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Abstract

Background: Knowledge of the protein structure is a pre-requisite for improved understanding of molecular
function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein
sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for
part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is
not yet available. We use the computationally designed sequences that are intermediately related to two protein
domain families, which are already known to share the same fold. These strategically designed sequences enable
detection of distant relationships and here, we have employed them for the purpose of structure recognition of
protein families of yet unknown structure.

Results: We first measured the success rate of our approach using a dataset of protein families of known fold and

achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments
for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a

step towards functional annotation.

Function annotation, Homology detection

Conclusion: The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative
approach for structure recognition. Such sequences assist in traversal through protein sequence space and
effectively function as ‘linkers’, where natural linkers between distant proteins are unavailable.

Reviewers: This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.
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Background

Despite substantial growth in the protein structure data-
base (Protein Data Bank - PDB), contributed by im-
provements in structural genomics approaches [1] and
recently by Cryo-EM techniques [2], we still observe that
the number of available structures for proteins is limited.
Though it has been over five decades since the advent of
X-ray crystallography, unavailability of structures for
many protein sequences remains a daunting problem,
creating a bottle-neck in function annotation [3, 4]. The
minuscule addition of new structural folds in the recent
years implies that most protein sequences, of yet un-
known structure, have a high probability of adopting one
of the many structural folds already known [5]. Added
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to these constraints, the advent of affordable and high fi-
delity proteomic sequencing methods has widened the
existing gap [6, 7].

Since decades, the sequence-structure-function para-
digm has led many to pursue the “holy grail” of structure
recognition from sequence [8, 9] with the development
of many computational strategies addressing key deter-
minants of folding [10-12]. With advances in computa-
tional protein design, sequences have been designed for
various applications [13] including probing the sequence
space with the end objective of fold recognition [12, 14,
15]. Iterative sequence-profile driven searches [16, 17] or
profile- based search routines [18-20] have been shown
to be sensitive in homology detection.

Inability to recognize distant evolutionary relationships
between proteins may arise from limitations in transitiv-
ity of the sequence space, as a consequence of poor
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sequence dispersion [21]. It has been shown that the se-
quence space for a naturally occurring domain family
can be expanded artificially by computationally generat-
ing sequences using the representative PSSM (Position-
Specific Scoring Matrix) profiles [21]. Inclusion of such
sequences was seen to effectively improve detection of
domain family members.

As an improvement over the undirected design ap-
proach, sequences were designed between families
within a fold, using profile alignments for every possible
family pair within a fold [22]. In the absence of such
“stepping-stones”, search methods that employ PSSMs
[23] and Hidden Markov models [24] are unable to
make distant structural associations. There are multiple
approaches that identify putative structures for se-
quences with no detectable homolog, such as threading-
based approaches [25-28].

In this study, we use the designed sequences in
addition to natural protein sequences to aid in homology
detection [29]. The Pfam database [30] clusters se-
quences into domain families based on conserved func-
tional motifs and sequence similarities, making large-
scale functional annotation tractable. The conserved
block of residues representing each family was extracted
and systematically searched against the designed
sequence-enriched space in order to infer structure
through ‘homology’. It has been shown earlier that the
use of designed sequences in conjunction with four dif-
ferent methods has enabled annotation for 614 DUFs
(Domains of Unknown Function) reliably [31]. Through
our approach, we were able to provide structural cues
for 1392 Protein families (Pfam) of currently unknown
structure, of which 423 were DUFs.

Before we applied our approach to recognize folds, we
assessed the performance of our method on a dataset of
4058 fold-associated families. For 3993 of these families,
a fold was recognized by our approach and fold assign-
ments for 3506 families are found to be correct, yielding
a success rate of about 88%. Encouraged by these find-
ings, we extended the approach to the sequence families
for which there is no structural information available.

Methods

Directed sequence design and search database

Natural linker sequences, which are intermediately re-
lated to two distantly related proteins, facilitate hom-
ology detection in routinely employed sequence search
methods. As described in an earlier publication [22], the
paucity of natural linkers in the protein sequence space
renders homology detection methods ineffective. To
overcome this limitation, an approach to populate gaps
in the search space, by purposefully designing protein-
like linker sequences between all known families of pro-
tein folds provided in the SCOP (Structural Classification
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of Proteins) database [32] was developed earlier [22].
Briefly, in this approach, each protein domain family,
for every known fold in the SCOP database, was repre-
sented as a collection of profiles. HMM-HMM align-
ments were performed between related protein families
to generate a combined model that captures the inher-
ent preferences and frequencies of residues between the
aligned families. A roulette-wheel based approach was
then employed to select for preferred residues at each
position in the alignment between every related protein
family pair. When repeated along the length of the
alignment, the approach generated an ‘artificial linker’
sequence that meaningfully incorporated the observed
residue propensities between the aligned families. Using
this directed design approach, 3611010 designed se-
quences were generated between 3901 families for 374
folds in the SCOP database [32]. They are individually
available as stand-alone downloadable flat files in the
NrichD server [29] for use in tandem with any sequence
search procedure.

