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Abstract

Background: There are numerous computational tools for taxonomic or functional analysis of microbiome samples,
optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the
user to interactively navigate these large datasets. Long read sequencing technologies continue to improve and
produce increasing numbers of longer reads (of varying lengths in the range of 10k-1M bps, say), but of low quality.
There is an increasing interest in using long reads in microbiome sequencing, and there is a need to adapt short read
tools to long read datasets.

Methods: We describe a new LCA-based algorithm for taxonomic binning, and an interval-tree based algorithm for
functional binning, that are explicitly designed for long reads and assembled contigs. We provide a new interactive
tool for investigating the alignment of long reads against reference sequences. For taxonomic and functional binning,
we propose to use LAST to compare long reads against the NCBI-nr protein reference database so as to obtain
frame-shift aware alignments, and then to process the results using our new methods.

Results: All presented methods are implemented in the open source edition of MEGAN, and we refer to this new
extension as MEGAN-LR (MEGAN long read). We evaluate the LAST+MEGAN-LR approach in a simulation study, and
on a number of mock community datasets consisting of Nanopore reads, PacBio reads and assembled PacBio reads.
We also illustrate the practical application on a Nanopore dataset that we sequenced from an anammox bio-rector
community.
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Conclusion: This work extends the applicability of the widely-used metagenomic analysis software MEGAN to long
reads. Our study suggests that the presented LAST+MEGAN-LR pipeline is sufficiently fast and accurate.
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Background
There are numerous computational tools for taxonomic
or functional binning or profiling of microbiome samples,
optimized to run on hundreds of millions of short, high
quality sequencing reads [1–4]. Alignment-based taxo-
nomic binning of reads is often performed using the naïve
LCA algorithm [5], because it is fast and its results are easy
to interpret. Functional binning of reads usually involves a
best-hit strategy to assign reads to functional classes.
Software or websites for analyzing microbiome shotgun

sequencing samples usually provide some level of interac-
tivity, such as MG-RAST [2]. The interactive microbiome
analysis tool MEGAN, which was first used in 2006 [6], is
explicitly designed to enable users to interactively explore
large numbers of microbiome samples containing hun-
dreds of millions of short reads [1].
Illumina HiSeq andMiSeq sequencers allow researchers

to generate sequencing data on a huge scale, so as to ana-
lyze many samples at a great sequencing depth [7–9]. A
wide range of questions, in particular involving the pres-
ence or absence of particular organisms or genes in a
sample, can be answered using such data. However, there
are interesting problems that are not easily resolved using
short reads. For example, it is often very difficult to deter-
mine whether two genes that are detected in the same
microbiome sample also belong to the same genome, even
if they are located close to each other in the genome,
despite the use of metagenomic assembly in combination
with contig binning techniques and paired-end reads [10].
Current long read sequencing technologies, such as pro-

vided by Oxford Nanopore Technologies (ONT) or Pacific
Biosciences (PacBio), produce smaller numbers (in the
range of hundreds of thousands) of longer reads (of vary-
ing lengths in the range of 10 kb – 300 kb, say) of lower
quality (error rates around 10%) [11, 12]. There is increas-
ing interest in using long reads in microbiome sequencing
and there is a need to adapt short read tools to long read
datasets. There are a number of tools that are applica-
ble to long reads, such as WIMP [13], Centrifuge [14] or
Kaiju [15]. While the two former are based on comparing
against DNA references, the latter can also use a protein
reference database.
In this paper, we focus on protein-alignment-based

approaches. One reason for this is that existing DNA
reference databases cover only a small fraction of the
genome sequences believed to be present in the envi-
ronment [16], although much work has been done on
sequencing human-associated microbes [17]. This prob-
lem can be ameliorated, to a degree, by using protein
alignments, because amino acid sequences are more con-
served than DNA sequences. Moreover, work on bac-
terial pangenomes suggest that the association between
species level taxonomic assignment and coding gene con-
tent can be weak [18]. Finally, questions going beyond

taxonomic profiling and correlation studies will usually
require knowledge of the functional content.
Here we present a new classification pipeline for

taxonomic and functional analysis of long reads and
contigs, based on protein alignments. The pipeline,
LAST+MEGAN-LR, consists of first running the align-
ment tool LAST and then processing the resulting DNA-
to-protein alignments using new algorithms provided in
MEGAN-LR. We perform a simulation study to evalu-
ate the performance of the method in the context of the
taxonomic assignment and compare it with Kaiju, one
of the few other tools that use protein references. We
also investigate the performance of the pipeline using
mock-community datasets and illustrate its application
on Nanopore reads sequenced from an anammox enrich-
ment bio-rector.

Methods
Long read taxonomic binning
The naïve LCA (lowest common ancestor) algorithm is
widely used for binning short reads onto the nodes of
a given taxonomy (such as the NCBI taxonomy), based
on alignments [5]. Consider a read r that has significant
alignments a1, . . . , ak to reference sequences associated
with taxa t1, . . . , tk . The naïve LCA assigns r to the low-
est taxonomic node that lies above the set of all nodes
representing t1, . . . , tk . The set of significant alignments
is defined to consist of those alignments whose score lies
close to the best score achieved for the given read, defined,
say, as those that have a bit score that lies within 10% of
the best bit score.
The naïve LCA algorithm is fast, easy to implement and

the results are easy to interpret. When applied to pro-
tein alignments, an implicit assumption of the algorithm
is that any read aligns to only one gene and so all associ-
ated taxa are “competing” for the same gene; this justifies
the above definition of significant alignments.While reads
that are only a few hundred base pairs long usually ful-
fill this assumption, longer reads or assembled contigs
often overlap with more than one gene and so the naïve
algorithm is not suitable for them.
To make the naïve algorithm applicable to protein align-

ments on a long read or contig r, a simple idea is to
first determine “conserved genes” as regions along the
read where alignments accumulate. The second step is
to apply the naïve LCA to each of these regions indi-
vidually. The placement of the read is finally determined
using the LCA of all these gene-based LCAs. There are
two problems here. First, because protein alignments
around the same location can have quite different lengths,
delineating different “conserved genes” can be difficult
in practice. Second, because a large proportion of genes
on a long read or contig may be conserved to different
extents across different taxonomic groups, the placement
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of the read will often be to a high-level (or “unspecific”)
taxon.
To address these issues, we present a new taxonomic

