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Abstract

validated using the mouse xenograft model.

Background: Long-chain acyl-CoA synthetase-4 (ACSL4) is involved in fatty acid metabolism, and aberrant ACSL4
expression could be either tumorigenic or tumor-suppressive in different tumor types. However, the function and
clinical significance of ACSL4 in lung adenocarcinoma remain elusive.

Results: ACSL4 was frequently downregulated in lung adenocarcinoma when analyzing both the TCGA database
and the validation samples, and the lower ACSL4 expression was correlated with a worse prognosis. Using gene set
enrichment analysis, we found that high ACSL4 expression was frequently associated with the oxidative stress
pathway, especially ferroptosis-related proteins. In vitro functional studies showed that knockdown of ACSL4
increased tumor survival/invasiveness and inhibited ferroptosis, while ACSL4 overexpression exhibited the opposite
effects. Moreover, high-fat treatment could also inhibit erastin-induced ferroptosis by affecting ACSL4 expression.
The anti-tumor effects of ferroptosis inducers and the anti-ferroptosis effects of the high-fat diet were further

Conclusions: ACSL4 plays a tumor-suppressive role in lung adenocarcinoma by suppressing tumor survival/
invasiveness and promoting ferroptosis. Our study provided a theoretical reference for the application of ferroptotic
inducers and dietary guidance for lung adenocarcinoma patients.
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Background

Long-chain acyl-CoA synthetase-4 (ACSL4), a member
of the long-chain acyl-coenzyme synthetase (ACSL) fam-
ily, is involved in the biosynthesis and catabolism of fatty
acids. There are five different isoenzymes in the ACSL
family, ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6.
ACSLs prefer fatty acids with chain lengths of 12 to 20
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carbons as substrates [1], and ACSLs are also the response
gene for peroxisome proliferator-activated receptor
gamma (PPARy), which mediates the lipid metabolism
and regulates caloric absorption [2]. The dysregulation of
ACSL4 is associated with a variety of lipid metabolism dis-
eases. Different from other family members, ACSL4
catalyzes the synthesis of arachidonic acid (AA) into ara-
chidonic acid coenzyme A, which participates in the
synthesis of membrane phospholipids. ACSL4 enriched
long polyunsaturated w6 fatty acids in cell membranes
and dictated ferroptosis sensitivity by shaping cellular lipid
composition [3, 4]. Ferroptosis, which is different from
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apoptosis and necrosis, is closely related to the disturb-
ance of iron-dependent lipid peroxides, and these accu-
mulated lipid reactive oxygen species (L-ROS) could lead
to ferroptotic cell death. Previous studies found that in-
ducers of ferroptosis could inhibit tumor growth and kill
cancer cells [5-7], and activation of ferroptosis becomes a
novel and effective way of cancer intervention. On the
other hand, some studies showed that ACSL4 is associated
with the development and progression of multiple cancers,
including breast cancer [8, 9], colorectal cancer [10], and
hepatocellular carcinoma [11]. As ACSL4 could exhibit ei-
ther tumor-suppressive or tumor-promoting functions, it
is worth specifying the role of ACSL4 based on the spe-
cific cancer type, including lung adenocarcinoma where
ACSL4 is rarely studied.

Lung adenocarcinoma is the main type of lung cancer
and accounts for around 30% of all newly diagnosed
lung cancer worldwide [12]. Due to the early metastasis
and recurrence of lung adenocarcinoma, the 5-year sur-
vival rate is below 30 % [13]. Identifying genes that are
aberrantly expressed helps understanding the initiation
and progression of lung adenocarcinoma. In this study,
we used the gene expression data from the TCGA data-
base to characterize the patient prognosis stratified
based on ACSL4 expression and understand the ACSL4-
related pathways in lung adenocarcinoma. Furthermore,
we investigated the cellular function of ACSL4 and its
impact on ferroptosis using in vitro cell line models.
Lastly, we studied the effect of the high-fat diet on
erastin-induced ferroptosis using both cell line and
mouse xenograft models.

Methods

Database analysis for ACSL4 expression and patient
prognosis

We used GEPIA to analyze ACSL4 expression and
evaluate its relation to cancer patient survival. GEPIA
was an interactive web server for estimating the mRNA
expression data from 9,736 tumors and 8,587 normal
samples in the Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) dataset projects
(http://gepia.cancer-pku.cn/) [14—18]. The expression of
ACSL4 in 33 types of cancers and the matched normal
samples was identified from the GEPIA database. The
mRNA expression in cancer tissue compared to normal
tissue was obtained, and P <0.01 and |Log,FC|>1 were
set as the screening criteria for differentially expressed
genes. The expression profiles of ACSL4 isoforms in dif-
ferent types of cancers were identified and presented as
boxplots.