Query dataset

The database of sequence families (Pfam 30) [30] are
grouped based on sequence similarity into 16306 protein
families in the Pfam database corresponding to 1293837
seed sequences. The domains corresponding to the pro-
tein families are represented by a multiple sequence
alignment, which constitutes the seed sequences. To re-
tain only a representative set, blastclust was applied to
the members of each family, at 60% sequence identity
and 90% sequence length coverage, decreasing the num-
ber of sequences representing all the Pfam families to
234727.

Fold association for PFAM domains is not always
direct since multiple SCOP domains may be associ-
ated with a single sequence domain and vice versa.
To identify the SCOP domain associations for various
PFAM families, we have pooled together PEAM-SCOP
associations by integrating a number of datasets.
Firstly, we have used the available SCOP domain defi-
nitions for each protein of known structure associated
with a PFAM entry based on the PDB id(s), as pro-
vided in the SCOPe 2.06 [33] database. Secondly, the
RCSB has developed a process, based on the HMMER
web service, that takes the PDB-Pfam mappings from
SIFTS [34] and adds additional mappings to them
[35, 36]. This is provided on the RCSB resource as a
downloadable file. Thirdly, academic resources such
as PDBfam contain PFAM annotations for ~99.4% of
chains with more than 50 residues [37]. As shown in
Fig. 1, the pooled associations of PFAM-PDB-SCOP
from the three resources resulted in 4058 fold associ-
ations out of 7726 Pfam sequence families with
known structure.
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Fig. 1 Schematic outline of the workflow: Protocol adopted for structure recognition of families of unknown structure. A consensus was drawn
from the structural mapping for the sequence families provided by Xu and Dunbrack [34] and PDB to Pfam mapping available in Pfam [30]
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Based on our association of Pfam domain families to
the SCOP structural domains, our dataset was divided
into two sets: “Assessment” set corresponding to Pfam
families for which structural (and fold) association is
available and “Application” set corresponding to families
for which no structure association is currently available.

Assessment set

7726 sequence families were associated with structures
and for 4058 families SCOP fold definitions were avail-
able for the assigned regions. We considered structural
domain associations given in Pfam and PDBfam [34]
with an additional condition of better than 60% length
coverage of the SCOP domain in order to exclude indis-
criminate or false structural associations (Additional file 1:
Table S1). These formed the ‘known’ structural associa-
tions and were employed to test the strength of our ap-
proach. Clans group related protein families together,
constituting sequentially divergent families that share
common evolutionary ancestry. There are 595 Clans in
Pfam 30. The deduction of structure for any one

member of the clan translates to the structure and con-
sequently fold association to the other families in the
clan [30]. The number of families in each clan ranges
from 2 to 254.

Application dataset

The remaining 8580 families that had no structure asso-
ciation available were examined for structure recognition
at the fold level by extracting the seed sequences from
the alignment. We took one representative query se-
quence per cluster (blastclust) from each family itera-
tively, until we found hits in our database using
jackhmmer [24], at the parameters used for the assess-
ment set.

Search method: Evaluation and assessment

The workflow has been illustrated schematically in Fig.
1. We employed a sensitive homology detection pro-
gram, rejuvenating it further by providing a sequence
database constituting both natural and designed se-
quences [29]. This search database, that integrates
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3611010 designed sequences with 4694921 natural se-
quences is available as a resource on the NrichD data-
base as SCOP(v1.75)-NrichD with a total of 8305931
sequences. The search algorithm employed, jackhmmer,
is a profile-based iterative sequence search method that
builds an HMM (Hidden Markov Model) [24] after the
first search and uses it as the query in the successive it-
erations, re-encoding it after every round. We set an E-
value filter of 10™* for the reported hits and a maximum
of 5 iterations while ensuring the least incidence of
profile drifting by making certain that the query protein
is present in each iteration. The sequence domain may
be associated with single or multiple structural domains
corresponding to the same or different structural folds.
We minimized cases wherein an equivalent stretch of a
sequence domain was associated with different SCOP
folds using strict sequence length coverage filters. For
assessing the performance of our approach, the families
in the “Assessment set” were considered. We quantified
the significance of our approach by measuring precision,
sensitivity and specificity and identifying criteria to
maximize them. These are statistical measures of
performance and are represented by the following
equations:

Sensitivity (Recall/TPR) = TP/P

= i x 100
~ (TP +EN)
TN

ficitv (T T __IN
Specificity(TNR) N/N (TN + D)

x 100

Precision (Positive predictive value)

= %100
(TP + FP)

Mathews correlation coefficient (MCC)
TP x TN-FP x FN

/(TP + FP)(TP + FN)(TIN + EN)(IN + EP)

For a given query Pfam family, the number of correct
fold associations that qualify the imposed thresholds are
quantified as TP (True positive) while those that fail are
designated as FN (False negative). Similarly, for a given
query Pfam family, the number of incorrect fold associa-
tions that qualify the imposed thresholds are designated
as FP (False positive) while those which are not hits
from folds other than the correct fold are considered as
TN (True negative).

For each Pfam family, based on the folds of the hits
obtained through jackhmmer searches, a SCOP fold is
associated with the query sequence. To parse the results
obtained for sequence families with no previously known
structure, the criteria as determined from the assessment
were query length coverage at better than 60% and E-
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value better than 107* In addition, further constraints
were added to exclude false positives. For the
Assessment dataset, we observed that the correct fold
was associated with the highest normalized frequency
for a given query.

