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Abstract

Background: A thorough understanding of the ecological and evolutionary mechanisms that drive the phenotypic
evolution of neoplastic cells is a timely and key challenge for the cancer research community. In this respect,
mathematical modelling can complement experimental cancer research by offering alternative means of
understanding the results of in vitro and in vivo experiments, and by allowing for a quick and easy exploration of a
variety of biological scenarios through in silico studies.

Results: To elucidate the roles of phenotypic plasticity and selection pressures in tumour relapse, we present here a
phenotype-structured model of evolutionary dynamics in a cancer cell population which is exposed to the action of a
cytotoxic drug. The analytical tractability of our model allows us to investigate how the phenotype distribution, the
level of phenotypic heterogeneity, and the size of the cell population are shaped by the strength of natural selection,
the rate of random epimutations, the intensity of the competition for limited resources between cells, and the drug
dose in use.

Conclusions: Our analytical results clarify the conditions for the successful adaptation of cancer cells faced with
environmental changes. Furthermore, the results of our analyses demonstrate that the same cell population exposed
to different concentrations of the same cytotoxic drug can take different evolutionary trajectories, which culminate in
the selection of phenotypic variants characterised by different levels of drug tolerance. This suggests that the
response of cancer cells to cytotoxic agents is more complex than a simple binary outcome, i.e., extinction of sensitive
cells and selection of highly resistant cells. Also, our mathematical results formalise the idea that the use of cytotoxic
agents at high doses can act as a double-edged sword by promoting the outgrowth of drug resistant cellular clones.
Overall, our theoretical work offers a formal basis for the development of anti-cancer therapeutic protocols that go
beyond the ‘maximum-tolerated-dose paradigm’, as they may be more effective than traditional protocols at keeping
the size of cancer cell populations under control while avoiding the expansion of drug tolerant clones.
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Background

A growing body of evidence indicates that cancer pro-
gression at the cellular level is, in essence, an evolu-
tionary process [1-6]. During cancer progression, novel
phenotypic variants emerge via heritable changes in gene
expression. Subsequently, phenotypic variants are sub-
ject to natural selection — they survive, reproduce, and
die — under the action of the tumour microenvironment
and anti-cancer agents. The scenario is further compli-
cated by cell-to-cell variability in gene expression, which
gives rise to phenotypic differences between cancer cells
of the same population. This phenotypic heterogeneity is
a dynamic source of therapeutic resistance that needs to
be accounted for when investigating effective anti-cancer
therapeutic protocols [7].

Novel phenotypic variants in cancer cell populations
originate mainly from mutations (i.e., genetic modifi-
cations). However, novel phenotypic variants can also
emerge due to epimutations (i.e., heritable changes in gene
expression that leave the sequence of bases in the DNA
unaltered) [8—12]. For instance, recent experiments using
fluorescent-activated cell sorting have demonstrated that
non-genetic instability mediated by fluctuating protein
levels allows cancer cells to reversibly transition between
different phenotypic states [13-15]. Such non-genetic
source of phenotypic variability has been increasingly
recognised as integral to the development of resistance to
cytotoxic agents in cancer cell populations [16, 17].

Identifying the ecological and evolutionary mechanisms
that drive the phenotypic evolution of neoplastic cell pop-
ulations is, therefore, a timely and key challenge for the
cancer research community. In this regard, mathemati-
cal modelling provides additional tools in the fight against
cancer, and many biologists and clinicians are now look-
ing for a mathematical approach to complement their
research [18-27]. Among others, models arising from
mathematical ecology enable falsification of biological
hypotheses concerning the principles that underpin the
dynamics of neoplastic cell populations, and extrapolation
beyond scenarios analysed by means of in vitro and in vivo
experiments [28].

During the last fifty years, partial differential equations
(PDEs) for populations structured by physiological traits
have been extensively used to achieve a better understand-
ing of a wide range of ecological phenomena [29, 30].
These equations describe population dynamics in terms
of the evolution of population densities across pheno-
typic spaces, and can be derived from individual-based
(IB) models through suitable asymptotic limits [31-33].
However, unlike IB models, which can be explored mainly
through numerical simulations only, PDEs for popula-
tions structured by physiological traits make it possible to
integrate numerical simulations with rigorous analysis, in
order to achieve more robust biological conclusions [34].
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In particular, we have recently shown that phenotype-
structured PDEs constitute a convenient apparatus to
study in silico the dynamics of cancer cell populations. In
more detail, we formulated a PDE model for the coevo-
lution of a population of healthy cells and a population
of cancer cells structured by the level of resistance to a
cytotoxic drug [35]. Further, we extended this model to
consider cell populations structured also by a spatial vari-
able [36]. Most recently, we presented a PDE model of
phenotypic evolution in a cancer cell population struc-
tured by the expression levels of two phenotypic traits,
survival potential and proliferation potential [37]. Overall,
the results of our analyses and numerical simulations pro-
vide a new perspective on the inherent risks of interven-
tional chemotherapy in cancer patients by showing how
the adaption of even nongenetically unstable cell popula-
tions exposed to antiproliferative drugs can be acted upon
by selective forces, which drive the outgrowth of drug
resistant cell clones.

To investigate the roles of phenotype plasticity and
selection pressures in tumour relapse, here we propose a
phenotype-structured PDE model of evolutionary dynam-
ics in a cancer cell population which is exposed to the
action of a cytotoxic drug within an in vitro culture sys-
tem. Our model is informed by a previous conceptual
model [38] and focuses on a cancer cell population struc-
tured by the expression level of a gene which is linked to
both the cellular levels of cytotoxic-drug resistance and
proliferative potential — such as ALDH1, CD44, CD117 or
MDR1 (39, 40]. We characterise the phenotypic state of
each cell by means of a continuous variable related to the
level of expression of this gene, and we allow the cell phe-
notypic state to change in time due to non-genetic insta-
bility, which is mediated by random epimutation events.
The inclusion of a dynamic continuous population struc-
ture and its plasticity makes PDE models a natural frame-
work to study, i silico, the phenotypic evolution of cancer
cells. Note that, in the model presented here, non-genetic
instability is purely random and represented by a constant
rate multiplying a diffusion operator. In more sophisti-
cated models involving metabolism-dependent epigenetic
dynamics, as those advocated in [41], this constant would
be replaced by a suitable function to incorporate the
effects of the cell load in histone demethylases, DNA
methyltransferases, or other epigenetic enzymes, together
with their substrates and coenzymes.