binning for long reads that we call the interval-union LCA
algorithm. This algorithm processes each read r in turn, in
two steps. First, the read is partitioned into a set of inter-
vals v1, . . . , vm that have the property that every alignment
associated with r starts and ends at the beginning or end
of some interval, respectively. In other words, a new inter-
val starts wherever some alignment begins or ends.We say
that an alignment ai is significant on an interval vj, if its
bit score lies within 10% (by default) of the best bit score
seen for any alignment that covers vj. In MEGAN-LR this
threshold is referred to as the topPercent parameter.
In the second step, for each taxon t that is associated

with any of the alignments, let I(t) denote the union of
all intervals for which there exists some significant align-
ment ai associated with taxon t. In a post-order traversal,
for each higher-rank taxonomic node s we compute I(s)
as the union of the intervals covered by the children of s.
In result, every node of the taxonomy is labeled by a set of
intervals. Note that, during the computation of the union
of interval sets, we merge any overlapping intervals into a
single interval.
The read r is then placed on the taxon s that has

the property that its set of intervals I(s) covers 80%
(by default) of the total aligned or covered portion of
the read, while none of its children does (see Fig. 1).
In MEGAN-LR this threshold is referred to as the
percentToCover parameter. Note that it is possible
that there are multiple nodes that have this property, in

which case the read is assigned to the LCA of all such
nodes.

Long read functional binning and annotation
Functional binning of short reads is usually performed by
assigning each read to a class in a functional classification
system such as InterPro [19], eggNOG [20] or KEGG [21],
based on its alignments.
This is often done using a simple best-hit strategy, as fol-

lows. For a short read r, let a denote the highest-scoring
alignment of r to a reference protein for which the func-
tional class c is known. Assign r to the functional class c.
For example, cmight be an InterPro family or an eggNOG
cluster. In short read analysis, each read is assigned to
at most one class in any given functional classification.
Many reads remain unclassified because all the reference
proteins that they align to are unclassified.
A long read may contain multiple genes, and for each

gene, there may be many alignments involving differ-
ent taxa. To avoid redundancy in functional assignments
when processing alignments between the long read and
different taxa, we consider the “dominance” of individual
alignments (as defined below).
Let r be a long read and let a1, . . . , ak be a set of DNA-to-

protein alignments from r to a suitable protein reference
sequences. Note that this set will often include alignments
between the read and the same homologue in different
taxa.
To reduce the number of redundant functional classes

associated with r, we introduce the following concept. We
say that an alignment ai dominates an alignment aj, if (1)

Fig. 1 To illustrate the interval-union LCA algorithm, here we show eight hypothetical species A, B, . . . ,H separated into two genera, P and Q,
belonging to the same family R. Alignments from the read r to proteins associated with the species are indicated by arrows on the right and cover
between 80% (for A) and 20% (for H) of the aligned read. Using arrows, on the left we depict the sets of intervals computed for nodes P,Q, R as the
union of the sets of intervals of the children of each node. Nodes R and P each cover 100% of the aligned read. The read r is placed on A as it is the
lowest taxonomic node with ≥80% coverage. Note that, if A only covered 60% of the aligned read, then the read would be assigned to the higher
taxon P (and this would remain the case even if one of the taxa below Q had 60% coverage)
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ai covers more than 50% of the read that is covered by
aj, (2) if the bit score of ai is greater than that of aj, and
(3) both alignments lie on the same strand of r. Option-
ally, one might also require that the taxonomic identity
of each protein reference sequence under consideration is
compatible with the taxonomic bin assigned to the read r.
The set of functional classes associated with a long

read r is then given by the functional classes associated
with those alignments of r that are not dominated by
some other alignment of r. Each read can be binned to
all functional classes associated with it. Moreover, the
set of associated classes can be used to provide simple,
functional annotation of the read or contig.
To exploit that latter, we provide a dialog for exporting

taxonomic and functional annotations in GFF3 format.
It can be applied to any selection of taxonomic or func-
tional classification nodes, or to a set of selected reads in
the new long read inspector, which is described in more
detail below. The user chooses a classification, and then
each alignment to a reference sequence associated with
that classification is exported as a CDS item. By default,
only those alignments that are not dominated by another
alignment are exported. In addition, the user can decide
to export only those items for which the taxon associated
with the corresponding reference sequence is compatible
with the taxon assigned to the read.

Reporting counts
In taxonomic or functional binning of short reads, it usu-
ally suffices to report the number of reads assigned to
a specific classification node, because all reads are of a
very similar length and all alignments have much the same
length as the reads. For long reads or contigs, the lengths
and alignment coverage can vary widely. Moreover, the
number of reads contained in a contig, or contig coverage,
is an additional factor to be considered. To address this,
in MEGAN-LR each node can be labeled by one of the
following:

1. the number of reads assigned,
2. the total length of all reads assigned,
3. the total number of aligned bases of all reads

assigned, or
4. in the case of contigs, the total number of reads

contained in all assigned contigs.

For long reads, by default, MEGAN–LR reports (3), the
number of aligned bases, rather than (2), as this down-
weights any long stretches of unaligned sequence. In addi-
tion, we use this value to determine the minimum support
required for a taxon to be reported. By default, a taxon
is only reported if it obtains at least 0.05% of all aligned
bases. In MEGAN-LR, this is called the minSupport
parameter. If the number of aligned bases assigned to a
taxon t does not meet this threshold, then the assigned

bases are pushed up the taxonomy until a taxon is reached
that has enough aligned bases to be reported.

Long read alignment
In this paper, we focus on taxonomic and functional
binning of long reads using DNA-to-protein alignments.
Currently long read sequencing technologies (Oxford
Nanopore and PacBio) exhibit high rates of erroneous
insertions and deletions [11, 12]. Consequently, programs
such as BLASTX [22] are not suitable for such reads as
they cannot handle frame-shifts.
The LAST program [23, 24] uses a frame-shift aware

algorithm to align DNA to proteins and produces long
protein alignments on long reads, even in the pres-
ence of many frame-shifts. Initial indexing of the NCBI–
nr database (containing over 100 million sequences)
by LAST takes over one day on a server. However,
once completed, alignment of reads against the NCBI-
nr database using the index is fast; the alignment of
Nanopore reads takes roughly one hour per gigabase on a
server.
The DIAMOND program [25] is widely used in micro-

biome analysis to compute alignments of short metage-
nomic reads against a protein reference database such as
NCBI–nr. A new frame-shift aware alignment mode is
currently under development and DIAMOND will pro-
vide an alternative to LAST in the future.