Normalized fold frequency is given byj%(i) ,i€[1, n).

where 7 is the total number of folds associated with a
query sequence and fold(i) represents the number of ho-
mologues identified from that fold in the profile search.
N is the total number of associations across folds for the
query.

Based on the above observation, using normalized fold
frequency, we could further rank the associations in our
Application dataset as —

Confident* - If the fold with the highest frequency
also had an association at greater than or equal to 95%
query coverage.

Confident — If the fold with the highest frequency
provides the best coverage between 60 and 95%.

Conflict — When the highest fold frequency did not
give the best query coverage.

No ambiguity - If there is only a single structural fold
associated with a query, we consider the association
made at best query coverage.

Results and discussion

Assessment: Revisiting families of known structure
Structural fold associations are available for 4058 fam-
ilies a priori. A sequence representative of each fam-
ily was queried against the database. Of the 4058
fold-associated families, we were able to assign folds
for 3993. We observed that out of the 3993 families,
for 3506 associations were made correctly, satisfying
stringency filters specified by us (see Methods sec-
tion). For 487 families, incorrect associations were
made at 60% and better query coverage. As discussed
in the Methods section, we analyzed these false posi-
tives and identified additional criteria to minimize the
occurrence of false positives. We have used the re-
vised criteria while recognizing folds for Pfam families
of unknown structure. Of the 3993 families for which
we made structural associations, 2603 corresponded
to 467 Clans and by extension the structural domain
can be associated with other Clan members, corre-
sponding to ‘inferred’ structural association.

We evaluated the performance metrics by determining
the precision, sensitivity and specificity measures. In Fig.
2, the boxplots show the precision, sensitivity, specificity
and MCC distribution. Our approach performs well at
query coverage better than 60% and E-value better than
107% as indicated by the median values of 100% for
precision and specificity and 86.6%% for the sensitivity.
MCQC values for the families in our dataset (range lies
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Fig. 2 Evaluation of the approach: The precision, sensitivity and specificity of results from the assessment dataset are represented and the median
value for the respective distributions is indicated above each boxplot, in percentage. The inset figure shows the histogram representing the
frequency of each interval for the assessment dataset. Query coverage cutoffs of greater than 60% and E-value thresholds of better than 107
were used

between 0 and 1) show that our search protocol
performs reasonably well for most of the queries
evaluated here. The histogram for the performance
metrics is shown as individual distributions in the inset
of Fig. 2. The frequency distribution of incorrect vs.
correct association as a function of query coverage
highlights the importance of excluding associations at
lower coverage at the expense of a few false negatives
(Additional file 2: Figure S1)

We have also evaluated the performance of our
method as a function of query length, secondary struc-
ture classes and repeat-containing folds (Additional file 3:
Figure S2). We find that sensitivity is the only parameter
which shows a crude relationship to the query length,
while the performance of the method is independent
of all the other parameters assessed here. Also, we
observe that sensitivity of the search protocol is, in
general, comparable for the protein queries from vari-
ous classes except the o/f class. For peculiarities
owing to amino acid compositions, we have identified
protein folds that are known to contain structural re-
peats in our assessment dataset and examined the
performance of our fold assignments for such cases
with respect to other protein folds. We find that the
values of assessment parameters are quite similar be-
tween folds with repeats and other folds.

The tabulated details on individual families in the as-
sessment of our approach are provided, indicating the
sequence details in addition to the strength of the as-
signment (E-value and coverage in Additional file 4:
Table S2). For 3257 families, we made the correct fold
associations at greater than 90% query coverage (Fig.
3a). We note that the search is biased towards identify-
ing single domain associations at the given restraints.
Undoubtedly, relaxing the strict search criteria would
lead to identifying additional structural domains but at
the added expense of including false positives.

Revising metrics: Minimizing occurrence of false positives

We extended the criteria of better than 60% query cover-
age and an E-value better than 10™* for the cases of
unknown structure, as these conditions were derived from
the benchmark analysis of the assessment dataset.
Associations to more than one fold for the cases of known
structure led us to identify a diagnostic metric, which
could help identify the correct structural fold if there are
multiple folds reported in the hits. Since homologous
proteins adopt the same fold even at low sequence
identity, the likelihood of ultimately reporting the correct
fold association is enhanced as most of the query
sequences in a family are likely to identify hits
corresponding to the same fold. We observe that a greater
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Fig. 3 The frequency of structural fold associations for sequence
families as a function of coverage made in the searches: a) families
with structure and fold information available. b) families with no
prior structure information associated with a structural fold by
our approach

number of positive hits from the correctly related fold
are more likely to direct the association to the correct
fold (Additional file 5: Figure S3) since they are more
likely to direct the search to the correct fold when
considered in iterative profile/model-based search
procedures. Our analysis of hits, in the jackhmmer
searches performed here, shows consistently that the
fold with the highest normalized fold frequency most
often corresponds to the correct fold association
(Additional file 5: Figure S3).

We also examined the cases wherein the query se-
quence reported a correct and incorrect association and
compared the best query and target coverage for the
correct and incorrect associations (Additional file 6:
Figure S4). We observed a significant difference using
chi-squared test for the query coverage as well as target
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coverage (p-value <107°) for the correct vs. incorrect
association. We also observed that the approach
performs better as a function of the query and target
alignment length (Additional file 6: Figure S4).