Exploiting the analytical tractability of our model, we
dissect the relative contributions of random epimutations,
natural selection and competition for resources as drivers
of adaptation in cancer cell populations that evolve under
the action of cytotoxic drugs. This analytical work builds
on recent advances in the study of non-local PDEs that
arise in models of population dynamics [33, 42, 43], which
enable us to explore the parameter space of our model
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completely. To illustrate analytical results through numer-
ical simulations, we calibrate our model by means of
existing data from in vitro experiments on the phenotypic
evolution of HL60 leukemic cells exposed to vincristine
[14]. Nonetheless, the results of our analyses are quali-
tatively robust across a wide range of parameter values.
This makes the conclusions presented in our current work
applicable to a broad spectrum of cancer cell lines evolv-
ing under the action of different cytotoxic agents.

Our main findings elucidate how the phenotype dis-
tribution, the level of phenotypic heterogeneity and the
size of cancer cell populations exposed to cytotoxic drugs
are shaped by the strength of natural selection, the rate
of random epimutations, the intensity of the competi-
tion for limited resources between cells, and the drug
dose in use. Moreover, we are able to obtain exact con-
ditions for the successful adaptation of cancer cells, and
we find that whilst phenotypic plasticity may facilitate
adaptation in neoplastic cell populations exposed to cyto-
toxic drugs, frequent fluctuations in protein levels can also
contribute to extinction in the presence of high drug con-
centrations. Finally, our mathematical results provide a
‘proof of concept’ of the hypothesis that the use of cyto-
toxic agents at high doses is a double-edged sword in
the fight against cancer, and offer a formal basis for the
development of therapeutic protocols which effectively
exploit evolutionary mechanisms to improve the efficacy
of cytotoxic therapy.

Methods

We study evolutionary dynamics in a well-mixed popu-
lation of cancer cells that is structured by the expression
level y € R, of a gene which is linked to both the cel-
lular levels of cytotoxic-drug resistance and proliferative
potential. Following Pisco and Huang [38], we assume that
there is a level of expression ¥/’ which endows cells with
the highest level of cytotoxic-drug resistance, and a level
of expression y© <y conferring the highest prolifera-
tive potential when there are no xenobiotic agents. In this
framework, we characterise the phenotypic state of each
cell by means of the variable x € R with

Lo
yH —yL’

so that the state x = 1 corresponds to the highest level

of cytotoxic-drug resistance, while the state x = 0 corre-

sponds to the highest level of proliferative potential in the

absence of xenobiotic agents.

Cells inside the population proliferate or die, compete
for limited resources, and undergo variation in phenotype
due to random epimutation events. Furthermore, a cyto-
toxic drug can be present, which acts by increasing the
death rate of cancer cells. The function n(x, £) > 0 stands
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for the population density, so that the total number of cells
at time ¢ is computed as

o(t) =/ n(x, t) dx, (1)
R

while the average phenotypic state and the related vari-
ance at time ¢ are computed, respectively, as

u(t) = L/ x n(x, t) dx,
p (@) Jr @

1

ol(t) = — f x% n(x, t) dx — p(6)>.
p@®) Jr

In this mathematical framework, the function o2(f)
provides a measure of the level of intrapopulation het-
erogeneity at time ¢. Finally, we introduce the function
¢(t) > 0 to model the concentration of cytotoxic drug
at time £. Throughout the paper, we will mainly focus on
the case of continuous drug infusion, and we will use the
parameter C > 0 to model the constant concentration of
cytotoxic drug inside the system.

PDE model

We describe the evolution of the cell population density
n(x,t) by means of the following phenotype-structured
PDE

on 8%n
a(x! t) = ;3 @(x: t) +R (x7 p(t)r C(t)) n(x, t): (3)
—————

natural selection

non-genetic
instability

which we complete with the boundary conditions

94
n(x,-) — 0 and B—Z(x,-) — Oforallg e N as x| > o0
x
(4)
and the initial condition

n(x,0) € L'NL®(R), n(x,0) > 0a.e.on 2 CR. (5)

In the above equation, 2 is a compact subset of R. Eq. (3)
relies on the assumptions and the modelling strategies
presented in the following subsections.

Mathematical modelling of non-genetic instability

To reduce biological complexity to its essence, we
make the prima facie assumption that random epimuta-
tions yield infinitesimally small phenotypic modifications
[44, 45]. Therefore, we model the effects of non-genetic
instability through a diffusion operator. The diffusion
coefficient 8 > 0 in Eq. (3) stands for the rate of epimu-
tation of cancer cells, which is assumed to be constant, as
mentioned earlier.
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Mathematical modelling of natural selection

Natural selection is driven here by the function
R (x, p(¢), c(t)), which represents the fitness of cancer
cells in the phenotypic state x at the time ¢, given the total
number of cells p(¢) and the concentration of cytotoxic
drug c(t). Throughout this paper, we make use of the
following definition:

R (x, p(2),c(8)) == p(x) — dp(t) — k(x, c(2)). (6)

Definition (6) relies on the idea that a higher total num-
ber of cells corresponds to less available resources; there-
fore, we let cells inside the population die at rate dp(¢),
where the parameter d > 0 models the rate of death due to
intrapopulation competition. The function p(x) stands for
the net proliferation rate of cancer cells in the phenotypic
state x, while the function k(x, ¢(¢)) is the rate of death
caused by the cytotoxic drug. Since the phenotypic state
x = 1 corresponds to the highest level of cytotoxic-drug
resistance, we assume that the function & is strictly convex
with minimum in x = 1. Furthermore, because the death
rate of cancer cells will increase as the concentration of the
cytotoxic drug increases, we assume that k is an increas-
ing function of ¢. On the other hand, to take into account
the fact that the phenotypic state x = 0 corresponds to
the highest level of proliferative potential when there are
no xenobiotic agents (i.e., when ¢(-) = 0), we assume that
p is astrictly concave function with maximum inx = 0. In
this setting, we follow the modelling strategies presented
in [42] and define the functions p and k as:

p@) =y —na?,  k@xc®) =clt) x—1% (7

In the above definitions, the parameter y > 0 corre-
sponds to the maximum fitness of cancer cells, and the
non-linear selection gradient > 0 provides a mea-
sure of the strength of natural selection in the absence of
xenobiotic agents.