The Kaplan-Meier Plotter (http://kmplot.com) is an
online database that comprises gene expression informa-
tion and clinical outcome parameters of breast cancer,
lung cancer, liver cancer, ovarian cancer, and gastric
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cancer [19]. The prognostic value of ACSL4 in lung
adenocarcinoma was determined by Kaplan-Meier ana-
lysis using the Kaplan-Meier-plotter online software.

Gene set enrichment and pathway analysis

To better understand the underlying molecular role of
ACSL4 in lung adenocarcinoma, we further analyzed
data using TCGA database. The clinical and gene ex-
pression data of 524 patients with lung adenocarcinoma
were obtained from TCGA (https://tcga-data.nci.nih.
gov/tcga/). We used R software to perform molecular
role analysis of TCGA database. Pathway enrichment
analyses were performed using gene set enrichment ana-
lysis (GSEA). Genes related to oxidative stress were se-
lected using the Gene Ontology (GO) database with the
search term ‘response to oxidative stress’ (http://www.
geneontology.org/). We explored the biological functions
of the gene list and screened for genes involved in cellu-
lar oxidative stress. Patients were divided into high
ACSL4 expression group (n=262) and low ACSL4 ex-
pression group (n = 262), and the median ACSL4 expres-
sion level was used to separate the high and low
expression of ACSL4 patients. Relationships between
ACSL4 expression levels and genes involved in cellular
oxidative stress were displayed as a heat map. The
KEGG pathway database was a collection of manually
drawn pathway maps of molecular interactions. To clar-
ify the regulatory relationship between ACSL4 expres-
sion and ferroptosis-related gene expression. Pathway
network analysis was based on the signal pathway of fer-
roptosis in the KEGG database, and the interaction net-
work diagram of pathway research was constructed
(https://www.genome.jp/keggbin/show_
pathway?map04216).

Antibodies and other reagents

Primary antibodies against ACSL4 and p-actin were pur-
chased from Proteintech (Hubei Province, China).
Erastin, a compound that could induce ferroptosis in
mammalian cells, was purchased from Invitrogen
(California, USA). The SP-900 general immunohisto-
chemical kit was purchased from ZSGB-BIO (Beijing,
China). Cell/tissue protein extraction kits were pur-
chased from Tiangen Biotech (Beijing, China). Other
chemicals and reagents such as MTT, sodium dodecyl
sulfate, Acryl&Bis premixed powder, BCA protein quan-
tification kit, and horseradish peroxidase (HRP) sub-
strate luminescent solution were purchased from Sigma
(St. Louis, MO, USA), Vetec (St. Louis, MO, USA) and
Biological Industries (Kibbutz Beit Haemek, Israel).

Cell culture and tissue samples
In order to investigate the functional changes of ACSL4,
experiments were performed with lung adenocarcinoma
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cancer cell lines. The cell lines A549, H322, H1299, and
H460 were purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA). All four cell
lines were maintained in DMEM containing 10 % FBS
and 1% penicillin-streptomycin at 37 °C under a hu-
midified atmosphere of 5% CO,. Human lung adenocar-
cinoma tissue samples and corresponding adjacent tissue
samples were obtained from 10 patients undergoing
thoracoscopic treatment from the first affiliated hospital
of Dalian Medical University. This study was approved
by the Ethics Committee of the First Affiliated Hospital
of Dalian Medical University. All patients who under-
went surgical resection have signed informed consent to
our Hospital. ACSL4 expression was assessed by immu-
nohistochemical staining using an anti-ACSL4 antibody
and quantitative real-time PCR.

Protein extraction and western blot analysis

The cells were collected in a microcentrifuge tube at
optimum cell culture time. Protein extraction was per-
formed according to our previous publication [20]. The
concentration of total protein was quantified by the
BCA protein assay kit (Sigma, St. Louis, MO, USA). The
proteins were separated with 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred onto polyvinylidene fluoride mem-
branes. The membrane was incubated with specific
primary and secondary antibodies. Afterward, the pro-
tein bands were detected using an enhanced chemilu-
minescence system.