Fold recognition for Pfam families of unknown structure

We were able to make structural assignments for 1392
families for which there are no structures available. Our
results are listed in Additional file 7: Table S3. For 1095
families, fold associations have been made at better than
90% query coverage (Fig. 3b). For this set of sequence
families with no structural information we increased the
stringency filters to ensure the maximum likelihood of
identifying the correct fold. We observed from our as-
sessment dataset that the fold associations for 3506 fam-
ilies reported at the highest frequency (normalized fold
frequency > 0.8) correspond to the correct fold and de-
ployed this observation (Additional file 5: Figure S3) in
the “application” dataset. We also had 88 cases marked
as “conflict”, as the fold with the highest frequency did
not give the highest coverage in comparison to the other
folds identified. Careful analysis of these results showed
that these associations were not necessarily incorrect but
had lower confidence. For 348 cases, we observed that
fold agreement was seen among the clan members, add-
ing credibility to our findings. However, for 158 families
the structural fold associated did not concur with other
members of the clan, which could imply additional
structural domains associated with the clan members.
Of the 1392 families, fold associations were made for
423 DUFs of which, in an earlier analysis from this
group [31], the same folds were reported for 109 DUFs.
For the remaining 314 cases, we report evolutionary re-
lationships for the first time. There were 377 cases
wherein we made “Confident*” associations with greater
than 95% query coverage. We annotated 181 families as
“Confident”, because the fold with highest incidence was
concurrently associated with the highest query coverage.
902 cases were marked as “No ambiguity” because all
the associations were made with the same fold and the
one with the best coverage (greater than 60%) was re-
ported. We also made fold assignments for the families
which were associated with PDB entries that lacked
SCOP fold annotation. We identified “Confident*” cases
and have compared the template identified by us with
the structure associated in the Pfam repository using
TM-Align [38] and have listed cases with TM-score > 0.5
(Additional file 8: Table S4). The objective of our work
was to make the structure assignments easily scalable by
using a sequence-driven approach. Structural associa-
tions were made for 1392 families, by considering 36908
representative seed sequences. If one were to consider
the sequences representing the 90% non-redundant set
of Pfam families [39], the number of sequences for
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which we are able to extend structure assignments
escalates to 725696, providing further resolve to our
approach.

Evaluation of families in Pfam 31 with structure and fold
annotation available

When our work was completed a new Pfam version
(Pfam 31) was released. Pfam 31 has fold associated for
part or full-length of 20 families included in our applica-
tion set. To verify if the fold annotation that is presently
available for 20 families agreed with our results, we com-
pared the associated folds with those reported by our ap-
proach. For 18 families a consensus was observed, while
for two cases, our assignments differed. We examined
the results and found that the correct folds were re-
ported as hits for the two families in the jackhmmer
searches as well. However, they were not ultimately re-
ported in our study, as they do not correspond to the
highest normalized fold frequency. The details of the as-
sociations are provided in Additional file 9: Table S5.

Conclusions

The gold standards for structural annotation and bio-
chemical characterization are protein crystallography,
NMR, Cryo-EM and laboratory biochemical studies,
however, they are time consuming [9]. Consequently, a
significant number of structure un-annotated sequences
are available in sequence databases. Though high se-
quence identity between sequences is a strong correlate
for homology implying similar structure and function,
members of a structural fold can often share very low
sequence similarity [40—42]. Hence, one can expect that
a sequence may adopt the same structural fold as a dis-
tant structural neighbor. As structure drives the function
[43], the ability to assign a tentative structural fold to a
protein family as a structural approximate makes func-
tional annotation a realistic goal for the families of yet
unknown function.

In this work, we report folds for 1392 protein families
of unknown structure. In our approach we have com-
bined the strength of an iterative HMM-based search
method [24] and a sequence database enriched with
computationally designed ‘linker’ sequences. Such linker
sequences are poised to function as connectors between
protein sequences in families that have undergone large
sequence divergence. Especially, they are observed to
link and detect remote protein relationships when nat-
ural linkers between such proteins are unavailable. In re-
cent years, several refined and rigorous search methods
have been made available to recognize such relationships
and indeed they are becoming increasingly powerful.
However, they all rely on the ability to detect natural
linkers from which they derive the first principles and
fingerprints to power their search towards the correct
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and appropriate structure/function association for a
query protein. When there is a paucity of such natural
linkers, these search methods face severe limitations.
Our approach to design protein sequences fills this gap
by using the sequence properties of more than one pro-
tein family in a fold to design artificial linkers. Such arti-
ficial linkers when plugged into commonly employed
search databases reduce the gaps between distant pro-
teins. Indeed, our attempts to associate protein folds to
protein families of yet unknown structure is a step in
this direction. Comparisons with available search
methods such as SUPERFAMILY were able to associate
the same fold, as in our assignments for only 292 protein
queries. No assignments could be made by SUPERFAM-
ILY for the remaining queries.

