the mRNA was a random copolymer). Their
data (Table 2, page 990) does show a transition-bias of
misreading of this one codon as the overall rate of error is
increased. But there is no evidence that this bias is greater
in the second codon position than the first codon posi-
tion. In contrast, the data reviewed by Woese (1965) for
poly-U show no sign of transition biased misreading in
the first codon position at all, but a sign of it in the second
codon position. Therefore, the data from these two
sources are inconsistent. Furthermore, they arefor only
one codon, and Woese writes that the pattern of misread-
ingof other codons that could be assayed at that time was
very different. Importantly, even very recent studies of
translational misreading either experimentally in vitro (E.
Bouakaz et al. http://publications.uu.se/
abstract.xsql?dbid=6324) or using molecular dynamics
simulations (Almlof et al. (2007) Biochemistry 46:200)
center only on the UUU or UUC codons. All authors agree
that more studies are necessary with other codons to gen-
eralize conclusions. Parker's review of in vivo misreading
rates (Table 1, page 277) in no way allow the reader to
draw general conclusions regarding the form of transla-
tional misreading errors in the different codon positions,
other than the general position effect.

On the other hand Kramer and Farabaugh's recent work
(cited here in this paper) do demonstrate a greater transi-
tion-bias in misreading in position 2 than position 1, in
vivo, of all possible one-mutant neighbors to the lysine
codon AAA. Nonetheless, this raises the following two
questions for me: 1) what translation system under which
conditions is the best experimental model for the primor-
dial translation systems under which the genetic code
evolved? and 2) Are the highly evolved translation sys-
tems studied today biased by actually having co-adapted
to the genetic code, so that error frequencies are greatest
where costs of errors are weakest?

Authors' response: In the revised manuscript, we are more
cautious about the differences in the transition bias between
codon positions. The questions asked by Ardell are interesting
and relevant. Like he, we currently have no definitive answers.

As a general point, this paper would benefit very much
from separating materials and methods from the results
for clarity. In many turns the paper is well written, but in
other ways combining M&M and Results makes the paper
badly organized and forces the reader to piece together
important details of how the work was done from scat-
tered sections of the paper. For example, only incidentally
can the reader learn how many different genetic codes
were actually analyzed in evaluation of the 4 sets o, r, O
and R.
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Authors' response: We disagree regarding the amalgamation
of M&M and Results. We initially attempted to write the paper
in a more traditional manner but found that, in this case, the
main methodological approaches were virtually inseparable
from the results. The numbers of evaluated codes are now indi-
cated explicitly.

(p- 9 and elsewhere): Although we (Ardell, 1998, Sella
and Ardell,2001, Ardell and Sella 2001, 2002) have
shown that 1) mathematical forms such as your eq. 1 are
minimized by pairing large terms of p (.|.) with d(.,.), and
that 2) codes that imply such pairings are indeed more fit
in certain population genetic models, it is only inviting
confusions and misunderstanding for the authors' to use
the term "fitness" to describe the quantity being opti-
mized. This point is correctly touched on in the paper, but
then treated misleadingly elsewhere. May I suggest to call
it what it is, which is "cost"?

Authors' response: already addressed above. In general, we
do not see conflation of costs and fitness.

Please detail, regarding software used, how the linear pro-
gramming problem was solved for reproducibility. Why
not provide source code in supplementary methods?

Authors' response: The linear programming problem was
solved with a standard routine LPSolve presented in Optimiza-
tion package of Maple 9.5.

Reviewer 2: Allan Drummond, Harvard University (nom-
inated by Laura Landweber)

Review of "Evolution of the genetic code: partial optimi-
zation of a random code for translational robustness in a
rugged fitness landscape", submitted to Biology Direct.

The logical development and main results of the paper are
as follows. First, a cost function for genetic codes is speci-
fied, and its terms explained (including choices for a dis-
tance measure between amino acids). A framework for
generating alternative codes is introduced, with a set of
assumptions to winnow the search space by roughly 66
orders of magnitude to a tractable set, most importantly
the assumption that the block structure of the standard
code is a mechanistic consequence of the translational
apparatus and therefore non-blocked codes may be safely
set aside. The standard code is compared with alternative
codes and found to outperform the vast majority of them
given a few variants of the assumed cost function.
Improvement opportunities for the genetic code are iden-
tified by an attempt to minimize the cost function via
changes to the distance measure. A greedy minimization
algorithm is introduced to search locally for improved
variants of an initial code via swaps of codon families.
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Using this algorithm, the question of whether the stand-
ard code should be considered optimized for error mini-
mization is addressed: optimized versions of the standard
code and random blocked codes are obtained, and it is
found that the standard code's cost, and that of its opti-
mized version, can be matched or beaten by optimized
versions of many random blocked codes. The paper's
major conclusion is that the standard code is rather unre-
markable in its error minimization when compared with
other blocked codes.