Long read analysis
LAST produces output in a simple text–based mul-
tiple alignment format (MAF). For performance rea-
sons, LAST processes all queries and all reference
sequences in batches and alignments associated with a
given query are not reported consecutively, but rather in
batches.
In addition, the size of a MAF file is often very large

and subsequent sorting and parsing of alignments can be
time consuming. To address these issues, we have imple-
mented a new program called “MAF2DAA” that takes
MAF format as input, either as a file or piped directly
from LAST, and produces a DAA (“Diamond alignment
archive”) file as output [25]. The program processes the
input in chunks, first filtering and compressing each
chunk of data on-the-fly, and then interleaving and fil-
tering the results into a single DAA file that contains all
reads with their associated alignments. During filtering,
MAF2DAA removes all alignments that are strongly dom-
inated by some other alignment, to reduce a large number
of redundant alignments.
In more detail, for a given read r, we say that an align-

ment a of r strongly dominates an alignment b for r, if it
covers most of b (by default, we require 90% coverage) and
if its bit score is significantly larger (by default, we require
that 0.9 × bitscore(a) > bitscore(b)).
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A DAA file obtained in this way can then be processed
by MEGAN’s Meganizer program that performs taxo-
nomic and functional binning, and indexing, of all reads
in the DAA file. This program does not produce a new file
but appends the results to the end of the DAA file, and
any such “meganized” DAA file can be directly opened
in MEGAN for interactive analysis. We have modified
MEGAN so that it supports frame-shift containing align-
ments. The final DAA file is usually around ten times
smaller than the MAF file produced by LAST.

Long read visualization
Interactive analysis tools for short read microbiome
sequencing data usually focus on representing the tax-
onomic and functional classifications systems used for
binning or profiling the reads, for example reporting
the number of reads assigned to each class. In addi-
tion, some tools provide a reference-centric visualization
that displays how the reads align against a given refer-
ence sequence. However, visualizations of the short reads
themselves are usually not provided.
For long read or contigs, there is a need for visual-

ization techniques that make it easy to explore the tax-
onomic and functional identity of reference sequences
to which the reads align. To address this, we have
designed and implemented a long read inspector (using
JavaFX) that allows one to investigate all long reads
assigned to a given taxonomic or functional class
(see Fig. 2).

In this tool, each long read or contig r is represented by
a horizontal line and all corresponding aligned reference
sequences are shown as arrows above (forward strand
alignments) or below (reverse strand alignments) the line.
The user can select which annotations to display in the
view. For example, if the user requests Taxonomy and
InterPro annotations, then all reference sequences will be
labeled by the associated taxonomic and InterPro classes.
The user can search for functional attributes in all loaded
reads.
Let a be an arrow representing an alignment of r to

a reference sequence associated with taxon s. We use a
hierarchical coloring scheme to color such arrows. Ini-
tially, we implicitly assign a color index to each taxon, e.g.,
using the hash code of the taxon name. For each arrow a
with associated reference taxon s we distinguish between
three different cases. First, if s = t, then we use the color
assigned to t to color a. Second, if s is a descendant of t,
then t has a unique child u that lies on the path from t
down to s and we use the color of u to color a. Otherwise,
we color a gray to indicate that the taxon associated with
a is either less specific or incompatible with t.
For example, if a read r is assigned to the genus Can-

didatus Brocadia and has an alignment to the strain
Candidatus Brocadia sinica JPN1, then we color the cor-
responding arrow a using the color that represents the
species Candidatus Brocadia sinica.
This is a useful strategy when used in combination with

the taxonomic binning procedure described above: a read

Fig. 2 This screen shot of the MEGAN-LR long read inspector shows three contigs assigned to the genus Candidatus Brocadia, with alignments to
more specific taxa. Alignments to reference protein sequences are shown as arrows, colored by species of the references; blue for Candidatus
Brocadia sinica, brown for Candidatus Brocadia sp. 40 and pink for Candidatus Brocadia fulgida. Alignments are labeled by taxonomic and functional
classes associated with the corresponding reference proteins
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r is binned to the lowest taxon t that covers 80% (by
default) of the aligned read and the taxonomy-based col-
oring makes it easy to see how the different taxonomic
classes below t contribute. For example, if all arrows on
one half of the read have one color and all arrows on the
other half have some other color, then this may indicate a
chimeric read or misassembled contig.
As discussed above, an alternative approach is to export

reads and their alignments in GFF3 format and then to use
a genome browser such as IGB [26] to explore them (see
Fig. 3).

LAST+MEGAN-LR
In summary, we propose to use the following pipeline to
analyze metagenomic long reads and contigs (see Fig. 4):

• Align all reads against a protein reference database
(such as NCBI-nr) using LAST, producing MAF
output.

• Either pipe the output of LAST directly to
MAF2DAA, or apply MAF2DAA to the MAF file
generated by LAST, to obtain a much smaller output
file in DAA format.

• Meganize the DAA file either using the Meganizer
command-line tool or interactively in MEGAN.

• Open the meganized DAA file in MEGAN for
interactive exploration using the long-read inspector.
Export annotated reads in GFF3 format for further
investigation, e.g. using a genome browser such as
IGB [26] or Artemis [27].

Nanopore sequencing
To obtain a Nanopore dataset, we sequenced the genomic
DNA of the Microbial Mock Community B (even, high
concentration, catalog nr. HM-276D, BEI Resources).
Library preparation was performed using a Low Input
by PCR Genomic Sequencing Kit SQK-MAP006 (Oxford

Nanopore Technologies, Oxford, UK) for 2D sequenc-
ing. Briefly, 100 ng of genomic DNA was sheared in a
Covaris g-TUBE (Covaris, Inc., Woburn, MA, USA) at
6000 rpm, treated with PreCR (New England Biolabs,
Ipswich, MA, USA) and used as input for adapter lig-
ation according to the ONT protocol. Adapter-ligated
DNA was further amplified with the LongAmp Taq 2X
Master Mix (NEB) using the following program: 95◦C
3min; 18 cycles of 95◦C 15 sec, 62◦C 15 sec, 65◦C 10min;
65◦C 20min. Sequencing was performed using an early
accessMinION device (ONT) on a FLO-MAP003 flowcell
(ONT). Raw fast5 files were obtained with MinKNOW
(v0.50.2.15, ONT) using a 48 h genomic sequencing proto-
col, basecalled with ONT’s proprietary Metrichor cloud-
based basecalling service and the 2D Basecalling for
SQK-MAP006 v1.34 workflow.
Genomic DNA from the lab scale Anammox enrich-

ment reactor described in Liu et al. [28] was extracted
using the FastDNA SPIN Kit for Soil with 4x homogeniza-
tion on the FastPrep instrument (MP Bio). The DNA was
further purified using Genomic DNA Clean and Concen-
trator -10 Kit (Zymo Research). Approximately 1700 ng of
extracted DNA was used for library preparation using a
Ligation Sequencing Kit SQK-LSK108 (Oxford Nanopore
Technologies, Oxford, UK) for 1D sequencing according
to the manufacturer protocol. Sequencing was performed
using an early access MinION device (ONT) on a SpotON
FLO-MIN106 flowcell (R9.4). The run was stopped after
22 h due to low number of active pores. Fast5 files were
obtained with MinKNOW (v1.3.30, ONT) using a 48 h
genomic sequencing protocol. Basecalling was performed
using Metrichor (Instance ID:135935, 1D Basecalling for
FLO-MIN106 450 bps_RNN (rev.1.121)).