The assignment of a fold to a protein query sequence
is only a start point for its function annotation since it is
well known that there are promiscuous folds, such as
the TIM fold that are associated with several functions,
and likewise there are functions such as DNA-binding
that are associated with more than one fold. Fold assign-
ment, however, enables us to evaluate this in the light of
function of known members of the fold. It must be
noted that if a novel function, hitherto unreported for
the fold, is performed by the protein query/ family in the
study, it may not be discovered through an assessment
such as ours. We believe that the families for which we
assign structures may function as a nodal point in guid-
ing focused experimental efforts. The driving force of
our study was to elucidate an entirely sequence-
dependent approach for structural recognition by filling
the gaps in sequence space. While this has been possible
for a large number of families in our dataset, confident
associations could not be made for 284 families which
were associated with multiple structural domains. Spe-
cifically, for Pfam families associated with multiple struc-
tural domains, a target coverage greater than 90% could
be given precedence over the 60% query length coverage
criteria to overcome this limitation. Also, an enhanced
search space, in conjunction with other methods can im-
prove the confidence of such assignments leading to
breakthroughs in computational structural genomics.

Reviewers’ comments
Reviewer’s report 1
Oliviero Carugo, University of Vienna

Reviewer comments

The manuscript submitted by Srinivasan et al. describes
an empirical computational procedure to recognize the
fold of a protein based on (i) its sequence, (ii) the se-
quences of some homologous proteins, and (iii) simu-
lated sequence information. A conservative use of
jackhmmer is done and several heuristic filters based on
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coverage and similarity are introduced to limit the emer-
gence of false positives. It is also interesting the careful
use of the Clans. The manuscript is certainly interesting
and deserves publication though some modifications
seem to be needed.

I have two main questions.

(1a) On the one hand, no comparison is made with
other techniques, while this would enrich considerably
the manuscript.

Author’s response: We thank the reviewer for his posi-
tive comments and support for the manuscript. Reviewer
2 and 3 have also suggested that we compare the results
we obtained with the results of another search method.
In response, we have queried sequences from 1392 PFAM
families, which are listed in Additional file 7: Table S3,
against the SUPERFAMILY database. Interestingly, we
obtain associations using SUPERFAMILY only for 292
queries. For the remaining 1100 queries we did not get
any hits in searches in the SUPERFAMILY. Among the
292 hits, we have agreement in the fold assignment for
265 queries. For 27 cases where there is a disagreement,
to resolve these conflicting cases requires more in-depth
analysis which we intend to pursue later since it is be-
yond the scope of the current study. Details of these re-
sults are included in the Additional file 7: Table S3 as a
separate column wherein agreement is marked as “fold
match’.

However, it must be noted that the main purpose of
using the designed sequences is to empower search algo-
rithms in a method-independent manner. The improved
sensitivity that we observe for the 1392 queries in our
database that includes designed sequences when com-
pared with SUPERFAMILY, as shown in this analysis,
reaffirms this. In this project we chose to include the de-
signed sequences in a database of SCOP sequences and
their closely-related homologues. This database was
searched using jackhmmer. In principle, the designed se-
quences may be included in any database of natural pro-
tein sequences and any homologue search method could
be employed. In that sense, our protocol is method-
independent.

(1b) Another interesting question: is the performance
of the computational procedure described in this manu-
script different on various types of folds (different num-
ber of amino acids, different amino acid composition,
different secondary structure based class, etc.)? Some
additional modifications seem to be necessary to im-
prove the quality of the manuscript.

Author’s response: Revised manuscript includes a new
file (Additional file 3: Figure S2), which shows the per-
formance of the search method on various types of pa-
rameters suggested by the reviewer (different number of
amino acids, different amino acid composition, different
secondary structure based class, etc.). Almost all the
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protein families in our dataset belong to globular folds
and, therefore, LCR (Low complexity regions) containing
sequences are excluded. However, we assessed our pa-
rameters on structure repeats, which might have some
peculiarities in amino acid composition which we have
included in the supplementary information.

In summary, we find that sensitivity is the only param-
eter with dependence on the query length, while the per-
formance of the method is independent with respect to
all the other parameters assessed here. Also, we observe
that sensitivity of the search protocol is in general com-
parable for the protein queries from various classes ex-
cept the a/f class to an extent. For peculiarities owing to
amino acid compositions, we have identified protein folds
that are known to contain structural repeats in our as-
sessment dataset and examined the performance of our
fold assignments for such cases with respect to other pro-
tein folds. We find that the values of assessment parame-
ters are quite similar between folds with repeats and
other folds. We have provided this information in the
supplementary section in Additional file 3: Figure S2 and
in the main manuscript on Page number 12.

(2a) Despite the presence of a list of abbreviations, the
manuscript becomes much more readable if the abbrevi-
ation is described where it is encountered for the first
time. For example, in line 77, “PSSM” should become
“PSSM (Position Specific Scoring Metrix)” and “(Position
Specific Scoring Matrix” should be removed in line 83.
Also, in line 95, “DUF” should become “DUF (Domain
of Unknown Function)”, etc.

Author’s response: We thank the reviewer for drawing
our attention to this point and have now corrected it by
expanding the first instance of the abbreviations in the
manuscript.

(2b) I think that I understood what is written from line
121 to line 130. However, I am not sure and I needed
some imagination to guess the meaning of this para-
graph. I strongly encourage the Authors to rewrite is en-
tirely to make it really understandable. I also note that
Fig. 1 does not help much.