Plasmid construction, RNA interference, and transfection
A plasmid containing the full-length ACSL4 ORF and
small interfering RNAs (siRNAs) was created and syn-
thesized by Gene Pharma (Shanghai, China). Targeting
sequences for shRNAs are as follows: hl 5-AGCAGA
GATATCTTGCTTT-3, sh2 5-TAGATATCAGTTGT
GTTAA-3, sh3 5-TGCAATCTGTTACTGTTTA-3,
and sh4 5-CCGATGGATGTTTACAGAT-3". The effect
of gene silencing was evaluated using western blot ana-
lysis. Sh2 was used because of the most obvious silent ef-
fect. All procedures were performed according to the
manufacturer’s protocol.

Cell viability assay

The viability of the cells was determined by MTT assay,
which is based on the conversion of MTT to formazan
crystals by mitochondrial dehydrogenases. Cells were
seeded at a density of 1 x 10* cells per well in 96 well
plates, and they were then transfected with shACSL4,
0eACSL4, or control PBS at the indicated doses. The
cells were incubated with MTT for 3 h at 5% CO, and
37 °C. The absorbance was determined at 490 nm by an
enzyme-linked immunosorbent assay reader.
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Transwell assays

Transwell assays were performed to assess cell migration
and invasion ability using a transwell chamber with pore
size of 8.0 um. Cells were serum-starved overnight at
37 °C in DMEM prior to treatment. 1 x 10° cells/well
were placed in the upper chamber containing DMEM
with 10 % FBS. After 24 h of incubation, the cells were
rinsed with PBS. Cells were fixed with 4 % paraformalde-
hyde solution for 10 min and room temperature, stained
with 0.1 % crystal violet solution for 10 min at room
temperature, and counted by a microscope using 5 ran-
domly selected fields of view at a 200x magnification.

Wound healing assay

Cell migration was assayed using the wound healing
assay. Cells were transfected with siACSL4, 0eACSL4, or
control PBS or treated with Erastin or Ferrostatin-1, and
they were then plated in 6-well plates to create a conflu-
ent monolayer. A linear scratch or wound was made
across the confluent monolayer using a fine 100 pL pip-
ette tip. The spacing of the gap was photographed by an
inverted microscope at 0 h, 24 h, and 48 h.

Lipid peroxidation assay

We mainly used liperfluo to monitor the ferroptosis
[21-23]. Liperfluo was used to test the lipid peroxidase
(LPO) level in cells treated with erastin following the
manufacturer’s protocol. Liperfluo emits intense fluores-
cence by lipid peroxide-specific oxidation in organic
solvents such as ethanol. Among fluorescent probes that
detect reactive oxygen species (ROS), liperfluo is the
only compound that can specifically detect lipid perox-
ides. It can easily be applied to lipid peroxide imaging by
a fluorescence microscopy and a flow cytometric analysis
for living cells. We add liperfluo (final concentration of
20 uM) according to the manufacturer’s protocol,
followed by collecting cells with PBA and analyzing by
flow cytometer.

Fluorescence-activated cell sorting (FACS) analysis of cell
apoptosis

Apoptosis was detected with a fluoresceinisothiocyanate
(FITC) Annexin V Apoptosis Detection Kit (Sigma), ac-
cording to the manufacturer’s instructions. Approxi-
mately 2 x 10° cells that were treated with the indicated
condition were washed twice with PBS. The cells were
then incubated in 0.2 mL of binding buffer containing 5
pL of FITC-annexin V in the dark for 10 min at room
temperature. Subsequently, 10 pL of propidium iodide
was added, and samples were analyzed with a flow cyt-
ometer (BD Accuri C6 plus).
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(num(T)=483; num(N)=59)

Fig. 1 Aberrant ACSL4 expression in lung cancers. The ACSL4 expression data in the tumors (shown in red) and the corresponding normal tissues
(shown in grey) were obtained from the TCGA database, and the number of tumor and normal samples (num (T) and num (N), respectively) was
shown below each boxplot. The red asterisk represents p value < 0.05. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma
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LUSC
(num(T)=486; num(N)=50)

High-fat treatment

For the high-fat treatments, cells were cultured with
DMEM (400 umol/L of the saturated free fatty acid palmi-
tate [16:0]) for 48 h at 37 °C with 5% CO,, according to
the manufacturer’s protocol. Acid palmitate was obtained
from Xian Kunchuang Science and Technology Develop
Co. Ltd (Xian, China) [24, 25]. Mice were assigned into
different groups and fed with either standard feed (StF) or
high-fat diet (HFD). High-fat treatment groups were fed a
high-fat feed (as follows: standard feed; lard (fat), 3040 %;
pig bile salt, 3.5 %) for two weeks.