Setup of numerical simulations and model parametrisation
We numerically solve the mathematical problem defined
by completing Eq. (3) with boundary conditions (4) and
the following initial condition

N

n(x,0) = n’(x) := Z a; exp [—b(x - xi)z] 1)),
i=1

L
/ n(x) dx < K,
—L

8)

where b and L are positive numbers, a; > 0 are uni-
formly distributed random numbers between 0 and 1, x;
are uniformly distributed random numbers between —L
and L, and K > 0 is the carrying capacity of the popula-
tion. The above definition represents an initial population
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composed of different cellular clones labelled by the index
i = 1,...,N. To perform numerical simulations, we set
N = 20.

Numerical computations are performed in MATLAB.
We select a uniform discretisation consisting of 1200
points on the interval [ —2L,2L] with L = 2 as the com-
putational domain. The method for calculating numerical
solutions is based on a time splitting scheme between
the conservative part and the reaction term [46]. As for
the conservative part, we approximate the diffusion term
through a three-point explicit scheme. On the other hand,
we use an implicit-explicit finite difference scheme for the
reaction term [35]. For all simulations, we set the time step
dt = 1074, in order to ensure the stability of the numerical
scheme.

We set the maximum fitness y = 0.66, so that the dou-
bling time of cells in the highly proliferative state x = 0
is about 25 h (cf data in [47]). Furthermore, the in vitro
experiments presented in [14] on the phenotypic evolu-
tion of HL60 leukemic cells exposed to vincristine have
shown that, in the absence of xenobiotic agents, highly
cytotoxic-drug resistant cells take approximatively 18 days
to accomplish the repopulation of the equilibrium cell
distribution observed without xenobiotic agents. Also,
according to the same experiments, the ratio between the
proliferation rate of the cells with the highest level of
cytotoxic-drug resistance and the proliferation rate of the
cells with the highest proliferative potential is equal to
5. Therefore, we choose the non-linear selection gradient
n and the rate of epimutations 8 to be such that, when
c(-) = 0, it takes approximatively 18 days for an initial
population mainly composed of cells in the phenotypic
state x = 1 to reconstitute the equilibrium phenotypic dis-
tribution corresponding to ¢(-) = 0, with the value of 5
being constrained by the condition p(x = 0) /p(x = 1) =5
(vid. Additional file 1). Moreover, we define the average
rate of death due to intrapopulation competition as d :=
y /K, so that the equilibrium value of the total number
of cells in the absence of xenobiotic agents and without
epimutations (i.e., when ¢(-) = 0 and 8 = 0) is equal
to the carrying capacity K = 108 (cf. Figure S5 in [14]).
Based on these considerations, unless otherwise stated, we
perform numerical simulations using the parameter val-
ues listed in Table 1, which are consistent with previous
reports [14, 47—49]. Finally, the concentration of cytotoxic
drug is expressed in terms of the LC, — i.e., the value of ¢
that is required to reduce the equilibrium value of the total
number of cells by a%.

Results and discussion

Cell dynamics in the absence of xenobiotic agents

As mentioned earlier, in the framework of our model,
the total number of cells p(¢), the average phenotypic
state 1 (¢) and the level of intrapopulation heterogeneity
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Table 1 Values of the parameters used to perform numerical
simulations

Parameter  Biological meaning Value

y Maximum fitness 0.66 per day

n Selection gradient 0.132 per day

d Rate of death due to intrapopulation  0.66 x 1078 per day
competition

B Rate of epimutation 0.01 per day

o%(t) are computed according to Egs. (1)—(2). Then, in
the absence of xenobiotic agents (i.e., when ¢(-) = 0), a
complete characterisation of the cancer cell population at
equilibrium is provided by the following theorem:

Theorem 1 Let c¢(-) = 0, and denote by 7(x) the equilib-
rium population density for c(-) = 0. Then:

() ify — (Bn)'/? <0,
p®) — 0,
(i) ify — (BmY? >0,

as t — oo; )

1
p) > p=>ly =], ast— oo
(10)
and
1/4 1 1/2
Ax) =p % exp |:—2 (g) x2j| , (11)
so that

w(t) — m =0 and oz(t)eazz\/g, as t — o0.
n

(12)

The results established by Theorem 1 are discussed, as
points R1 - R4 below, and illustrated by means of numer-
ical simulations in the following subsections. The proof
is detailed in Appendix 1 — to which we refer the mathe-
matically inclined reader — and it follows from a general
analysis that we have presented in two recent papers
(33, 42].

R1. Higher rates of random epimutations can drive the cancer
cell population to extinction under strong selective pressures

Point (i) of Theorem 1 shows that the total number of
cells p(¢) converges to zero when the value of the product
between the epimutation rate 8 and the non-linear selec-
tion gradient n exceeds the square of the maximum fitness
y. Hence, in the presence of large selection gradients,
high rates of random epimutations increase the proba-
bility of ultimate extinction. This suggests that frequent
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random epimutations can drive cancer cell populations to
extinction under strong selective pressures.

R2. The population evolves to be mainly composed of highly
proliferative cells
Point (ii) of Theorem 1 demonstrates that, for any initial
population density #(x, 0), the equilibrium phenotype dis-
tribution 7(x) is unimodal with the average phenotypic
state & being at the maximum point of the distribution
x = 0, and the total number of cells converges to the
stable positive value p. This holds true for all parameter
settings, on the condition that the maximum fitness y,
the non-linear selection gradient 7 and the rate of random
epimutations g satisfy the relation y — (817)1/% > 0.
These results are illustrated by the plots in Fig. 1, which
present sample dynamics of the population density n(x, t)
and the total number of cells p(t) when ¢(-) = 0, for
the parameter values listed in Table 1. Independently of
the phenotypic composition of the initial population, cells
in the phenotypic state x = 0 (i.e., the phenotypic state
corresponding to the highest level of proliferative poten-
tial in the absence of xenobiotic agents) become the most
abundant within the population [vid. Fig. 1a and inset of
Fig. 1b], and the total number of cells reaches the stable
value p [vid. Fig. 1b].