Author’s response: We thank the reviewer for his sug-
gestion to revise this section and have now rewritten
these lines to improve its readability by including a more
detailed description of how folds have been associated
with PFAM families in our assessment dataset. We have
also modified Fig. 1 accordingly to explain the workflow
better.

(2¢) 1 agree with the definitions of sensitivity, specifi-
city and precision, and correctly the Authors define
them explicitly, since there is some nomenclature confu-
sion about them. Note, for example, that the specificity
is sometime defined, alternatively, as TP/(TP + FP) (Eid-
hammer, Jonassen, Taylor, Protein Biochemistry, Wiley,
2004). I would suggest the Authors to use also the
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Matthews correlation coefficient (Mcc), which is prob-
ably the most robust figure of merit in this family of fig-
ures based on the confusion matrix.

Author’s response: We have now extended the assess-
ments to include the MCC metric to assess the perform-
ance of the designed sequences in detecting distant
relationships, in addition to sensitivity, specificity and
precision that we had earlier provided. Here, we would
like to draw the attention of the reviewer and the readers
that the MCC value is predominantly high (median ~ 0.
92) for the queries analyzed, suggesting a uniformly high
accuracy in distinguishing the true positives from the
false positives at the search criteria employed. As sug-
gested by the reviewer in the subsequent point, we have
now included the figure pertaining to this in the main
manuscript (Fig. 2).

(2d) I also suggest to include most of the supplemen-
tary material in the main text, especially tables of sensi-
tivity, specificity and precision etc.

Author’s response: We thank the reviewer for suggest-
ing that we present the results of our assessment in the
main manuscript. We have included a figure (Fig. 2) in
the main manuscript which shows box plots and histo-
grams for assessment parameters.

Reviewer’s report 2
Christine Orengo, University College London

Reviewer comments

The authors describe a method for assigning protein
structures to structurally uncharacterized families in the
Pfam database. This exploits HMM based strategies for
scanning a dataset of sequences, comprising some de-
signed sequences to increase the ability to explore more
of sequence space. They report a compelling level of
success using a benchmark of structurally characterized
Pfam familes. They also provide predicted structural an-
notations for 1392 Pfam families of unknown structure.
This is an interesting idea and the results are impressive.
Sensible strategies have been employed in the protocol
developed by the authors eg selecting the fold predicted
with highest normalized frequency. I think the article
would benefit from some more clarity in places. For ex-
ample, the methods could be more clearly described in
places. It would help to have a summary of how the de-
signed sequences are generated ie it shouldn’t be neces-
sary to read another paper to understand this or the
composition of the search database.

Author’s response: We thank the reviewer for her posi-
tive comments and observations on the manuscript. As
suggested by the reviewer, in order to improve the clarity
of the manuscript in the sections pertaining to the
methods employed to design sequences (Mudgal et al., ]
Mol Biol. 2014 Feb 20;426(4):962-79), we have now

Page 9 of 13

included details of the sequence design procedure in the
Methods section in the sub-section titled “Directed se-
quence design and search database”.

1. It would be helpful to know what proportion of se-
quences in the search database are designed sequences.

Author’s response: Of the total 8305931 sequences in
the search database SCOP(v1.75)-NrichD, 3611010(~
44%) are sequences that were designed between 374
SCOP folds. We have now also included this detail in the
manuscript in a sub-section in the Methods section titled
“Search method: evaluation and assessment”.

2. It would be good to see some results on how well
the protocol works without designed sequences in the
search database. In their previous work the authors link
superfamilies within fold groups and show the value in
using designed sequences to increase detection of very
remote homologues. However, in this current work they
are trying to do something less challenging since Pfam
does not aim to recognize very remote homologues, as
in SCOP, so some assignments are possibly not very re-
mote homologues and could possibly be obtained using
HMM-HMM strategies ie as in HHsearch without de-
signed sequences.

Author’s response: As rightly pointed by the reviewer,
Pfam does not aim to recognize very remote homologues,
as in the SCOP database. Therefore, for many proteins
that undergo extensive sequence divergence, their inabil-
ity to find relationships with proteins of known function
remains a limiting step in their effective annotation. For
all the families for which we propose a new evolutionary
relationship in this work, through the searches in a data-
base augmented with designed sequences SCOP(v1.75)-
NrichD, we performed searches in the SCOP(v1.75)-DB
that contains 4694921 sequences of sequences of known
structures from SCOP and their sequence homologues
from UniProt. This database is also available in the
NrichD database resource. For 70 queries, we were un-
able to make any connections when we searched in the
database of natural sequences that was devoid of de-
signed sequences. For such queries, searches in the aug-
mented database, which includes artificial sequences,
were more rewarding, offering clues to their potential
fold, through the use of designed intermediates.

As mentioned in our earlier publication (JMB, NAR),
the senmsitivity for searches made in the SCOP-NrichD
database is significantly more than searches made in the
SCOP-DB. However, sometimes due to profile drifting,
few important hits can be missed out. Therefore, as sug-
gested in our prior publication, both the databases may
be queried to provide the results as a union of both
searches.

The main point of our present work is to propose evolu-
tionary relationships for 1392 families of unknown struc-
ture for the first time.
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3. Therefore, it would also be good to see some bench-
marking against other approaches assigning structural
annotations to Pfam sequences — For example if the au-
thors simply search InterPro or SUPERFAMILY using
the representative Pfam sequences how often would they
obtain hits providing structural annotations for the fam-
ilies ie using HMM based scans in InterPro.