Parameters
TheMEGAN-LR approach employs a number of different
user-specified parameters. The main effect of changing

Fig. 3 Example of long read data exported from MEGAN-LR and imported into the IGB genome browser [26]
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Fig. 4 The LAST+MEGAN-LR pipeline. Long reads or contigs are aligned against the NCBI-nr database using LAST and the resulting MAF file
(multiple alignment format) is converted to DAA format (Diamond alignment format), including filtering of dominated alignments. Taxonomic and
functional binning of the reads or contigs is then performed using the Meganizer program and the results are appended to the DAA file. The
meganized DAA file can then opened and interactively analyzed in MEGAN-LR

any of these is usually a shift in the trade-off between
false positive and false negative taxonomic assignments.
What balance of false positives and false negatives is ideal
depends on the biological question at hand, and so the
parameters may have to be adjusted by the user.
The minSupport parameter (default setting 0.05%)

sets the “level of detection”, that is, it is used to decide
whether a taxonomic node has been assigned enough
weight (such as number of reads or number of aligned
bases, say) so as to appear in the displayed tree. If the
threshold is not met, then the weights are pushed up the
tree until enough weight has been accumulated. Lowering
this threshold will improve sensitivity for low-abundance
species while increasing the risk of false positives induced
by the erroneous assignment of individual reads, i.e.,
due to random hits or database errors. Increasing this
threshold will decrease false positives while causing more
low-abundance taxa to be missed.
The topPercent parameter (default value 10%) is

used to determine which alignments on the same interval
of a read are considered significant. An alignment is only
considered significant if its bitscore lies within the given
percentage of the bitscore for the best alignment. Setting
this threshold too small will result in false positive assign-
ments based on chance differences in alignment score,
whereas setting this threshold too large will result in false
negatives on lower taxonomic ranks due to assignment to
higher taxonomic classes.
The percentToCover parameter (default value 80%)

influences at what rank of the taxonomy a long read will
be placed. Setting this parameter too high or too low will
usually result in less specific assignments.
LAST alignment of long reads against the NCBI-nr

database can produce very large files due to large num-
bers of alignments covering the same segment of reads.
The concept of strong-domination was developed to
address this issue. By default, MEGAN-LR uses a setting
of MinPercentCoverToStronglyDominate = 90%

and TopPercentScoreToStronglyDominate=90%
to filter reads.
When reporting functional classes of intervals of a long

read, a key problem is which alignments to report on. In
practice, using all alignments found for a read produces
too many redundant gene calls. Here MEGAN-LR uses a
parameter MinPercentCoverToDominate = 50% to
filter the alignments that are reported.
In the “Results” section, we illustrate the effect of vary-

ing most of these parameters on the performance of
MEGAN-LR on mock community data.

Simulation study
To evaluate the performance of the proposed
LAST+MEGAN-LR approach and, in particular, of the
interval-union LCA algorithm, we undertook a simu-
lation study to estimate the sensitivity and precision of
the algorithm, following the protocol reported in [15], as
defined below. We attempted to model two major obsta-
cles in metagenomic studies, namely sequencing errors
and the incompleteness of reference databases.
Our simulation study is based on a set P of 4282

prokaryotic genomes from NCBI for which both anno-
tated genomes and annotated sets of proteins are
available, downloaded in March 2017. In addition, we
identified a subset Q of 1151 genomes that consists of
all those organisms in P whose genus contains at least
2 and at most 10 organisms in P, and for which a full
taxonomic classification is given. Note thatQ can be parti-
tioned into nine different categories, based on the number
2 − 10 of organisms in Q that the corresponding genus
contains.
For each target species t in Q, we performed the follow-

ing “leave-one-out” evaluation:

• First, we collected a set of R of 2000 simulated reads
from the genome sequence of t using NanoSim [29],
a read simulator that produces synthetic reads that
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reflect the characteristic base-calling errors of ONT
reads, running in linear mode.

• Second, we constructed a protein reference database
Dt̂ that contained all proteins associated with all
organisms in P except for t (“leave one out”).

• Third, we performed taxonomic binning of all reads
in R using LAST+MEGAN-LR as follows. We first
build a LAST reference index on Dt̂ , then aligned all
reads in R against Dt̂ using LAST, with a frameshift
cost of 15, and then performed taxonomic binning of
all reads in MEGAN using the interval-union LCA
algorithm (default parameters).

• Fourth, for comparison, we also ran the taxonomic
binning program Kaiju[15] on R and Dt̂ , building a
custom Kaiju index on Dt̂ . We performed taxonomic
binning of simulated reads using Kaiju’s greedy mode,
with the maximum number of allowed substitutions
set to 5.

To be precise, we ran each of the four steps twice to pro-
duce two simulation datasets, each containing 2,000 reads
per target species. The first dataset was produced using
the ecoli_R73_2D (R7.3) simulator profile, whereas the
second was produced using the ecoli_R9_2D (R9) profile.
Both profiles were downloaded from the NanoSim FTP
address (http://ftp.bcgsc.ca/supplementary/NanoSim/) in
April 2017. The R7.3 profile introduces more errors in
reads and should make it harder for analysis methods to
identify appropriate reference sequences.
To compare the performance of MEGAN-LR and Kaiju,

we calculated the sensitivity and precision of taxonomic
assignments at the genus, family and order levels. In more
detail, following the approach used in [15], we define sen-
sitivity as the percentage of reads in R that are assigned
either to the correct taxon or to one of its descendants.
We define precision as the percentage of reads that are
assigned correctly, out of all reads that were binned to any
node that is not an ancestor of the correct taxon.