Overall, I find the subject exciting, the approaches as dar-
ing as would be expected from this leading group, and the
conclusions interesting. The authors make major assump-
tions with which I'm not entirely happy, with the justifi-
cation that they are necessary to make progress. My
concern is that unless the assumptions are good, progress
is not actually being made, and the topic is better left
alone.

I suggest that some assumptions be clarified and but-
tressed with evidence where they conflict with compelling
alternative arguments. The results derived from the greedy
minimization algorithm should be substantially revised,
as several important claims about this algorithm's output
(e.g., that it finds shortest paths) are incorrect. Finally,
long-standing questions about the inferences one can
draw about evolutionary trajectories, possible or actual,
from the output of analytical or computational optimiza-
tion algorithms should be addressed.

To begin, the simplifying assumptions made to render the
search for better codes tractable bear closer examination.
In particular, the limitation of searches to codes having
the block structure of the universal code is defended, and
then used, in a novel way. Given the goal of interpreting
simulated trajectories of code modification as informative
about the actual process of code evolution (so that, for
example, the concept of "close to a fitness peak" and the
data in Figures 7 and 8 have meaning in biology as well as
the simulation), the authors must establish that the sim-
plifications are biologically reasonable. The burden is
heavier here than on other works that make similar
assumptions (e.g. the works of Freeland and colleagues)
but in which no claims about evolutionary trajectories or
the mode of evolutionary exploration are made.

The major assumption leading to the reduction in the
search space is that "...the block structure of the code is a
direct, mechanistic consequence of the mode of interac-
tion between the ribosome, mRNA, and the cognate tRNA
[50]". The premise is worded in a way suggesting that bio-
physics alone suffice to impose the observed block struc-
ture, without invoking selective pressure against
mistranslation. This is to my knowledge a completely

Page 18 of 24

(page number not for citation purposes)



Biology Direct 2007, 2:24

novel and exciting idea, and substantial evidence should
be presented to support it. I was unable to connect the
contents of [50] (Spirin, RNA Biol. 2004) with this
premise, and would be helped by exposition on what is
being assumed and what is known.

By contrast, the authors might mean the alternative where
the block structure of the code arises both from the mode
of interaction (e.g., third-position binding contributes
most weakly to discrimination, and codon-anticodon
mismatches involving transitions are more stable than
those involving transversions) and selective pressure for
error minimization, which jointly favored a code structure
in which third-position transition errors are largely synon-
ymous - a blocked code. That natural selection favors
translational error minimization seems obvious; the ques-
tion at issue is whether the structure of the genetic code
contributes alongside other adaptations such as ribos-
omal structure, kinetic proofreading, synthetase editing
activity, biased codon usage for translational accuracy
(Akashi Genetics 1994), biased codon usage for error
minimization (Archetti JME 2004), tolerance of proteins
to mistranslation, etc. If this weaker but plausible assump-
tion is what the authors mean, then it becomes less clear
how unblocked codes can be eliminated from considera-
tion in evolutionary pathways, since they are merely
assumed to be less fit (as are most codes in the reduced
landscape), not unviable, and there are overwhelmingly
(~10766-fold) more of them in the space of all codes,
such that selection must work hard to eliminate them.

Indeed, there are extant codes that have a more consistent
block structure than the standard genetic code, such as the
vertebrate mitochondrial code in which there are no sin-
gle-codon families (unlike Trp and Met in the standard
code). Such block structures are apparently consistent
with the mechanism of translation, but are not considered
in the present study. I recommend that in the manuscript
the authors more muscularly defend the omission of
unblocked and differently-blocked codes from evolution-
ary trajectories.