Author’s response: We thank the reviewer for raising
this point. Reviewer 1 and 3 have also suggested that we
compare our results with the results of other search
methods. In response, we have queried for sequences from
1392 PFAM families, which are listed in Additional file 7:
Table S3, against the SUPERFAMILY. Interestingly, we
obtain associations only for 292 queries. For the
remaining 1100 queries we did not get any hits in the
SUPERFAMILY searches. Among the 292 hits, we have
agreement in the fold assignment for 265 queries. For 27
cases where there is a disagreement, to resolve these con-
flicting cases requires more in-depth analysis which we
intend to pursue later since it is beyond the scope of the
current study. Details of these results are included in the
Additional file 7: Table S3. Hits obtained in Superfamily
searches are indicated as “fold match” where they agree
with the associations also made in our searches. We have
also mentioned this in the Conclusion section.

4. For the 423 DUFs for which they assign putative
folds — were any of these DUFs allocated folds in the
work of Mudgal et al. and if so do the fold assignments
agree with those author’s predictions?

Author’s response: Of the 423 DUFs with fold associ-
ation made in the current work, 109 associations overlap
with the folds allocated in the work of Mudgal et al. The
fold assignment for these 109 cases are identical between
the current work and the Mudgal et al. publication. For
the remaining 314 cases, we are reporting evolutionary
relationships for the first time in our present study. This
has been mentioned in the manuscript in the sub-section
“Fold recognition for Pfam families of unknown
structure”.

5. How many different folds are covered by their struc-
ture predictions for Pfam families? ie it would be good
to show the distribution of assignments to the different
folds predicted. In the past you could do better than ran-
dom in predicting folds by opting for TIM barrel or
Rossmann fold! So it would be very interesting to know
if there is still a high probability that uncharacterized se-
quence families adopt one of these two folds since they
do cover a large proportion of sequence space.

Author’s response: We observe the high frequency folds
in our associations are largely the repeat containing
folds. In response to Reviewer 1 we carried out a study to
assess if the sensitivity and specificity measures for folds
containing structural repeats and we do not observe a
significant difference with other folds. Among the other
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high frequency folds, we also see TIM barrel, P-loop con-
taining nucleoside triphosphate hydrolases and ferredoxin-
like to name a few.

6. On that note, how representative of structure space
are the folds in their search database? i.e. what propor-
tion of SCOP families and SCOP structures map to these
folds? 7. In the abstract, the authors mention that fold
assignments for some of the DUFs is a step towards
functional annotation. Perhaps this should be expanded
as some caution is needed. There is no clear correlation
between fold and function. However, knowing the fold
could provide some clues on the location of the active
site in enzymes permitting mutagenesis studies to eluci-
date functional residues.

Author’s response: Our search database is the
SCOP(v1.75)-NrichD database which is, in principle,
an extension of the SCOP database with sequence ho-
mologues from the UniProt database for proteins of
known structures for all the folds in the SCOP data-
base. In addition to this spread of sequences, we have
augmented the database with designed sequences for
as many as 374 folds. Therefore, our database is an
extension of SCOP and all the families and folds rep-
resented in SCOP are represented in their entirety in
our search database as well.

Secondly, we completely agree with the assertion of the
reviewer that gleaning function from fold is non-trivial.
In order to avoid the expectation of function annotation
for the 1392 PFAM families in our study, we have re-
moved mention of it from the Abstract and included
points pertaining to the underlying difficulties in such an
interpretation to the Conclusion section.

Reviewer’s report 3
Srikrishna Subramanian, Institute of Microbial Technology

Reviewer comments
In their manuscript “Use of designed sequences in pro-
tein structure recognition,” Gayatri Kumar et al., de-
scribe a  workflow wherein they computationally
generate novel protein sequences for Pfam families that
are known to share the same fold thereby allowing to
bridge the sequence space between these families transi-
tively. The method to generate these sequences has
already been published earlier by this group, and in this
manuscript, the authors use the extended sequence
space to assign folds with varying degrees of confidence
to Pfam families that currently have no structural repre-
sentatives. Overall, the project is well executed, and de-
tailed results are provided in five supplementary tables. I
don’t have any major comments.

Author’s response: We would like to thank the reviewer
for his positive feedback on our manuscript.
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However, given that this is an exercise in remote hom-
ology prediction, I would have liked to see one-on-one
comparisons to other well-established tools such as
those used routinely in CASP.

Author’s response: We thank the reviewer for raising
this point. Similar question was also raised by Reviewers
1 and 2. In response, we have queried for sequences from
1392 PFAM families, which are listed in Additional file 7:
Table S3, against the SUPERFAMILY. Interestingly, we
obtain associations only for 292 queries. For the
remaining 1100 queries we did not get any hits in the
SUPERFAMILY searches. Among the 292 hits, we have
agreement in the fold assignment for 265 queries. For 27
cases where there is a disagreement, to resolve these con-
flicting cases requires more in-depth analysis which we
intend to pursue later since it is beyond the scope of the
current study. Details of these results are included in the
Additional file 7: Table S3. Hits obtained in SUPERFAM-
ILY searches are indicated as “fold match” where they
agree with the associations also made in our searches.
We have also mentioned this in the Conclusion section.