R3. The number of cells and the level of intrapopulation
heterogeneity at equilibrium depend on the rate of random
epimutations and on the strength of natural selection

Point (ii) of Theorem 1 also sheds some light on the way
the size of the population and the level of phenotypic
diversity are affected by non-genetic instability and nat-
ural selection. This is highlighted by the phase diagrams
in Fig. 2, which show how the total number of cells p
and the level of intrapopulation heterogeneity 52 at equi-
librium vary as a function of the rate of epimutations
B and the non-linear selection gradient 5. In summary,
the total number of cells is a decreasing function of
and 7, while the level of intrapopulation heterogeneity
increases with 8 and decreases with 1. These results for-
malise the idea that more intense non-genetic instability
and stronger selection pressures bring about cancer cell
populations of a smaller size. Also, more frequent pheno-
typic fluctuations lead to higher levels of intrapopulation
heterogeneity, whilst intense selective pressures support
less phenotypic diversity.

R4. The population size at equilibrium depends also on the
maximum fitness and on the rate of cell death due to
intrapopulation competition

The results established by point (ii) of Theorem 1 and
illustrated by the phase diagram in Fig. 3 indicate, as one
could expect, that the total number of cells at equilib-
rium is an increasing function of the maximum fitness
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Fig. 1 In the absence of drug, the population evolves to be mainly composed of highly proliferative cells. Sample dynamics of the population
density n(x, t) (panel @) and the total number of cells p(t) (panel b) in the absence of xenobiotic agents (i.e., when c(-) = 0), for the parameter
values listed in Table 1. The initial condition corresponds to a population composed of different cellular clones [cf. Eq. (8)]. The inset of panel (b)
displays the population density after 20 days [i.e., n(x, 20)], which coincides with the equilibrium population density n(x) of Eq. (11)

(A) (B)
. . 7 . .
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0.2 04 0.6 0.8 1 02 0.4 0.6 0.8 1
rate of epimutations rate of epimutations
Fig. 2 In the absence of drug, the number of cells and the level of intrapopulation heterogeneity at equilibrium depend on the rate of random
epimutations and on the strength of natural selection. Plot of the total number of cells 7 (panel a) and the level of intrapopulation heterogeneity &2
(panel b) associated with the equilibrium phenotypic distribution as a function of the epimutation rate A (in units of 10~2) and the selection
gradient n. The values of the other model parameters are as in Table 1
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Fig. 3 In the absence of drug, the population size at equilibrium depends also on the maximum fitness and on the rate of cell death due to
intrapopulation competition. Plot of the total number of cells at equilibrium » as a function of the rate of death due to intrapopulation competition
d (in units of 1078) and the maximum fitness y. The values of the other model parameters are as in Table 1
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y and a decreasing function of the average rate of death
due to intrapopulation competition d. In the framework
of our model, lower values of the parameter y are asso-
ciated with more hostile environmental conditions, while
higher values of the parameter d correspond to stronger
intrapopulation competition. Therefore, these results for-
malise the idea that cancer cell populations shrink in
the presence of harsh environments and intense cellular
competition for limited resources.

Cell dynamics under the action of cytotoxic drug

The plots in Fig. 4 depict sample dynamics of the pop-
ulation density n(x,t) and the total number of cells p(t)
in the case when the drug concentration c¢(-) = C corre-
sponds to the LC7¢ dose, for the parameter values listed
in Table 1. These plots illustrate how the cytotoxic drug
triggers a population bottleneck by causing a sharp reduc-
tion in the number of cells, followed by approximatively 1
day of relatively constant population level before cells in a
phenotypic state close to x = 1 (i.e., the phenotypic state
corresponding to the highest level of cytotoxic-drug resis-
tance) are selected and start proliferating. Subsequently,
the population size grows again and, ultimately, attains a
stable value.

Although the phenotype distribution and the number of
cells at equilibrium, as well as the time required for the
population to recover, vary depending on the choice of the
drug dose, the dynamics of the population density and the
total number of cells remain qualitatively similar to those
shown in Fig. 4. A complete characterisation of the cancer
cell population at equilibrium is provided by the following
theorem:

Theorem 2 Let c(-) = C > 0, define

nC
Ve =Y — ——

) 13
n+C (13)

ne:=n+¢C,

and denote by n.(x) the equilibrium population density for
c(-) = C. Then:

() ify.— (Bno)Y? <0,

o) = 0, as t — oo; (14)
(ij) jf}’c - (ﬂnc)l/Z >0,
p(t) = P, = 1[)/.c—(ﬁ77c)1/2], as t — oo

d
(15)
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Fig. 4 The cytotoxic drug triggers a population bottleneck. Sample dynamics of the population density n(x, t) (panel @) and the total number of
cells p(t) (panel b) in the case when the drug concentration c(-) = C corresponds to the LCyg dose. The values of the model parameters are as in
Table 1, and the initial condition corresponds to a population composed of different cellular clones [cf. Eq. (8)]. The inset of panel (b) displays the
population density after 40 days [i.e., n(x,40)], which coincides with the equilibrium population density ni¢(x) of Eq. (16)

20
time (days)

and
(%) = P W exp {—; (7;)1/2 e — xC]Z] ,
(16)
with
% = HLC 17)
so that

u(t) - i, = x. and o2(t) > Eg = /E, as t — oo.
Tec
(18)

As explained in Appendix 2, the proof of Theorem 2
follows the method of proof of Theorem 1. Here we pro-
ceed by discussing, as points R5 - R8 below, the pieces of
biological information which are conveyed by the above
mathematical results. Furthermore, in order to extend the
analytical results established by Theorem 2, we perform
numerical simulations letting the drug concentration vary

over time. The obtained results are discussed as points R9
and R10 below.