Authors' response: Indeed, what we mean is that the first two
bases contribute substantially more to the recognition of a cog-
nate tRNA than the third, wobble base. This was made explicit
in the revision, and the references in support of these differen-
tial contributions of bases are cited (|49-51]). Drummond's
point is well taken in that this does not render codes with dif-
ferent block structures impossible "in principle". However, it
does make them improbable, and given that for any simulation
to run to completion, a relatively small domain of the code space
needs to be chosen, fixing the block structure seemed like the
best choice. We explain all this in the revision. This may not
amount to a "more muscular" defense suggested by Drummond
but this is how things are.
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The latter half of the work is mainly concerned with how
optimized the standard genetic code is. Given that evolu-
tion is a stochastic process, the natural way to think about
optimization is to ask what proportion of mutations
increase versus decrease the score - a truly optimal code
will have zero improvement mutations, and a highly opti-
mized code will be improved by only a tiny fraction of the
many possible mutations. Many workers have estimated
this proportion by locating the standard code's score rela-
tive to a sampled distribution of alternative scores. The
authors have taken another approach, using the number
of "greedy" codon-family swaps separating a given code
from a local optimum to measure how optimized it is. The
use of distances between a given code's score and an opti-
mum - here, the minimization percentage, MP - to ascer-
tain the strength of selection has been criticized (Freeland,
Knight and Landweber, TiBS 2000), essentially because it
improperly treats these distances as a linear measure. The
present work compares MP's between codes and is subject
to the same criticism. The problem is exacerbated here
because the MP is computed relative to each code's local
greedy minimum. If, for example, the standard code has
an MP of 0.93 and a competing code an MP of 0.8, one
cannot conclude that the standard code is more optimized
in the sense of having fewer mutations which improve it.
That is, the difference between MPs is not equivalent to
the difference in optimization level. An alternative is that
the codes in the standard code's neighborhood generally
score well, so that obtaining a high MP is easy and many
mutations would improve the standard code, making it
poorly optimized, while the competing code's neighbor-
hood is filled with poor-scoring codes, and it is heavily
optimized with few better-scoring codes to move to. Rug-
ged landscapes of the sort explored here are more likely to
have such features. The authors should directly address
the criticisms regarding MP and search-derived versus sto-
chastically derived measures of optimization, and should
sample the local landscape around each code to address
the concerns about level of optimization.

Authors' response: In order to compare codes, we employed
both a statistical approach and an optimization approach. As a
measure of the distance between codes, we used not only the
number of codon swaps but also the difference in the error cost
values as can be seen in Figs. 3,4, 5, 7and 8. It is not clear why
we cannot use MP in the context of the present study. The crit-
icisms of Freeland et al. 2000 addressed the conclusion that,
considering the low MP value of the standard code, the code
could not evolve under selective pressure to reduce the effect of
translation errors. We do not argue with that critique. We use
MP only to compare different random codes with the standard
code under exactly specified rules for fitness landscape search.

The mutation-selection balance/non-linear adaptation

argument should be considered in the Conclusion where
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the authors ask, "Why did the code's evolution stop where
it stopped?" An answer I glean from much of the error-
minimization literature cited in the present work is that it
might be wildly improbable for selection to push the level
of error-minimization any higher, given countervailing
pressure from mutation. If the genetic code is "one in a
million" in the sense favored by Freeland and Hurst (JME
1998), that is a high level of optimization by most stand-
ards. (A demonstration that many mutations improve
that one-in-a-million code would be compelling contrary
evidence.) Algorithmic optimization of the sort carried
out here is blind to such statistical features - in greedy
minimization, the first optimization step is as easy as the
last step, because all possible alternatives must be evalu-
ated each time, whereas in a blind sampling-based process
such as evolution, the farther uphill one climbs, the more
improbable improvement becomes and the less likely it is
to persist once attained. This is the essence of Freeland et
al. TiBS (2000)'s criticism.

In the same vein, there are several standard evolutionary
hypotheses which seem to be missing for why the present
genetic code should not be optimal:

- Error minimization was not the sole target of selection.
If any other traits were under substantial selection in pri-
mordial genomes, and these traits were not perfectly con-
gruent with error minimization, then an evolutionary
process favoring increased fitness would yield a sub-opti-
mal genetic code.