Xenograft mouse model and tumor processing

Twelve nude mice (5-6 weeks old, 16—18 g weight) were
managed at SPF Laboratory Animal Center at Dalian
medical university in strict accordance with the guide-
lines by the U.S. National Institutes of Health Guide for
the Care and Use of Laboratory Animals. To assess the
effect of high-fat treatment on lung adenocarcinoma
growth in vivo, the nude mice were randomly divided
into four groups (ordinary diet + PBS group, n = 3; ordin-
ary diet + erastin group, n = 3; high-fat diet + PBS group,
n = 3; high-fat diet + erastin group, n=3) and injected
2x10° A549 cells on the abdominal region at both
flanks. One week after the injection, four groups of mice
were treated with erastin or PBS at 200 or 100 pug/mouse

one time every 24 h by intra peritoneal injection for two
consecutive weeks. Then all mice were terminated with
ether anesthesia inhalation and humanely sacrificed. The
tumor volume was measured with V = (width®x length)/
2) and body weight was recorded. Tumor specimens
were fixed in formalin and embedded in paraffin or dir-
ectly stored at — 80 °C.

Statistical analysis

P-values were calculated using a student’s t-test, spear-
man correlation analysis, or chi-square test as noted. P-
values < 0.05 were considered statistically significant. For
wound healing assay testing different treatments, the
multiple comparisons of the student’s t-test were cor-
rected using the Bonferroni method.

Results

ACSL4 was frequently downregulated and patients with
low expression had a poor prognosis in lung
adenocarcinoma

We firstly assessed ACSL4 expression among 33
different types of cancers using the TCGA database, and
several cancers demonstrated statistically significant dif-
ferences in the ACSL4 expression level when compared
with the corresponding normal control samples.



Zhang et al. Biology Direct (2021) 16:10 Page 5 of 13
d
Patient 1 Patient 2 Patient 3
2 \ NS A\Y
O () > ot > & 1.54
MW (kDa) \;o‘ «o“\ MW (kDa) & & MW (kDa) O < z &
100 100 » A 100 ¥ R g
ACSL4 EACSM ACSL4 @
- . =] s |7
50 50 o
ACTIN EIACTIN ACTIN [
©
>
Patien{ 4 Patient 5 5 0-57
> & & & £
MW (kDa) \\o*‘o«oé‘ MW (kDa) ‘\0“(\.@“\ §
100 100
0.0
75 EIACSM 75 [ ==acste Normal Tumor
50 50
ACTIN ACTIN
C
b o
- HR = 0.61 (0.44 - 0.84)
P FS logrank P = 0.0021
(o]
2
Tumor
©
£ 3
Q0
©
Ke)
S «
[
N
S | Expression
Normal | i
S | —— high
S T T T T T T
0 20 40 60 80 100 120
d Time (months)
o
= HR = 0.7 (0.54 - 0.91)
O S logrank P = 0.0065
© |
(=]
> © |
= O
Q0
(]
Q
O «
o o |
N
© | Expression
— low
o | — high
o T T T T
0 50 100 150 200

Fig. 2 (See legend on next page.)

Time (months)




Zhang et al. Biology Direct (2021) 16:10

Page 6 of 13
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of ACSL4 patients. PFS, progression-free survival; OS, overall survival

Fig. 2 Low ACSL4 expression was associated with poor prognosis in lung adenocarcinoma. a The expression of ACSL4 in lung adenocarcinoma
tissues and matched normal tissues was detected using Western blot. The samples were obtained from our hospital. Representative Western blot
results were shown and ACTIN was used as the loading control. The quantification of the results (the intensity of ACSL4 divided by the intensity
of ACTIN) was shown on the right. b The expression of ACSL4 in lung adenocarcinoma tissues was detected using immunohistochemistry. The
samples were obtained from our hospital. ¢-d Kaplan-Meier analysis of progression-free survival (c) and overall survival (d) in lung
adenocarcinoma patients. The patient survival data were obtained from the TCGA database (n =524). The optimal ACSL4 expression level that
was auto-selected by Kaplan Meier Plotter (see Method section for more details) was used as the cut-off to separate the high and low expression