Also, it would be good to see how the current ap-
proach of sequence fill-in between families of the same
fold compares to the previously described undirected de-
sign approach.

Author’s response: We have analyzed in depth ~110
queries from 11 folds for their ability to pick up homo-
logues through the use of undirected designed sequences
that were described in an earlier publication from us
(Sandhya et al, Mol .Biosystems, 2012). For this, se-
quences were designed for each family in the following
folds- a.118, c.69, c.66, £38, c.10, b.82, b.69, b.82, b.3, a.
25, d.144, through the undirected sequence design pro-
cedure. Select queries from PFAM families that had
made associations with a SCOP fold from our applica-
tion dataset (reported in Additional file 7: Table S3) were
queried in the SCOP(v1.75)-DB with 4694921 se-
quences that was augmented each time with the undir-
ected designed sequences for that fold. Of the 110 queries,
we observed that there are 70 queries that uniquely asso-
ciated with the SCOP fold only when searched in the
SCOP(v1.75)-NrichD database. 28 queries could make
associations when also queried in the SCOP(v1.75)-DB
that was augmented with the corresponding designed se-
quences using the undirected approach. This demon-
strates that the sensitivity of the search improves nearly
three fold on the inclusion of the directed designed se-
quences as compared to the undirected designed se-
quences. The design of sequences, purposefully, between
all families within a fold (Mudgal et al., JMB, 2014) was
shown to be an advancement in our attempts to employ
designed sequences as artificial linkers that could facili-
tate homology detection. Therefore, we have performed
the comparative searches using the undirected designed
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sequences based on the reviewer’s suggestions and report
our observations here, but have chosen not to include it
in the current manuscript.

A bit more discussion as to why this method works so
well, it potential caveats, etc. would be desirable.

Author’s response: We thank the reviewer for suggest-
ing changes that would improve appreciation of our ap-
proach and have now included these details in the
Conclusion section of the manuscript.

Also, some insight into why the correct fold assign-
ment is correlated to the highest normalized frequency
would be of interest to the readers.

Author’s response: It is well appreciated that homolo-
gous proteins adopt the same fold even at low sequence
identity. However, sequence dispersion can be high and
limit the ability of sequence search methods to capture
such relationships. We believe that when many queries
are employed to perform a search or when many hits
from the same fold are reported in the search results, the
likelihood of ultimately reporting the correct fold associ-
ation is enhanced. However, due to the inherent sequence
dispersion in protein folds, searches need not be unidirec-
tional and a number of false positives are possible.
Therefore, we expect that a greater number of positive
hits from the correctly related fold are more likely to dir-
ect the association to the correct fold and therefore com-
pute the normalized fold frequency to guide our
associations. We have included these points on the nor-
malized fold frequency also in the manuscript in the sub-
section titled “Revising metrics: Minimizing occurrence
of false positives”.

Additional files

Additional file 1: Table S1. List of Pfam families and the associated
SCOP fold annotations obtained through mapping onto PDB entries.
(XLSX 125 kb)

Additional file 2: Figure S1. The frequency distribution of sequence
query coverage for correct and incorrect fold associations: “Blue”
represents the incorrect and “red” the correct associations respectively.
The median for the distribution of “incorrect” associations corresponds to
30.13% query coverage, represented by the dotted line. 3.18% of the
correct fold associations are to the left of this median value. (PNG 72 kb)

Additional file 3: Figure S2. Performance of our approach as a
function of different parameters: a) Query length — Performance as a
function of the number of amino acids, annotated are the points above
0.8 for: Sensitivity (621%), Specificity (1110%), Precision (1077%) and MCC
(782%). b) Repeat containing folds — Comparative performance of folds in
our assessment dataset containing structural repeats with other folds. c)
Secondary structure based SCOP classes — Performance metrics evaluated
across different secondary structure based SCOP classes “a” through “g",
which are as follows: a (All-a), b (All-B), ¢ (a/f), d (a+p), e (Multi-domain
proteins), f (Membrane and cell surface proteins and peptides) and

g (Small proteins). (PNG 395 kb)

Additional file 4: Table S2. List of Pfam family queries with structural
fold annotation available and validated in the assessment of our
approach. (XLSX 355 kb)
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Additional file 5: Figure S3. The normalized fold frequency of
correct vs. incorrect associations for the assessment dataset: The
preponderance of ‘correct’ associated folds (in green) is observed at
a higher normalized fold frequency than other ‘incorrect’ fold
associations (in red). (PNG 92 kb)

Additional file 6: Figure S4. False vs. True positives for queries in the

a function of a) Query and target coverage. b) Query and target
alignment length (number of residues in the alignment). (PNG 363 kb)

Additional file 7: Table S3. List of structural associations by our
the assignments for queries from 1372 families is given. (20 families for

(XLSX 234 kb)

Additional file 8: Table S4. TM-Align scores for Pfam families with
known structure information but no fold association available in SCOP.
(XLSX 14 kb)

Additional file 9: Table S5. Pfam 31 families now associated with
structural folds and consensus with our application dataset. (XLSX 21 kb)

assessment dataset: The distribution of true positives vs. false positives as

approach: Details of the structural fold associations and the confidence of

which structures are available in Pfam 31 have been moved to Table S5).
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