- The effective population size was not infinite. Natural
selection cannot distinguish fitness differences smaller
than the reciprocal of the effective population size. As a
consequence, any mutations (to tRNAs, synthetases,
release factors, ribosomal components, etc.) which
improve the error minimization of the genetic code, but
confer a selective advantage below this threshold, would
not be expected to reach fixation except by drift. One
could in principle estimate how many codes have such a
property, and thereby estimate how much optimality
would be "left on the table" simply because of the nature
of the evolutionary process.

- Mutation-selection balance was achieved. Suppose that
error minimization has a bell-shaped distribution, and
high levels of error minimization are selectively advanta-
geous, but not infinitely so. The higher error minimiza-
tion is pushed by selection, the more strongly it is
opposed by an increasing proportion of deleterious muta-
tions, until equilibrium - likely at a sub-optimal level of
EM - is reached. (Mutation-selection balance is a more
mainstream term for the "non-linear adaptation" argu-
ment touched on above and briefly by the authors in the
Introduction.)
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If any of these three standard hypotheses have merit, then
the genetic code is expected to be sub-optimal with respect
to its robustness to mistranslation. The present work
should address these hypotheses in their Discussion,
where presently the "balance of two forces" argument
addressing the same point is made.

Authors' response: We appreciate these interesting com-
ments. However, in our opinion, this demand puts the plank
unrealistically high for any analysis of the evolution of the code.
We do not know this "expected non-optimality".

The authors measure the stepwise distance from a code to
a local peak of the landscape, thereby ascribing signifi-
cance to this peak. A serious concern is that the algorithm
by which this greedy peak is found sheds no light on what
general significance the peak possesses. Let us assume that
the greedy peak is found to be N steps away from the start-
ing point. The greedy peak is not guaranteed to be a) the
closest peak, b) the tallest peak within N steps, or c) the
closest or tallest peak approachable using exclusively
uphill steps. In a rugged fitness landscape, there is addi-
tionally no guarantee that the height of or distance to the
greedy peak are informative about the height of or dis-
tance to these peaks.

Further, the authors state, "Using this algorithm we can
find the shortest evolutionary trajectory from a given start-
ing code to its local minimum of the error cost function
(i-e. to a local fitness peak)." This statement is incorrect.
Greedy paths will not in general be shortest paths. This
can be seen most clearly in Figures 7 and 8, which plot
minimization paths of >26 steps, and concluding point
#6 which states that a typical code can reach its local peak
in 15-30 steps. Given the algorithm used (where a set of
mutually accessible codes is uniquely specified by the
position of 14 four-codon and 14 two-codon blocks), any
code can be changed into any other accessible code in (14-
1) + (14-1) = 26 swaps. (The problem is equivalent to a
list-reordering problem, and a list of n items can be put in
any specified order in n-1 swaps or fewer). It is impossible
for a shortest path in the described model to be longer
than 26 steps.

As a consequence, Figures 7 and 8 and the accompanying
text should be revised. The aim of the experiment is to
determine how far various codes are from the local mini-
mum. If "how far" is the shortest-path difference to the
closest local minimum, then the data should be retaken
using a suitable approach such as dynamic programming.
If "how far" is meant in an evolutionary sense, then nei-
ther the greedy path nor the shortest path are expected to
be representative of evolutionary trajectories, which are
blind and therefore subject to entropic constraints as well
(cf. the arguments of Freeland and colleagues and the
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mutation-selection balance comment above). The greedy
algorithm is a dubious choice for evolutionary studies,
since, for example, the probability of an evolving popula-
tion moving from one code to the next in any evolution-
ary model should be a function of the probability of
occurrence of the proper mutation and the probability of
subsequent fixation, and the greedy algorithm ignores the
probability of occurrence altogether. It is easy to imagine
deterministic algorithms of equivalent computational
complexity which do not ignore such statistics — when all
alternatives are being assessed, as in the greedy algorithm,
the population mean, median, and so on are determinis-
tic.

Authors response: It is true that, allowing any codon swaps,
we can reach any code in (14-1) + (14-1) = 26 steps (not 20).
If we knew the final state (the global minimum) this would be
an easy problem. Without such knowledge, theoretically, it is
possible to find the global minimum using dynamic program-
ming but, practically, this problem is not solvable due to
immense number of possible codes. If we allow only swaps that
yield the largest fitness increase, then, we find the closest peak
(we define a peak as a state from which no codon swaps yield
fitness increase) and the tallest peak (because, under the given
algorithm only one peak can be reached from any starting
point) for this algorithm. We should note that this is, to the best
of our understanding, the most reasonable deterministic algo-
rithm of evolution imaginable. It would be a different approach
if we added some kind of stochasticity in the landscape search.
We decided to use the aforementioned, simple, and therefore,
tractable, deterministic, greedy algorithm. In the revised man-
uscript, we clarified this point in the description of the search
algorithm by making it explicit that the algorithm finds an opti-
mization path in which each step involves the maximum possi-
ble increase of the code robustness, and added a statement on
caveats in the Discussion.