Specifically, breast invasive carcinoma (BRCA), kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP),
lung squamous cell carcinoma (LUSC), prostate adeno-
carcinoma (PRAD), and lung adenocarcinoma (LUAD)
showed downregulation of ACSL4, while cholangial car-
cinom (CHOL), colon adenocarcinoma (COAD), and
liver hepatocellular carcinoma (LIHC) had upregulated
ACSL4 protein level (Fig. 1 and Fig. S1), which coincides
with the previous findings that the specific role of
ACSL4 in the tumor might vary according to the cancer
type. As ACSL4 was rarely studied in lung adenocarcin-
oma, we then tried to validate the ACSL4 expression
level in lung adenocarcinoma patient samples obtained
from our hospital. ACSL4 showed significantly lower ex-
pression in most tumor samples using Western blot
(Fig. 2a), and the result was further confirmed using
immunohistochemistry (Fig. 2b). Intriguingly, the
Kaplan-Meier survival analysis showed that lung adeno-
carcinoma patients with low ACSL4 expression had
worse progression-free survival (PFS) and overall sur-
vival (OS) than those with high ACSL4 expression
(Fig. 2¢,d), suggesting the potential prognostic values of
ACSL4 expression in lung adenocarcinoma.

ACSL4 positively regulated ferroptosis in lung
adenocarcinoma

Given the association between the ACSL4 expression
level and patient prognosis, we next investigated the
function of ACSL4 in lung adenocarcinoma. The gene
expression data were obtained from 524 lung adenocar-
cinoma patients from the TCGA database and were sep-
arated into high ACSL4 expression group (n=262) and
low ACSL4 expression group (n = 262), using the median
ACSL4 expression level as the cut-off point (See Method
section for more details). Of note, GSEA and GO enrich-
ment analyses revealed that oxidative stress-related
genes were highly enriched in patients with increased
ACSL4 expression (p=0.02) (Fig. 3ab), implying that
ACSL4 might be involved in the regulation of the oxida-
tive stress pathway. The oxidative stress-related genes
that were enriched in the high ACSL4 group were listed
in Table S1. Moreover, we found that ACSL4 expression
was positively correlated with the upregulation of

transferrin receptor protein 1 (TFR1), divalent metal
transporter 1 (DMT1), prion protein (PRNP), Heme
oxygenase-1 (HO-1), and NADPH oxidase 2 (NOX2),
which have been reported to regulate cellular iron up-
take, iron metabolism, or the generation of reactive oxy-
gen species (ROS) (Fig. 3c). On the other hand, high
ACSL4 expression was associated with downregulation
of multiple proteins that promote intracellular iron stor-
ing/sequestering in ferritin or antioxidant activities, such
as poly-(rC)-binding protein (PCBP), microtubule-
associated proteins 1 A/1B light chain 3B (LC3), gluta-
thione peroxidase 4 (GPX4), and glutathione synthetase
(GSS) (Fig. 3c). Considering that all of these affected
proteins were related to ferroptosis (ak.a. iron-
dependent cell death), high ACSL4 expression might be
associated with elevated ferroptosis activity in lung
adenocarcinoma, such as enhanced iron uptake, in-
creased ROS generation, decreased iron chelation, and
impaired antioxidant pathway.

ACSL4 inhibited tumor cell survival, invasion, and
migration and promoted ferroptosis in lung
adenocarcinoma

As clinical and gene expression data indicated that high
ACSL4 expression correlates with improved prognosis
and enhanced ferroptosis in lung adenocarcinoma
patients, we next investigated whether altering ACSL4
expression level could affect tumor growth and invasive-
ness in lung adenocarcinoma. We first knocked down
(shACSL4) or overexpressed ACSL4 (0oeACSL4) in 4
lung adenocarcinoma cell lines, including A549, H322,
H1299, and H460 (Fig. 4a). ACSL4 knockdown cells had
a higher number of viable cells while the oeACSL4 cells
exhibited a significant growth inhibition when compared
with the control cells (Fig. 4b). Moreover, both the
transwell assay and wound healing assay indicate that
knockdown of ACSL4 could enhance cell invasion and
migration for all 4 lung adenocarcinoma cell lines
(Fig. 4c,d, and Fig. S2), suggesting that ACSL4 acts as a
tumor suppressor in lung adenocarcinoma. Due to its
implications in ferroptosis, we further studied the effect
of changed ACSL4 expression on ferroptosis. We
coupled Liperfluo staining with flow cytometry to moni-
tor the level of cellular lipid peroxides, which reflects the
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extent of ferroptosis. As shown in Fig. 4e, although the
basal lipid peroxide levels were low and indistinguishable
among cells with different ACSL4 expression levels,
ACSL4 knockdown could reduce the erastin-induced
ferroptosis while ACSL4 overexpression further exacer-
bated ferroptosis. Similar to ACSL4 overexpression,

erastin treatment impaired cell migration, invasion, and
survival in lung adenocarcinoma cells (Fig. S3); in con-
trast, ferroptosis inhibitor Ferrostatin 1 demonstrated
the opposite effects, like those in ACSL4 knockdown
cells (Fig. S3). We further confirmed that the majority of
these treated cells were not died from apoptosis, (Fig.
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and/or erastin treatment