Results
We have implemented the interval-union LCA algorithm
and the modified functional binning algorithm. In addi-
tion, we have implemented a new long read interactive
viewer.We providemethods for exporting long read anno-
tations in GFF3 format. Our code has been integrated into
the open source edition of MEGAN. In addition, we have
modified MEGAN (and all tools bundled with MEGAN)
so as to support DNA-to-protein alignments that contain
frame-shifts.We use the termMEGAN-LR (MEGAN long
read) to refer to this major extension of MEGAN.

Simulation study
The results of our simulation study are shown in Fig. 5,
where we summarize the sensitivity and precision scores

achieved at genus level by LAST+MEGAN-LR and
Kaiju, for both the R7.3 and R9 datasets. In all cases,
LAST+MEGAN-LR shows better sensitivity and precision
than Kaiju. As expected, both methods are less sensi-
tive on the R7.3 data, as many reads remain unclassified.
However, the difference in performance between the two
methods is larger on the R7.3 data, and we suspect that
this is due to the ability of LAST to perform frame-shift
aware alignments and thus to accommodate erroneous
insertions and deletions.
Per-dataset performance analysis of LAST+MEGAN-

LR and Kaiju is presented in Fig. 6. This shows that
LAST+MEGAN-LR outperforms Kajiu on a vast majority
of the simulated datasets, with Kajiu sometimes showing
better performance when the sensitivity or precision is
very low.
Kaiju is many times faster than LAST+MEGAN-LR.

However, the latter approach computes and uses all rele-
vant protein alignments, and these are also used to per-
form functional analysis of the reads or contigs. Hence,
we suggest to use Kaiju to obtain a fast, first taxonomic
profile for a set of long reads or contigs, and then to
use LAST+MEGAN-LR to perform a more accurate and
detailed subsequent analysis.

PacBio reads on HMPmock community
To test LAST+MEGAN-LR on a publicly available
PacBio mock community dataset, we downloaded “HMP
dataset 7” from the PacBio website https://github.com/
PacificBiosciences/DevNet/wiki/Human_Microbiome_
Project_MockB_Shotgun in April 2017. This dataset
contains 319,703 reads of average length 4,681 bp. It was
sequenced using the P5 polymerase and C3 chemistry.
LAST alignment against the NCBI-nr database (down-

loaded January 2017) resulted in protein alignments for
284,728 reads (89% of all reads). MEGAN-LR analysis
using the interval-union LCA algorithm assigned 1054
megabases (Mb) aligned bases to taxonomic nodes. Of
these, 945.3Mb were assigned to bacterial genera, with no
false positives. A total of 758.4Mb of aligned sequences
were assigned to bacterial species, of which 755Mb were
assigned to true positive species (that is, species known to
be contained in the mock-community), whereas approx-
imately 3.4Mb (0.4%) were assigned to false positive
species. The 20 bacterial species in the mock commu-
nity received between 2.8Mb (0.37%) and 145 Mb (19%)
aligned bases assigned at the species level, whereas the
highest false positive species obtained 1.1Mb (0.14%).
Kaiju classified 280,465 of these reads, assigning 128,774

to a species or lower rank node with a true positive rate
of 76.9%. 209,435 reads were assigned to a genus or lower
rank node with a true positive rate of 84.5%.
To investigate the use of LAST+MEGAN-LR on assem-

bled reads, we assembled this set of reads using minimap

http://ftp.bcgsc.ca/supplementary/NanoSim/
https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun
https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun
https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB_Shotgun
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a b

c d

Fig. 5 Violin plots comparing the performance of LAST+MEGAN-LR and Kaiju for two simulation studies, one based on a R7.3 Nanopore chemistry
profile and the other based on a R9 Nanopore chemistry profile. In both cases, we report the sensitivity (percentage of reads assigned to the correct
taxon) and precision (percentage of reads assigned correctly out of all reads not binned to an ancestor of the correct taxon) of taxonomic
assignments. This is done at the genus level for nine different categories of genera (reflecting the number of species in the genus from which the
target species was removed), and for all. Results for the R7.3 profile are shown in a and b, and results for the R9 profile are shown in c and d

(options -Sw5 -L100 -m0 -t8) and miniasm (version 0.2,
default options) [30] and obtained 1130 contigs, with a
mean length of 43,976 and maximum length of 1,272,994.
LAST alignment against the NCBI-nr database resulted
in 41.8Mb of aligned sequences. Of this, 41.1Mb and
38.6Mb, were assigned to bacterial genus and species
nodes, respectively, with no false positives and only one
false negative species.

PacBio reads on Singer et al. mock community
Our analysis of PacBio reads recently published on a
mock-community containing 26 bacterial and archaeal
species [31] gave rise to results of similar quality. Of
53,654 reads of average length 1,041 and maximum length
16,403, exactly 51,577 received LAST alignments against
NCBI-nr. Of 49.5 Mb of aligned sequences, 45.8 Mb were
assigned to prokaryotic genera, with no assignments to
false positive species. The amount of sequence assigned at

the species level was 36.8 Mb, all of which was assigned to
true positive species.
Of the 26 species in the mock community, two are

not reported in the analysis and therefore constitute false
negative species. These make up approximately 0.01%
(Nocardiopsis dassonvillei) and 0.1% (Salmonella bongori)
of the community and are thus on the borderline of detec-
tion using the default settings of MEGAN-LR. By default,
MEGAN-LR requires that a taxon receives at least 0.05%
of all aligned bases before it is reported.
On this data, Kaiju assigned 47,056 reads at the species

level, with a true positive rate of 98.7%.

Nanopore reads on HMPmock community
To perform the first test of our newmethods on Nanopore
data, we sequenced the content of the Genomic DNA
from Microbial Mock Community B, as described in the
“Methods” section. We obtained 124,911 pass reads of
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c d

Fig. 6 Here we plot the sensitivity and precision at genus level for Kaiju versus LAST+MEGAN-LR on the R7.3 samples in a and b, and on the R9
samples in c and d, respectively

average length 2870, including all template-, complement-
and 2D reads.
The LAST alignment against the NCBI-nr database

resulted in protein alignments for 57,026 reads (45.6% of
all reads). MEGAN-LR analysis assigned a total of 110
Mb aligned bases. Of these, 100 Mb were assigned to
bacterial genera, with a false positive assignment rate of
0.1%. Approximately 71.9 Mb of aligned sequences were
assigned at the species level, with a false positive rate
of 0.9%. The 20 bacterial species in the mock commu-
nity received between 0.36 Mb (0.5%) and 12.2 Mb (17%)
aligned bases assigned at the species level, whereas the
highest false positive species obtained 0.21 Mb (0.3%).
Around 66 kb of all aligned sequences (0.05%) were falsely
assigned to Eukaryota.
Kaiju exhibited a higher false positive rate than

LAST+MEGAN-LR on these Nanopore reads, namely
19.8% and 12.6% at the species and genus level, respec-
tively. The program assigned 22,433 reads at the species
level and 39,173 reads at the genus level.