The validity of a fitness landscape, whether quantitative or
illustrative (Fig. 9), derives from that of its metric (dis-
tance measure) and fitness function (height). The distance
metric chosen here is swaps. That is to say, one step across
the landscape equals one exchange in the meaning of two
families of codons which encode different amino acids.
The authors assert that it is likely the genetic code evolved,
at least in part, by such swaps. Woese (BioScience
20(8):471-480 + 485 [1970]) considered several mecha-
nisms for the evolution of the code. Like the authors, he
noted that codon reassignments were almost certain to be
strongly deleterious, but instead argued that this stum-
bling block favored an alternate class of evolutionary
paths, namely refinement of ancestral stochastic overlap-
ping codon - amino-acid assignments into more precisely
delineated families. Evidence addressing Woese's argu-
ment, specifically in support the importance of swaps,
should be provided early in the manuscript, as the plausi-
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bility of the conclusions depend on the acceptance of this
premise.

Authors' response: Again, this work is not an attempt to
reconstruct a truly realistic scenario for the evolution of the code
but rather to determine the status of the standard code in the
code space, compared to various sets of random codes, and
delineate possible evolutionary links between the standard code
and different random codes. This is clarified in the revision.

The authors note that 9 or 11 swaps is required to take the
standard code to its greedy minimum, and refer to this
distance as "relatively small"; this interpretation should
be justified. As implied above, 9-11 mutations suffice to
move any code halfway across the entire vast space of all
blocked codes (but recall that the greedy minimum is not
necessarily the closest or deepest local minimum). As
these swaps are macromutations - several physical muta-
tions would likely be required to swap two four-codon
families - the distance would certainly be even larger in
reality. I suggest providing the above calculation of the
maximum shortest-path length to put whatever distance is
found upon revision in perspective.

Authors' response: "Relatively small" means, literally, rela-
tively small with respect to other random codes. It does not seem
to us that additional justification is necessary.

The term "translational robustness" has previously been
used to refer to the robustness of individual proteins to
mistranslation (Drummond et al. PNAS 2005; Koonin
and Wolf, Curr. Op. Biotech. 2006). Here, it is being
applied for the first time to the genetic code to denote the
idea that certain codes have error spectra which lead to
disrupted protein fold or function less than others. These
are different phenomena - in the biophysics of how
robustness might be obtained and modified, and the
scope of consequences if it is altered, among other aspects
- and using the same term risks inducing the opposite
impression. The phenomenon under consideration has
been the subject of many previous works, so the field's
common use of "error minimization" might be consid-
ered. If a new term is sought, "error robustness" would
incorporate the robustness concept while carefully distin-
guishing it from previous work. If the term must be kept,
a short description of how its use here differs from the ear-
lier definition would help to minimize confusion.

Authors' response: We agree, the terminology here deserves
more attention. "Translational robustness" could be ambiguous
but "error minimization" is not a good phrase either because the
structure of the code does not minimize errors, it minimizes
their effect. So we went through the manuscript and made
changes, speaking of "robustness to translation errors" or,
where no ambiguity is perceived, simply, of "robustness".
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Reviewer 3: Rob Knight, University of Colorado, Boulder

In this manuscript, Novozhilov et al. provide a more
detailed exploration of the level of optimality of the
genetic code and the evolutionary trajectory of optimiza-
tion than has previously been available. Specifically, they
use a standard approach to measuring the "cost" of a
genetic code in terms of the weighted frequency of errors
of different severity, and measure the trajectory of codes
using a hill-climbing optimization algorithm. They recap-
ture the uncontroversial result that the genetic code is
much better at minimizing errors than a random genetic
code (as has been shown by many authors), but is at nei-
ther a local nor global optimum (as has also been shown
previously). However, the results go beyond what has pre-
viously been done by comparing the evolutionary trajec-
tory of the standard genetic code to the trajectories of
other, random codes to get an estimate of what the overall
process should look like.