Fig. 4 ACSL4 inhibited cell survival and tumor invasion/migration and promoted ferroptosis in lung adenocarcinoma. a The expression of ACSL4
in 4 different lung adenocarcinoma cell lines after ACSL4 knockdown (shACSL4) or overexpression (0eACSL4). Representative Western blot results
were shown and ACTIN was used as the loading control. b Cell viability was analyzed by MTT in lung adenocarcinoma cells after ACSL4
knockdown or overexpression (n = 3). ¢ Cell migration and invasion ability was analyzed by the transwell assay in lung adenocarcinoma cells after
ACSL4 knockdown or overexpression. The quantification of the transwell assay for each cell line was shown on the right (n = 3). d Cell migration
was analyzed by wound healing assay in lung adenocarcinoma cells after ACSL4 knockdown or overexpression (n = 3; *p < 0.05, **p < 0.01, **p <
0.001). The multiple comparisons of student’s t-test (two-tailed) were corrected using the Bonferroni method. ns, not significant. e Liperfluo-based
lipid peroxidation assay was used to monitor the ferroptosis levels in lung adenocarcinoma cells after ACSL4 knockdown, ACSL4 overexpression,

S4), implying that ferroptosis might be the modality of
cell death. Overall, these results suggest that ACSL4 ex-
hibits tumor suppressor roles in lung adenocarcinoma,
and it could inhibit the growth and migration of the
tumor cells and promote ferroptosis.

High-fat treatment promoted cell survival, invasion, and
migration and inhibited ferroptosis in lung
adenocarcinoma by downregulating ACSL4

Previous studies suggest that lipid metabolism could
affect ACSLs expression and cell sensitivity to ferropto-
sis [26, 27]. We thereby investigated the effects of high-
fat treatment on lung adenocarcinoma. After culturing
cells in high palmitic acid-containing media for 48 h,
ACSL4 expression was decreased in all 4 lung adenocar-
cinoma cell lines (Fig. 5a). Consistent with the results in
ACSL4 knockdown cells, palmitic acid-treated cells had
an increased number of viable cells (Fig. 5b). Also,
palmitic acid treatment promoted cell migration and in-
vasiveness as measured by the transwell and wound
healing assays (Fig. 5c,d, and Fig. S5). We then used
erastin to induce ferroptosis in these cells. Strikingly,
palmitic acid treatment could partially reverse the erastin-
induced elevation of lipid peroxide, thus impairing the fer-
roptosis in lung adenocarcinoma cells (Fig. 5e).

Lastly, we studied the effect of the high-fat diet on fer-
roptosis in lung adenocarcinoma using the in vivo
model. We injected A549 cells into the abdominal re-
gion of nude mice to generate lung adenocarcinoma
mouse xenografts (Fig. 6a), and we then divided the 12
xenografts into 4 treatment groups, including ordinary
diet + PBS group (control group; n = 3), ordinary diet +
erastin group (erastin group; n=3), high-fat diet + PBS
group (high-fat diet group; n = 3), and high-fat diet + era-
stin group (combination group; n = 3). The high-fat diet
group had the lowest body weight compared with other
groups, implying that the high-fat diet was likely to
worsen the disease progression of lung adenocarcinoma
in mice (Fig. 6b). Similarly, the high-fat diet group had
the highest tumor weight (Fig. 6c). Erastin treatment
could significantly reduce the mouse tumor load, which
was partially reversed by feeding mice with the high-fat
diet (Fig. 6¢). Therefore, both in vitro and in vivo results

indicate that ferroptosis-inducing agents could inhibit
the progression of lung adenocarcinoma and the high-fat
diet could partially attenuate this anti-tumor effect by
downregulating the tumor suppressor gene ACSLA4.