Application to anammox data
To illustrate the utility of our new methods in a research
context, we applied Nanopore sequencing to a sam-
ple obtained from a laboratory bio-reactor enriched for
anaerobic ammonium oxidizing bacteria (AnAOB) [32], as
described in the “Methods” section. We obtained 71,411
reads of average length 4658 and maximum length 30,846.
LAST alignment against the NCBI-nr database resulted

in protein alignments for 64,097 reads (90% of all reads).
MEGAN-LR analysis assigned a total of 212 Mb aligned
bases. Of these, 94 Mb were assigned to bacterial genera
and 112 Mb to bacterial species. The reason why there
are more assignments to species than there are to gen-
era is that some of the species present do not have a
genus designation in the NCBI taxonomy. The top ten
bacterial species assignments are shown in Table 1. This
indicates that the most abundant organism in the sample
is Candidatus Brocadia sinica, a known AnAOB species.
Functional binning in MEGAN-LR allows one to sum-

marize counts at different levels of detail. For example,
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Table 1 The ten top bacterial species identified in a Nanopore
dataset taken from an anammox enrichment bioreactor, by the
number of bases aligned to corresponding reference proteins

Species Aligned (Mb)

Candidatus Brocadia sinica 84.9

Armatimonadetes bacteriumOLB18 8.8

Bacteroidetes bacteriumOLB12 4.8

Rhodocyclaceae bacterium UTPRO2 2.9

Chloroflexi bacteriumOLB13 2.7

Nitrospira sp. OLB3 1.5

Streptomyces sp. SolWspMP-5a-2 1.1

Anaerolineae bacterium UTCFX5 0.6

Pseudorhodoplanes sinuspersici 0.4

For Candidatus Brocadia sinica, this suggests at least ten-fold coverage of the
genome

in Table 2 we list the number of alignments to genes for
the main KEGG categories of metabolism. MEGAN-LR
also makes it possible to investigate function in detail. For
example, the anammox process relies on the extremely
reactive intermediate hydrazine, produced by the enzyme
hydrazine synthase, comprised of the three protein sub-
units HSZ-α, HZS-β andHZS-γ [33]. UsingMEGAN-LR,
we identified eight reads that together contain all three
subunits, see Fig. 7.
To illustrate the use of LAST+MEGAN-LR on assem-

bled reads, we assembled this set of reads using min-
imap (options -Sw5 -L100 -m0 -t8) and miniasm (default
options) [30] and obtained 31 contigs, with a mean length

Table 2 For each of the main KEGG categories of metabolism,
we report the number of alignments against KEGG Orthology
reference sequences for the given category, and the number of
different KEGG Orthology groups (KOs) involved in such
alignments

KEGG metabolism categories # Alignments # KOs

Carbohydrate metabolism 9691 347

Amino acid metabolism 8519 371

Energy metabolism 4909 225

Metabolism of cofactors and vitamins 2826 197

Nucleotide metabolism 2675 124

Lipid metabolism 2564 95

Xenobiotics biodegradation and metabolism 1738 116

Glycan biosynthesis and metabolism 1684 114

Metabolism of other amino acids 1344 73

Metabolism of terpenoids and polyketides 1156 63

Biosynthesis of other secondary metabolites 1076 54

These results are based on a LAST+MEGAN-LR analysis of Nanopore reads from an
anammox enrichment bioreactor

of 129,601 and maximum length of 750,799. LAST align-
ment against the NCBI-nr database resulted in 2.98 Mb
of aligned sequences. The interval-union LCA algorithm
assigned 13 contigs and 96% of all aligned bases to Candi-
datus Brocadia sinica.

Performance
To illustrate the computational resources required by
the LAST+MEGAN-LR approach, we measured the wall-
clock time and memory consumption on the four datasets
discussed above. In addition, we considered a further
unpublished Nanopore dataset obtained from cheese,
consisting of 34 million reads of average length 1460
and maximum length 229,439 (unpublished data pro-
vided by the Dutton Lab, UCSD, during the Santa Barbara
Advanced School of Quantitative Biology 2017). The pro-
grams were run on a Linux server with 32 cores and 512
GB of main memory.
We ran LAST using a volume size setting (parame-

ter -s) of 20 GB (the maximum value), and recorded the
peak memory used by the program. We set the maximum
memory limit of MEGAN to between 5 GB and 10 GB,
depending on the input size. We summarize our mea-
surements in Table 3. The LAST alignment of reads was
performed against the entire NCBI-nr protein database
and the total size of the LAST index was 215 GB. This step
took between a few minutes and a few hours, depending
on the size of the input file. The subsequent two steps of
conversion and meganization took less than half as long
as alignment. By using a smaller LAST volume size, the
whole pipeline can also be run on a computer with 16 GB
main memory, such as a laptop.

Parameters
To investigate the effect of setting particular parame-
ter values, we analyzed the three mock communities
employing a range of different values for minSupport,
topPercent and percentToCover. We used the val-
ues 0, 0.025, 0.05, 0.075 and 0.1 for minSupport; 0, 5, 10
and 20 for topPercent; and 50, 60, 70, 80, 90 and 100 for
percentToCover, respectively. Starting with the DAA
file containing the LAST alignments of the reads against
NBCI-nr, we ran the classification step of the MEGAN-
LR pipeline on all possible combinations of values for the
three parameters, with all other parameters set to their
default values. We turned off the strong-domination filter
for the cases in which topPercent equals 20, because
that filter removes any alignment whose score lies 10%
below that of the best overlapping hit.
For all combinations of parameters, we calculated the

rate of true positives and false positives for the number of
assigned bases at the species and genus ranks, as well as
for the number of assigned bases at any rank above genus.
Figure 8 shows these values for Nanopore reads on HMP
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Fig. 7 Long read inspector showing nine reads in the anammox sample that together contain all three subunits of the hydrazine synthase gene,
labeled hydrazine synthase subunit A, partial, hydrazine synthase subunit B and hydrazine synthase
subunit C

mock community. The figures for PacBio reads on the
HMP and the Singer et al. mock community are available
in the supplementary material. We also decided to omit
the minSupport parameter in the figures as it showed
little to no variability for any value above 0. Turning off
minSupport causes spurious assignments of some reads
(up to 4% at species level).
As depicted in Fig. 8, increasing the percentToCover

parameter improves the specificity of the true positive
assignments (i.e. more reads are binned at lower ranks),
but also increases the rate of false positives.
Using a higher value of the topPercent parameter

results in more alignments being considered by the LCA
algorithm and thus results in a more conservative or less
specific binning of reads.
We would like to emphasize that the datasets tested

for the effects of parameters in this study are mock
communities of species whose proteins are well repre-
sented in the reference database. While Fig. 8 suggests
setting TopPercent to 5% and percentToCover
to 90%, we suggest that in practice both values
should be relaxed slightly, to 10 and 80%, respec-
tively, so as to account for the fact that environmental
microbes are usually not so well represented by reference
sequences.