R5. Higher rates of random epimutations can drive the
population to extinction in the presence of high drug doses
Point (i) of Theorem 2 shows that the total num-
ber of cells p(¢f) converges to zero when the value
of the product between the rate of random epimuta-
tions B and the sum of the non-linear selection gradi-
ent n and the drug concentration C is larger than the
square of the maximum fitness y. This supports the
idea that higher rates of random epimutations increase
the chance that cancer cell populations go extinct when
exposed to sufficiently high concentrations of cytotoxic
agents.

R6. Higher drug doses correspond to lower cell numbers

Point (ii) of Theorem 2 reveals that, if the condition
Ye — (Bno)Y? > 0 is satisfied, the total number of
cells p(t) converges to the stable positive value p,. By
analogy with the case when there is no cytotoxic drug
inside the system, p, increases with the maximum fitness
y, and decreases with the non-linear selection gradi-
ent 7, the rate of epimutations 8, and the rate of cell
death due to intrapopulation competition d. Moreover, as
one could expect, the cytotoxic drug has a detrimental
effect on the population size, and the number of cells at
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equilibrium is a decreasing function of the drug dose C
[vid. Fig. 5].

R7. Higher drug doses promote a selective sweep towards
more resistant phenotypic variants

Point (ii) of Theorem 2 demonstrates that — for all val-
ues of the model parameters satisfying the condition y, >
(Bne)Y/? — the equilibrium phenotype distribution given
by 7. (x) is unimodal with the average phenotypic state 7,
being at the maximum point of the distribution .. Also,
the population density at equilibrium does not depend on
the initial population density. As illustrated by Fig. 6, the
values of X, and 1z, continuously increase from 0 to 1 as
the drug dose increases.

The results established by Point (ii) of Theorem 2 indi-
cate that, during cytotoxic-drug treatment, the surviving
cells can reside within a spectrum of intermediate phe-
notypic states — ranging from less drug resistant states
to more drug tolerant states — depending on the dose
in use. These results indicate that different concentra-
tions of the same cytotoxic drug can lead to the selection
of cancer cells in different phenotypic states. In particu-
lar, while high doses confer a competitive advantage to
highly resistant phenotypic variants, lower concentrations
of cytotoxic drugs promote the selection of intermediate
levels of cytotoxic-drug resistance and proliferative poten-
tial, which may result in an advantageous therapeutic
outcome.

Total number of cells (in units of 107)

10

LC70 LC90

dose of cytotoxic drug

LC30

Fig. 5 Higher drug doses correspond to lower cell numbers. Plot of
the total number of cells at equilibrium 5, as a function of the drug
concentration ¢(-) = C for the parameter values listed in Table 1
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Population density (in units of 107)
10 ‘ ‘

92 -1 0 1 2
phenotypic state
Fig. 6 Higher drug doses promote a selective sweep towards more
resistant phenotypic variants. Profile of the equilibrium population
density nc(x) for different values of the drug dose, i.e., c(-) = 0 (black
line), c(-) = C = LCsp (red line), c(-) = C = LCqq (0range line), and
c(-) = C = LCy (yellow line). The values of the model parameters are
asin Table 1

R8. The level of intrapopulation heterogeneity decreases as
the drug dose increases

As in the case when there is no cytotoxic drug, the level
of intrapopulation heterogeneity at equilibrium &2 is an
increasing function of the rate of random epimutations 3,
and a decreasing function of the non-linear selection gra-
dient 7. Furthermore, as illustrated by Fig. 7, point (ii) of
Theorem 2 reveals that 52 is a decreasing function of the
drug concentration C.

R9. The cancer cell population regains cytotoxic-drug
sensitivity when drug delivery is discontinued

In order to extend the analytical results established by
Theorem 2, we perform numerical simulations letting
the drug concentration vary over time [i.e., we consider
the case in which the drug concentration is modelled
by a function of time c(¢)]. In particular, we explore
the dynamics of the cancer cell population exposed to
a piecewise-continuous periodic delivery of the cyto-
toxic drug. As illustrated by the results presented in the
Additional file 2, our model predicts the selection of cells
in a more resistant phenotypic state in the presence of the
cytotoxic drug, whereas selection is reverted in favour of
drug-sensitive cells when drug delivery is discontinued.
Also, the same results clearly show that administering the
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Intrapopulation heterogeneity

0.14¢ 1

0.12

0.1

0.08

0.06

LC70 LC90

dose of cytotoxic drug

LC30

Fig. 7 The level of intrapopulation heterogeneity decreases as the
drug concentration increases. Plot of the level of intrapopulation
heterogeneity at equilibrium Eg as a function of the drug
concentration ¢(-) = C for the parameter values listed in Table 1

cytotoxic drug in an alternate fashion leads to the emer-
gence of cycling subpopulations of drug-resistant and
drug-sensitive cells.

R10. Comparing the administration of high-drug doses
separated by drug-free periods with the continuous delivery
of relatively low-drug doses

The results established by Theorem 2 demonstrate that
higher doses of cytotoxic drug reduce the size of the
cancer cell population at the cost of promoting the selec-
tion of more resistant phenotypic variants. Therefore, a
natural question arises: how do therapeutic protocols rely-
ing on periodic phases of high-dose delivery separated
by drug-free periods compare to protocols based on the
administration of a continuous and relatively low drug
dose? The results presented in Fig. 8 suggest that the first
type of protocol causes a drastic reduction in the num-
ber of cancer cells, although it fosters an increase in the
average level of resistance. On the other hand, the sec-
ond type of protocol maintains a larger stable population
of less resistant cells that suppress the growth of highly
resistant clones. A more accurate comparison between the
efficacy of the two therapeutic approaches would require
a careful investigation of the respective adverse effects
on healthy cells, which cannot be performed using our
model. However, we can envisage a lower drug-induced
toxicity being associated to the second type of protocols
[50]. In the light of this observation, the analytical results
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of Theorem 2 and the numerical results summarised in
Fig. 8 suggest that therapeutic protocols consisting of
phases of high-dose delivery separated by drug-free peri-
ods may not offer the best long-term strategy for tumour
control, and that protocols based on the continuous deliv-
ery of relatively low-drug doses may represent a suitable
alternative.