Discussion

Previous studies showed ACSL4 displayed both tumor-
promoting and tumor-suppressive functions in different
tumor types, and the role of ACSL4 in lung adenocarcin-
oma was still elusive. In the current study, we performed
a serial of experiments to assess the function of ACSL4
in lung adenocarcinoma cells. Interestingly, our results
were similar to the studies of ACSL4 in gastric cancer
tissues. ACSL4 was also a promising prognostic factor in
lung adenocarcinoma. For patients with low ACSL4 ex-
pression, more active adjuvant chemotherapy, radiother-
apy, targeted therapy, or even immunotherapy may be
given. Moreover, considering the anti-tumor effect of
ACSL4, it may be a new therapeutic target for the tar-
geted therapy of lung adenocarcinoma.

ACSL4 expression level has been studied in most can-
cer types, and ACSL4 becomes a promising drug target
for certain cancers [28—30]. Chromophobe renal cell car-
cinoma, renal cell carcinoma, tubular cell carcinoma,
lung adenocarcinoma, and lung squamous carcinoma
showed lower ACSL4 expression, while cholangiocarci-
noma, colon cancer, and hepatic cell carcinoma showed
higher expression level. ACSL4 upregulation in breast
cancer, liver cancer, and colorectal cancer was reported
to be related to recurrence and metastasis, and inhibiting
ACSL4 in liver cancer cells attenuated cell growth [31].
In contrast, ACSL4 plays a tumor-suppressive role in
gastric cancer and was thus frequently downregulated
[28], and forced ACSL4 overexpression in gastric cancer
cells impaired cell growth and migration [28], which is
similar to what we have observed in lung adenocarcin-
oma cells. The mechanism underlying this context-
dependent role of ACSL4 in different cancer types is still
elusive. It is known that ACSL4 catalyzes a broad range
of fatty acid substrates, and its function in fatty acid me-
tabolism is also cell type-dependent [32]. Given that fatty
acid metabolism is widely involved in tumorigenesis and
cancer progression [33], ACSL4 might catalyze different
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with erastin and/or palmitic acid

Fig. 5 High-fat treatment promoted cell survival, invasion, and migration and inhibited ferroptosis. a The effect of palmitic acid treatment on
ACSL4 expression in 4 different lung adenocarcinoma cell lines. Representative Western blot results were shown and ACTIN was used as the
loading control. The relative blot intensity was listed below each band. b Cell viability was analyzed by MTT in 4 different lung adenocarcinoma
cell lines treated with or without palmitic acid. ¢ Cell migration and invasion were analyzed by the transwell assays in lung adenocarcinoma cells
treated with or without palmitic acid. d Cell migration was analyzed by wound healing assay in lung adenocarcinoma cells treated with or
without palmitic acid. e Liperfluo-based lipid peroxidation assay was used to monitor the ferroptosis levels in lung adenocarcinoma cells treated

kinds of fatty acid substrates in different cancer types,
thereby re-programming the cell metabolomics to be ei-
ther tumor-promoting or tumor-inhibiting. Nevertheless,
the precise role of ACSL4 in cancer still needs to be
carefully investigated in future studies.

Ferroptosis is a programmed cell death process char-
acterized by the accumulation of iron-dependent lipid
peroxides. Erastin-induced ferroptosis through GPX4 in-
activation played an important role in inhibiting tumor
growth and killing tumor cells. Related therapies have
been reported in hepatocellular carcinoma, renal cell
carcinoma, non-small cell lung cancer, ovarian cancer,
pancreatic cancer, and diffuse large B-cell lymphoma
[5-7, 34—37]. Ferroptosis was also associated with sensi-
tivity to chemotherapy drugs and immunotherapy [22,
38-41]. A high level of lipid peroxides in lung cancer tis-
sues suggested the possibility of ferroptosis in lung can-
cer. In order to avoid cell death, lung cancer cells use