Discussion
The application of long read sequencing technologies to
microbiome samples promises to provide a much more
informative description of the genetic content of environ-
mental samples. The alignment of long reads against a
protein reference database is a key step in the functional
analysis of such data. Here we show that such protein
alignments can also be used to perform accurate taxo-
nomic binning using the interval-union LCA algorithm.
Our simulation study suggests that LAST+MEGAN-LR

performs taxonomic binning more accurately than Kaiju.
The reported results on mock community datasets indi-
cate a high level of accuracy down to the species level
when the corresponding species are represented in the
protein reference database. In addition, the computed
protein alignments can be used to identify genes and
MEGAN-LR provides a useful visualization of the anno-
tated sequences.
The main motivation for developing these newmethods

is to assist our work on the study of microbial communi-
ties in enrichment bio-rectors, where long read sequenc-
ing promises to provide access to near-complete genome
sequences of the dominating species.
The simple assembly of the anammox data presented in

this paper places the dominant species into 11 contigs of
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Table 3 Performance of the LAST+MEGAN-LR pipeline

Step Input Output Runtime Memory

PacBio reads on HMP mock community

Align Reads file (1.5 GB) MAF file 119min 23GB

Convert MAF file (49 GB) DAA file 29min 5 GB

Classify DAA file (4.2 GB) Meganized DAA file (4.5 GB) 6min 5 GB

PacBio reads on Singer et al. mock community

Align Reads file (56MB) MAF file 10min 22GB

Convert MAF file (8.9 GB) DAA file 5min 5 GB

Classify DAA file (197MB) Meganized DAA file (415MB) 1min 5 GB

Nanopore reads on HMP mock community

Align Reads file (191MB) MAF file 10min 22GB

Convert MAF file (6.1 GB) DAA file 3min 5 GB

Classify DAA file (553MB) Meganized DAA file (644MB) 1min 5 GB

Anammox data

Align Reads file (336MB) MAF file 31min 24GB

Convert MAF file (8.5 GB) DAA file 4min 5 GB

Classify DAA file (371MB) Meganized DAA file (500MB) 2min 5 GB

Cheese data

Align Reads file (5.1 GB) MAF file 251min 24GB

Convert MAF file (93 GB) DAA file 90min 10GB

Classify DAA file (3.1 GB) Meganized DAA file (3.5 GB) 5min 10GB

For each of five long read datasets, we report the wall-clock time and main memory required by LAST to align against the NCBI-nr database, for MEGAN to convert the LAST
MAF output files into DAA format, and then for MEGAN to classify the reads so as to meganize the DAA file, respectively. The computations were performed on a Linux server
with 32 cores and 512GB memory

length greater than 100 kb, containing about 2.8 Mb of
aligned sequence and 3.7 Mb of total sequence. This sug-
gests that a more careful assembly, assisted by a set of high
quality MiSeq reads, should result in a nearly complete
genome.
Our simulation study did not incorporate chimerism or

similar artifacts. Because Kaiju uses a heuristic based on
the longest match found, we suspect that Kaiju will per-
form poorly on chimeric reads or misassembled contigs,
assigning such a read to one of the source taxa. In contrast,
the interval-union LCA algorithm requires by default that
80% of the aligned read is assigned to a taxon and so
in practice, such reads will often be placed on a higher
taxonomic node.
All datasets discussed in this paper are available

here: http://ab.inf.uni-tuebingen.de/software/downloads/
megan-lr.

Conclusions
There is increasing interest in using long reads in micro-
biome sequencing and there is a need to adapt short
read tools to long read datasets. In this paper we present

an extension of the widely-used metagenomic analysis
software MEGAN to long reads. With MEGAN-LR, we
provide new algorithms for taxonomic binning, func-
tional annotation and easy interactive exploration of
metagenomic long reads and contigs, based on DNA-
to-protein alignments. Our work suggests that the pre-
sented LAST+MEGAN-LR pipeline is sufficiently fast and
accurate.

Reviewers’ comments
Reviewer’s report 1: Nicola Segata andMoreno Zolfo
Reviewer’s comments: The authors present here a novel
computational pipeline to address the issue of taxo-
nomical and functional classification of long reads. The
authors correctly underline that long reads from emerging
sequencing technologies are currently a computational
challenge in the field of metagenomics. Indeed, not much
attention has been dedicated to the taxonomic identifica-
tion of long reads, and the author developed an extension
of the previously published MEGAN software, which they
call MEGAN-LR. The pipeline works with long nucleotide
reads which are mapped against a protein database using

http://ab.inf.uni-tuebingen.de/software/downloads/megan-lr
http://ab.inf.uni-tuebingen.de/software/downloads/megan-lr
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Fig. 8 The effect of changing the topPercent and percentToCover parameters for the analysis of the Nanopore HMP mock community.
True positive and false positive rates are reported for each combination of parameters at the levels of species and genus, and for the sum of ranks
above genus. The rate is calculated as the number of correctly assigned bases divided by the total number of bases assigned at the respective
taxonomic level

LAST, it accounts for read that align against more than
one protein, and is frameshift aware. The authors pro-
vide convincing evidences on the accuracy and precision
of MEGAN-LR on synthetic data and mock communities
sequenced ad-hoc. This review was performed by Nicola
Segata and Moreno Zolfo
As summarized in my comments above, I think this is a

well written and clear paper. I do not think there are many
major issues, but there are several points that the authors
should at least consider addressing to improve the paper:

1. It would be useful for the general comprehension of
the frameset in which MEGAN-LR is set, to
understand why the authors decided to focus on
protein-based taxonomic assignment. Most of the
other existing algorithms use nucleotide-based
approaches. I would suggest to add a paragraph
exploring the advantages and disadvantages of the
two approaches.
Author’s response:We have added a paragraph
discussing this to the Background section.