Conclusions

Although technological progress in molecular cell biology
has resulted in large amounts of data documenting can-
cer progression, our understanding of the principles that
underpin the development of resistance to anti-cancer
agents and the emergence of phenotypic heterogeneity in
neoplastic cell populations is filled with gaps and unre-
solved questions.

This work is presented with the perspective that mathe-
matical modelling can help to address some of these gaps
in our knowledge by capturing, in abstract terms, the cru-
cial assumptions that underlie given hypotheses, and by
offering alternative means of understanding experimental
results that are currently available. With this perspective,
our goal here is to contribute to a systematic identification
of the way in which the phenotypic distribution, the level
of intrapopulation heterogeneity and the size of cancer cell
populations depend on the rate of random epimutations,
the strength of natural selection, the intensity of the com-
petition for resources, and the stress exerted by cytotoxic
agents.

We have presented and analysed a PDE model of adap-
tive dynamics in a cancer cell population that is struc-
tured by the level of expression of a gene which is linked
to cytotoxic-drug resistance and proliferative potential.
While the parameter values that we have used to per-
form numerical simulations are derived from leukemia
datasets, our analytical results are characterised by broad
structural stability under parameter changes, and can
accommodate parameter values from any other type of
cancer.

The results of our analyses show that more intense
non-genetic instability, stronger selection pressures and
fierce competition for limited resources bring about can-
cer cell populations of smaller size. A more subtle question
is how phenotypic heterogeneity is maintained or sup-
pressed in cancer cell populations. Our model predicts
that higher rates of random epimutations lead to higher
phenotypic diversity, whilst intense selection pressures
and high doses of cytotoxic drugs can deplete variation in
the phenotypic pool of cancer cell populations, thus caus-
ing lower levels of intrapopulation heterogeneity. These
findings recapitulate the results presented in previous the-
oretical and experimental studies of phenotypic evolution
in neoplastic cell populations exposed to cytotoxic drugs
[51-56].
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(A) (B) 7(C)
Dose of cytotoxic drug ~ Total number of cells (in units of 10°) | Average phenotypic state
LCO MARANANNAAAC 10
8 0.8
o 06
LC70 4 04
LC30
0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
time (days) time (days) time (days)
Fig. 8 Comparing the administration of high-drug doses separated by drug-free periods with the continuous delivery of relatively low-drug doses.
Sample dynamics of the total number of cells p(t) (panel b) and the average phenotypic state w(t) (panel c) for the schedules of drug
administration presented in panel (a). The red lines refer to the delivery of the drug dose equivalent to the LCqyg for 4 days beginning on days 1, 8,
15,22,29,36,43,50,57,64, 71 and 80, whereas the blue lines refer to the constant delivery of the drug dose equivalent to the the LC3p. The values of
the model parameters are as in Table 1, and the initial condition corresponds to the equilibrium population density for c(-) = 0 [i.e,, the population
density n(x) of Eq. (11)]

Epigenetic mechanisms are increasingly implicated in
the adaptation of neoplastic cells which face environmen-
tal changes. However, since epimutation rates are small in
comparison to selection gradients, it might be speculated
that the direction of evolution in cancer cell populations is
determined exclusively by natural selection. On the con-
trary, our analytical results suggest that, in the presence
of high concentrations of cytotoxic agents, frequent fluc-
tuations in the cellular protein levels can trigger a type of
‘epimutational meltdown’ and contribute to extinction in
non-fluctuating environments. This effect escalates under
harsher environmental conditions (i.e., for lower maxi-
mum fitness and higher selection gradients). Since we
have derived a simple and general condition that can
lead to population extinction — which is embodied by an
explicit relation between the proliferation and death rates
of cancer cells, the rate of epimutations and the concentra-
tion of the cytotoxic drug [vid., point (i) of Theorem 2] —
the validity of this argument can be tested in vitro.
Because of the striking similarities between populations
of cancer cells and microbial populations [57], an exper-
imental setting analogous to that presented in [58] —
where the authors made use of isogenic populations of
engineered bacteria that randomly transitions between
different phenotypic states to study adaptation to artificial
environments — may prove to be useful for this purpose.

Here we have found that the same cell population
exposed to different concentrations of the same cytotoxic
drug can take different evolutionary trajectories, which
culminate in the selection of phenotypic variants charac-
terised by different levels of drug tolerance. This supports

the notion that the response of cancer cells to cytotoxic
agents is more complex than a simple binary outcome, i.e.,
extinction of sensitive cells and selection of highly resis-
tant cells, and agrees with insights from empirical works
that highlight how different phenotypic variants can be
selected inside the same solid tumour depending on the
local concentrations of cytotoxic agents [59—-61]. Also, in
agreement with the experimental results presented by Sun
et al. [62], our model suggests that cancer cell popula-
tions may regain sensitivity to cytotoxic drugs after a ‘drug
holiday’

In current clinical practice, it is common to give the
maximum tolerated dose (MTD) of cytotoxic agents at
the beginning of a therapy cycle, and then let the patient
recover from toxicities. In the last decade, experimental
and theoretical efforts have been made to determine the
best scheduling of cytotoxic agents in anti-cancer ther-
apy; unfortunately, there is still no clear answer about
optimal administration protocols. Our work demonstrates
that higher doses of cytotoxic drugs reduce the size of can-
cer cell populations at the cost of promoting the selection
of more resistant phenotypic variants. Moreover, our anal-
yses support the development of therapeutic approaches
that go beyond the ‘MTD paradigm’ For instance, our
results provide a theoretical basis for the benefits of
metronomic therapy [63—-66] — which relies on the con-
tinuous delivery of cytotoxic agents at relatively low, min-
imally toxic doses — and adaptive therapy [67] — which
aims at enforcing a stable tumour burden by permitting
sensitive cells to suppress highly resistant cells in low drug
pressure conditions — as they may be more effective than
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traditional protocols at keeping the size of cancer cell pop-
ulations under control while avoiding the expansion of
drug tolerant clones.