several ways to increase the induction threshold of fer-
roptosis, such as upregulating system xc-, increasing the
antioxidant capacity, maintaining GPX4 activity, and in-
ducing lymphoid-specific helicase to regulate lipid me-
tabolism [42-44]. Our data confirmed that ACSL4
expression positively regulated response to oxidative
stress pathway in lung adenocarcinoma and negatively
correlated with GPX4 in ferroptotic cell death signaling
pathways. This may hint that small molecules such as
erastin and RSL3 had the potential efficacy to kill tumor
cells. At present, the markers of ferroptosis include iron
level, lipid peroxidase (LPO) level, GPX4 activity, GSH
content, ACSL4 activity, SLC7A11 expression, NOX1
expression, and cell morphology using electron micros-
copy. In our study, we mainly used liperfluo to monitor
ferroptosis and detect lipid hydroperoxides in living
cells. Among fluorescent probes that detect reactive oxy-
gen species (ROS), liperfluo is the only compound that
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Fig. 6 High diet reversed cell death caused by erastin in mice. a Representative images of mouse xenografts injected with A549 cells into the
abdominal region. b The change in mouse body weight over time in the four mouse xenograft groups, including ordinary diet + PBS group
(control group; n = 3), ordinary diet + erastin group (erastin group; n = 3), high-fat diet + PBS group (high-fat diet group; n = 3), and high-fat diet +
erastin group (combination group; n = 3). ¢ The final tumor weights were compared among four xenograft groups
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can specifically detect lipid peroxides by flow cytometric
analysis, and liperfluo showed high sensitivity and speci-
ficity for monitoring ferroptosis [45]. Furthermore, using
both the cell line model and mouse xenograft model, we
found that high-fat treatment could downregulate
ACSL4 expression in lung adenocarcinoma cells, thus
enhancing cell survival and migration and reducing fer-
roptotic cell death. High-fat treatment reduced the effect
of ferroptotic cell death induced by erastin. Agents to in-
duce ferroptosis may be an effective strategy in the treat-
ment of lung adenocarcinoma without the high-fat diet.
Our study provided new theoretical evidence for the ap-
plication of ferroptotic inducers in the treatment of lung
adenocarcinoma and dietary guidance for the patients.

Our study also had several limitations, including lim-
ited clinical samples and a lack of ferroptotic markers.
Future studies are needed to completely understand the
functional difference of ACSL4 between lung adenocar-
cinoma and other cancer types. Also, the effects of silen-
cing or overexpression of ACSL4 on cell viability were
relatively mild in some of the lung adenocarcinoma cell
lines, suggesting that the expression level of ACSL4 may
be only one of the factors that affect the tumor viability
in lung adenocarcinoma and some other oncogenic
pathways (e.g., EGFR pathway) may also play an import-
ant roles in tumor maintenance and progression.

Conclusions

In summary, this is the first study demonstrating ACSL4
acts as a tumor suppressor in lung adenocarcinoma.
Functional assays indicated that high-fat treatment pro-
moted cell survival, invasion, and migration. Our study
provided new evidence that the high-fat diet suppresses
ferroptosis via down-regulating ACSL4 in lung
adenocarcinoma.
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Additional file 1: Fig. S1. Aberrant ACSL4 expression in different types
of cancers. The ACSL4 expression data in the tumors (shown in red) and
the corresponding normal tissues (shown in grey) were obtained from
the TCGA database, and the number of tumor and normal samples (num
(T) and num (N), respectively) was shown below each boxplot. The red
asterisk represents p value<0.05. BRCA, breast invasive carcinoma; CHOL,
cholangial carcinoma; COAD, colon adenocarcinoma; KICH, Kidney
Chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal
papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; PRAD,
prostate adenocarcinoma.

Additional file 2: Fig. S2. Wound healing assay of lung
adenocarcinoma cell lines in response to ACSL4 knockdown or
overexpression.

Additional file 3: Fig. S3. Ferroptosis has an impact on cell survival,

invasion, and migration in adenocarcinoma cell lines.aWound healing

assay of lung adenocarcinoma cell lines treated with PBS control (Ctrl),
erastin, or Ferrostatin-1. The multiple comparisons of student’s t-test
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(two-tailed) were corrected using the Bonferroni method (n=3; *p<0.05,
**p<0.01, **p<0.001). b Cell migration and invasion were analyzed by
the transwell assays in lung adenocarcinoma cells treated with either era-
stin or Ferrostatin-1 (n=3; *p<0.05, **p<0.01, ***p<0.001). ¢ Cell viability
was analyzed by MTT in 4 different lung adenocarcinoma cell lines
treated with either erastin or Ferrostatin-1 (n=3; *p<0.05, **p<0.01, **p<
0.001).

Additional file 4: Fig. S4. Representative FACS results depicting
apoptosis of human A549 cells (control, shACSL4, or 0eACSL4) treated
with or without erastin (2 uM) for the indicated times. H,O, (10mM)
treatment in A549 cells was used as the positive control for apoptosis.

Additional file 5: Fig. S5. Wound healing assay of lung
adenocarcinoma cell lines treated with or without palmitic acid.
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