2. The default threshold to report the presence for a
taxon is set to 0.05% of the total aligning bases. Since
the overall performance of the algorithm could be
dramatically affected by this parameter, it would be
nice to see how the precision and specificity of
MEGAN- LR vary when changing the threshold.
Also, I think that the authors should clarify on how

this threshold was chosen as default: was it the result
of a parameter- optimization of some sort?
Author’s response:We have added a section on
“Parameters” to Methods.

3. Similarly, one could test the impact of the threshold
that is used to determine whether a LAST alignment
is strongly dominated by another alignment. Since
this value is set by default to 90%, it would be
interesting to see the behaviour of the mapper at
different thresholds.
Author’s response:We have added a section on
“Parameters” to Methods.

4. The fact that some alignments in the MAF file are
eliminated if they are strongly dominated by another
alignment can affect the correct placement of a read.
How did the authors decide the default thresholds by
which this mechanism is implemented in
MEGAN-LR?
Author’s response:We have added a section on
“Parameters” to Methods.

5. Overall, a precise estimate on the memory and CPU
requirements of MEGAN-LR is not provided. I think
this point should be reported more clearly, by
providing the computational resources used by
MEGAN-LR in the analysis. Specifically, I think it
would be useful to report how much CPU time and
memory were required in each of the validations step.
Moreover, it would be also useful to have an estimate
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on the order of magnitude of time required to analyse
a whole average PacBio/Nanopore metagenome.
Author’s response:We have added a section on
“Performance” to Results.

6. Figure 5, the performances of Kaiju and
LAST+MEGAN-LR are binned by the number of
species in the genus. It would be interesting to see in
the same box plot also the summed (i.e. overall)
distributions for each subplot.
Author’s response: To each subplot, we have added
a category that summarizes all datasets.

7. The comparison between Kaiju and MEGAN-LR is
performed only on the simulated dataset. I would
suggest to run Kaiju also on the PacBio and
Nanopore reads from the mock communities, if the
genomes of the species present in the communities
are available and well annotated. This should provide
further support to the higher specificity and
precision of MEGAN-LR.
Author’s response:We have added true positive and
false positive rates of Kaiju’s assignments for mock
communities against NCBI-nr to their respective
sections.

8. Another computational tool that is addressing the
problem of long-reads mapping is MinHash (Jain
et al., https://doi.org/10.1101/103812). It is
understandable that the validation was conducted
only on Kaiju (as it is the only tool using
protein-alignments). Nevertheless, it would be
interesting to see the other approaches compared.
Author’s response: A comparison against
DNA-based analysis approaches is beyond the scope
of this paper.

9. There is no much on the task of “functional
classification” in the “Results” section. Estimating the
functional potential of a microbiome is an important
task, and it would be very nice if the authors provide
some details, validation, and application on real data
for this. ror example could the authors provide some
comments on the functional landscape detectable
with MEGAN-LR of the anammox dataset?
Author’s response:We have added a high-level
summary genes assigned to KEGG metabolic
categories and also a detailed inspection of the key
hydrazine syntase subunits for the anammox sample.

Reviewer’s report 2: Pete James Lockhart
Reviewer’s comments: The manuscript by Huson et al.
describes and evaluates a novel approach for analyzing
long sequence reads and these to taxa and functional cat-
egories. The approach will be welcomed by biologists as
it provides objective criteria and an interactive means
to evaluate the taxonomic identity of species in metage-
nomics samples.

Identify genome functional characteristics. The latter
will include e.g. virulence and pathogenicity, and pro-
vides a means e.g. for assessing health risk posed by
micro- organisms in metagenomics samples. I have indi-
cated some minor points of communication that should
be considered.

1. Also a number of default thresholds are indicated for
different stages of analysis, e.g. 80% threshold for the
LCA assignment, 50% for the alignment dominance
criterion, 0.05% for MEGAN-LR reporting. It would
help potential users to have more insight into the
thinking behind these values , and whether or not
additional threshold values should be considered.
Author’s response:We have added a section on
“Parameters” to Methods.

Reviewer’s report 3: Serghei Mangul
Reviewer’s comments:

1. The authors propose protein based alignment. Is
there an advantage to use protein-based alignment
versus nucleotide-based alignment?
Author’s response:We have added a paragraph
discussing this to the Background section.

2. The nucleotide- based methods (for example
Centrifuge) have been excluded from the
comparison. Including those methods (by using the
comparable database with nucleotide sequences ) can
be valuable. Also, this will provide a general
comparison of nucleotide-based versus protein based
performance of metagenomic tools.
Author’s response:While we agree that such a
comparison would be useful, such a comparison
against DNA-based analysis approaches is beyond
the scope of this paper.

3. p.9, line 46. More information about the leave-one-
out experiment is required. What is the motivation
for the experiment? Does it refer to removing one
reference genome, from which reads were simulated?
Such experiment can quantify, the possibility of
misassignment of reads to the close-related genome,
due to the incompleteness of the reference.
Author’s response: Yes, all genes associate with the
source genome are removed from the reference
database.

4. p.10, line 18. What is the maximum number of
mismatches allowed by MEGAN-LR? The effect of
this parameter on the performance of both
Megan-LR and Kaiju needs to be explored.
Author’s response:While the number of
mismatches is an important parameter for
DNA-DNA alignments, it does not usually play a role
in amino-acid alignments.

https://doi.org/10.1101/103812
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5. p.10. How was the performance on the species level?
Author’s response: Our study follows the one
published in the Kaiju paper and does not allow an
assessment of species-level performance due to its
‘leave one species out” approach.

6. p.10. The paper report sensitivity and precision on
the read level. It would be interesting to know such
performance on different taxa levels. In such, case
sensitivity, for example, would be the percentage of
taxa correctly identified.
Author’s response:We have added supplementary
plots for higher taxonomic levels to the companion
website.

7. p.11. The contribution of LAST algorithms to the
superiority of MEGAN-LR in comparison to other
methods needs to be quantified. One way to do so is
to compare the performance of Kaiju with LAST
instead of current alignment algorithm.
Author’s response: As an aligner, LAST does not
perform taxonomic binning and so a comparison of
Kaiju with LAST without MEGAN-LR is not possible.

8. p.12, line 24. A more extensive analysis is required.
Besides, FN species, it will be interesting to know the
number of TP, FP and general sensitivity and
precision of each taxonomic level.
Author’s response: FN levels are very low for the
mock data. We now report TP and FP in Fig. 8.
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MEGAN-LR: long read extension of the metagenome analysis tool MEGAN
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