We conclude with an outlook on possible extensions of
the present work. Here, we have assumed that cell prolif-
eration and drug resistance are interconnected. A natural
way to extend our study would be to take into account a
degree of independence in these processes by incorporat-
ing a second phenotypic variable. In this setting, we could
also introduce an advection term to explore the effects
of environmental stresses (e.g., hypoxia, acidity or star-
vation) that may induce cells to actively acquire a more
stress resistant phenotype. In so doing, we would be in the
position to analyse how the interplay between selection,
non-genetic instability and stress-induced adaptation gov-
erns the emergence of intra-tumour heterogeneity and
the development of drug tolerance inside solid tumours,
which is a theme that we began exploring in a previous
paper [37].

The present model could also be extended to include
the effects of the phenotypic coevolution and spatial
interaction between cancer cells and cells of the tumour
microenvironment. In fact, the growth and death of neo-
plastic cells is determined not only by their phenotype,
but also by the microenvironment they inhabit. In par-
ticular, accumulating in vitro and in vivo evidence sug-
gests that the interplay between cancer cells and stromal
cells can induce mutual phenotype modifications promot-
ing tumour growth and the emergence of resistance to
anti-cancer agents [68—71]. As a first step, we may incor-
porate an additional structuring variable that stands for
the spatial position of cells, and we could include an
additional evolution equation for the local density of stro-
mal cells, in order to investigate, in silico, the existence
of ecological mechanisms which can foster the spread-
ing of more proliferative and drug resistant phenotypic
variants at the interface between solid tumours and host
tissues.

Another track to follow to further enrich our model
would be to include metabolic determinants of epige-
netic dynamics in single cells. Simple phenomenological
models have been proposed to describe the influence of
oxygen and proton concentration in cancer tissues (see,
for instance, [72, 73]). More recently the influence of
metabolism on key epigenetic enzymes determining stem-
ness (such as TET1/2, IDH1/2, DNMT3A) has been inves-
tigated in detail, setting the focus on DNA methylation
dynamics [41, 74]. Mutations of such enzymes have been
evidenced in leukemia and preleukemic states [75, 76].
Nevertheless, even without the occurrence of mutations,
unequal repartition of these enzymes could be found to
be a source of heterogeneity in cancer cell populations
making cells diversely sensitive to their metabolic envi-
ronment. Some cells, heavily loaded in these enzymes,
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may revert to a stem-like state, yielding germs for drug-
resistant clones, while the others, not endowed with such
abilities, would readily die when exposed to high doses of
cytotoxic drugs. In this regard, mathematical modelling
is still dependent on more biological knowledge to come
about metabolism, stemness and epigenetic dynamics.

Appendix 1. Proofs of Theorem 1 and Theorem 2
When ¢(-) = 0, plugging definitions (6)—(7) into Eq. (3) we
obtain

d a2
8—’:(& ) =4p 87};(96, 0 +[y —na*—dp@®)] nxo).

(19)
The proof of Theorem 1 follows from a more general
analysis that we have developed in two recent papers

[33,42], and it uses the results established by the following
two lemmas:

Lemma 1 If y > (Bn)'/?, the problem defined by com-
pleting (19) with (4)—(5) admits a unique non-negative
nontrivial equilibrium solution n(x) which is given by (11).

Proof of Lemma 1 Consider the PDE problem

{ﬁn”(x)+[y—nx2—dp]n(x)=0, x € R,
P = [p7x) dx.
(20)
Writing
an\ /4
nx) = Y(2), z= (/3) X,

we find that Y (z) satisfies the differential equation
2

Y'(z) — (‘1 n a> Y(2) =0, 1)

with

”=Wd)uz(ﬁ‘g>'

It is known that Eq. (21) has solutions which are
bounded for all z if and only ifa = —m — 1/2, where m is
a non-negative integer [77, 78]. These bounded solutions
are the Gaussians exp(—z2/4) multiplied by polynomials
of degree m, which form an orthogonal set of functions,
and so are everywhere non-negative if and only if m = 0.
Therefore, the existence of a nontrivial non-negative solu-
tion of the PDE problem (20) requires a = —1/2. This
implies that to have a nontrivial non-negative equilibrium
solution the condition

—_ Ll a1
p—d[y Bm'?]
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must be satisfied. If this condition is met, for some A € R

1/2
n(x) = Aexp {—; (g) x2} .

The constant A can be evaluated in terms of p by
integrating Eq. (22). We find that

(22)

/M 1\,
l’l(x) =P W exp —5 E X 5
and this concludes the proof of Lemma 1. O

Lemma 2 The integral p(t) of the solution of the problem
defined by completing (19) with (4)—(5) has the following
long-time behaviour:

11, _ 1/27 ; 1/2
hmpmz{dh Bn'2]if v > @B) ' o8)
t=00 0 if y<mp)2
Proof of Lemma 2 Following the method of proof
that we presented in [33], it is possible to prove that,
for all non-negative initial conditions n(x,0) such that
0 < p(0) < o0,

g(£)p(0)
pt) = ,
€0) +d p(0) flg(r) dr

with the function g(¢) satisfying

28 o Z% (4n 1/4
€O Gyt Jy exp[%(xs) ik

exp {[y — (Bn)'/?]t}, ast— oo

In the limit ¢t — oo:

- ify < (Bn)Y/?, then g(¢) — 0 exponentially rapidly;

- ify = (Bn)/?, then g(£) converges to a positive
constant;

- ify > (B2, then g(t) — oo exponentially rapidly.
Therefore:
- ify < (Bn)Y/?, then lim p(¢) = 0;
t—00
- ify = (B2, then lim p(¢) = O;
t—00
- ify > (B2, then lim p(t) = & [y — (Bm'?].
t—00
This concludes the proof of Lemma 2. O

Taken together, Lemma 1 and Lemma 2 allow us to
reach the following conclusions:
(i) ifc(-) =0andy — (Bn)1/? <0, then
p®) — 0,

as t — 00; (24)
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(ii) ifc(-) =0and y — (Bn)!/2 > 0, then

1
o) > p==[y—Bn'?], ast—o0

d

and
eV 1\,
This establishes the claims of Theorem 1.