I believe that the authors overstate their result that the
standard genetic code is "not special". Their own results
show that it is difficult to explain except as the result of an
optimization process: the argument that the standard
genetic code is a global optimum is not to my knowledge
taken seriously in the field, so the results cannot be seen
as overturning it (see discussion between Steve Freeland,
Massimo Di Giulio and myself in TiBS in 2000, which is
cited appropriately in the paper). Rather, they show that,
like most other features of organisms, the genetic code is
optimized but not optimal, and probably reflects a range
of constraints beyond the specific feature being examined.
The manuscript could also benefit from being shortened
substantially, as it appears to be relatively long in relation
to its news value.

Authors' response: When we say that the standard code is
"not special", we mean that it very well could have evolved by
partial optimization of a purely random code of the same block
structure. Various edits have been made to clarify this but the
gist remains. In a way, this is a shift from a half-full glass
touted in several previous studies which emphasized that the
standard code was "one in a million" or even better than that,
to a half-empty glass whereby the standard code appears rather
trivial when the entire landscape is considered.

It is interesting that many of the non-canonical genetic
codes in fact do have different block structure or amino
acid counts than the canonical genetic codes: indeed, this
seems to be the main way that the genetic code is currently
evolving (see Knight et al. 2001 Nature Reviews Genetics
for a discussion, and Caporaso et al. 2005 ] Mol Evol for
some simulations involving alternative block structures -
the authors might consider citing this latter paper in the
discussion of alternative models for code evolution). It

http://www.biology-direct.com/content/2/1/24

might be worth relaxing some of these assumptions in the
simulations to model more accurately how we think the
code is changing today, although this is perhaps beyond
the scope of the present manuscript. We did some work
on the optimality of the non-canonical codes in Freeland
et al. Mol Biol Evol.

Authors' response: The specifics of the deviant codes in mod-
ern organisms, indeed, seem to be beyond the scope of the paper.
It is hard to be sure that these in any ways recapitulate the orig-
inal evolution of the code.

I think the statement "the standard code is unremarkable"
is misleading, for the reasons mentioned above. It is still
far better at minimizing errors than the vast majority of
codes: perhaps the authors could restate what they mean
more clearly.

Authors' response: Restated and qualified in the revision.

I still disagree that the earlier paper cited, by the same
authors, adequately addresses the evidence in favor of a
stereochemical effecton the modern code structure. The
Caporaso et al. 2005 JME paper shows that there is plenty
of "room" for adaptation even if substantial parts of the
code were fixed by stereochemistry, for example. Simi-
larly, the present paper does not really discuss the evi-
dence supporting coevolutionary models, although it
could be argued that both lines of evidence are outside the
scope of this work.

Authors' response: In this context, the previous paper by the
same authors (YIW and EVK) is cited as a succinct review of
the evidence in support (or lack thereof) of the stereochemical
hypothesis. The main conclusion is that there is no compelling
evidence in favor of that hypothesis, and we stand by that. As
for the being plenty of room for adaptation, we do not seem to
be in dispute on this.

The discussion of the circularity of using PAM matrices
should cite Di Giulio's 2001 ] Theor Biol paper on the
topic, and I also show in my PhD thesis that even very
small contamination of a substitution matrix with the
genetic code matrix can lead to artifactual statistical signif-
icance of the optimality of the genetic code.

Authors' response: The Di Giulio reference was added [48].
Unfortunately, at this time, we do not have access to the thesis.

The assertion that "using this algorithm we can find the
shortest evolutionary trajectory from a given starting code
to its local minimum of the error cost function" is not true
- the shortest trajectory might involve a transition to a
worse solution to get to a better one. The algorithm
employed can only find the shortest continuously
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improving path, which might be much longer than a
direct route. This point should be clarified in the manu-
script.

Authors' response: Indeed, this point has been clarified — see
the response to Drummond's comments above.

Individual authors' contributions

ASN contributed to the algorithm design, performed the
mathematical analysis and wrote the initial draft of the
manuscript; YIW contributed to the development of evo-
lutionary models and algorithm design; EVK incepted the
study, proposed the evolutionary models, contributed to
the algorithm design, and wrote the final version of the
manuscript. All authors have read and approved the final
version of the manuscript.
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