Appendix 2: Proof of Theorem 2

When ¢(-) = C > 0, plugging definitions (6)—(7) into
Eq. (3) we obtain

O by = B O
ot TP g2

+[y —na*—dp) — C(x—1D?] nx, o).
Defining

ne +C and %= —C
=yY—, = an Xe im ————,
Ve 14 n+C Ne n c 7+ C

we can rewrite the above equation as

all(ac ty=28 827n(x t)
ar T T ax2”

+ [Vc — e (¥ — 766)2 —d p(t)] n(x, t).
(25)

Since x € R, there is no loss of generality in translating
coordinates so that x, = 0. Hence, to adapt the method
of proof of Theorem 1 to prove Theorem 2 is purely
technical. For this reason, we leave Theorem 2 without
proof.

Reviewers’ comments

We thank the Reviewers for their comments, all of which
are addressed below. Quotations from the Reviewers’
reports are italicised. It was apparent from the comments
that some matters required clearer explanation, additional
results or greater emphasis, so we have amended the
manuscript appropriately.

Reviewer 1 - Angela Pisco

In the present paper Lorenzi and co-authors offer a
sound theoretical framework to address a critical point
on development of drug resistance following treatment.
The authors are able to numerically replicate the prob-
lem of cell state switching within cancer cell populations
composed of cells with different sensitivities to drug. It is
now becoming established that cancer treatment is a dou-
ble edge sword, while the majority of cells die following
chemo/radiotherapy, the surviving cells are no innocent
bystanders and lead to a more aggressive tumour, mostly
composed of cells with a stem-cell like phenotype that
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are multi-drug resistant. The authors’ original PDE model
is able to replicate published experimental results taking
into consideration both non-genetic and environmental
conditions. Lorenzi et al. model simulations lead to import
conclusions, namely the mathematical demonstration that
higher drug doses promote resistant phenotypes and less
heterogeneity within cancer cell populations. The entire
work is novel and valuable for the community and because
of that I'd endorse this paper for publication with minor
changes. While I agree that the presented model is gen-
eral enough for the conclusions to be valid in a panoply of
cancers other than leukaemia, I'd like to inquire whether
it is feasible with this model to replicate the cycle of sen-
sitivity - resistance - sensitivity- ... in line with what was
described by Sun et al. [Reversible and adaptive resistance
to BRAF(V600E) inhibition in melanoma, Nature, 2014].

Authors’ response: We thank the Reviewer for this
question. To address the Reviewer’s question, we have
performed new numerical simulations considering
piecewise-continuous periodic delivery of the cytotoxic
drug. The results obtained are summarised by the movie
Additional file 2’ and are discussed at point R9 in the
revised manuscript. In agreement with the experimental
results presented by Sun et al., these results clearly show
that administering the cytotoxic drug in an alternate
fashion leads to the emergence of cycling subpopulations of
drug-resistant and drug-sensitive cells.

All minor issues pointed out by the Reviewer have been
addressed.

Reviewer 2 - Sébastien Benzekry

In their manuscript, Lorenzi et al. addressed, from a
theoretical perspective, the fundamental issue of drug
resistance in cancer cell populations. The article is well
written and based on solid biological literature. The
authors derived, mathematically analysed and simulated
a phenotype-structured PDE model that essentializes key
aspects of the problem, including the balance between
level of resistance to the drug assault and proliferative
rate. This is set in the context of adaptive dynamics driven
by inheritable epigenetic changes. In doing so, they add
another study to several works of them using the same
methodology, with sometimes minor differences among
them. Here, one interesting result obtained by the authors
is that, depending on the dose of a cytotoxic drug deliv-
ered to the tumour, the average phenotypical trait toward
which the population concentrates (a fact that is rig-
orously proven) is not always the same. This result is
nontrivial and relevant since it demonstrates from basic
and minimal biological hypotheses that the dosing has
an impact on the phenotypic distribution of a cancer cell
population, a topic with increasingly recognised impor-
tance for the treatment of cancers. However, no directly
applicable recommendation can be derived for the clinical
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use of cytotoxic agents. I am not a biologist but I find it
debatable that the cells closest to stemness (with x = 1)
are the ones having the smallest proliferative ability. From
my understanding, stem cells could be at the same time
more resistant and more proliferatively active.

Authors’ response: We thank the Reviewer for hav-
ing stressed this point. Following the advice of Reviewer
3, we do not mention stemness anymore in the revised
manuscript, as it is unnecessary for our conclusions to hold.
Therefore, we state that the phenotypic state x = 1 cor-
responds to the highest level of cytotoxic-drug resistance,
without making any reference to stemness.

I don’t understand why functions k and p have to be
respectively convex and concave. Wouldn't it be enough to
consider them decreasing/increasing (as functions of the
norm of x)?

Authors’ response: This may be an alternative mod-
elling strategy and, from the mathematical perspective, it
may be interesting to explore it. However, concavity and
convexity assumptions lead naturally to smooth fitness
landscapes which are close to the approximate fitness land-
scapes inferred from experimental data through regression
techniques [see, for instance, Otwinowski, J., and Plotkin,
J.B. (2014). Inferring fitness landscapes by regression pro-
duces biased estimates of epistasis. Proc. Natl. Acad. Sci.
USA 111(22), E2301-E2309 and references therein].

I also find it surprising, if not inconsistent, that the pro-
liferation rate p(x) can take negative values, while being
defined to be the “proliferation due to the assumed veloc-
ity of the cell cycle in the absence of between-cell com-
petition for nutrients, and in the absence of drug-induced
death” This appears to me to be the underlying reason
of the possibility of extinction of the population (first
part of Theorem 1), which is quite surprising and sounds
biologically unrealistic, in the absence of treatment.

Authors’ response: We thank the Reviewer for his obser-
vation. As stated both in the old version version of the
manuscript and in the updated manuscript, the func-
tion p(x) ‘stands for the net proliferation rate of cancer
cells in the phenotypic state x” The sentence quoted by
the Reviewer from the old version of manuscript was not
pertinent and it has been removed from the updated
manuscript.

In Table 1, units of the parameters should be provided,
when appropriate. What motivated the choice of K = 108
cells (no reference is provided)?

Authors’ response: Units have been included in Table 1,
and a reference motivating the choice of the value of the
carrying capacity K has been added.

What biological situation is modelled here: an in vitro
cell line? in vivo tumours in animal models? a clinical
patient tumour?

Authors’ response: We thank the Reviewer for this
observation. We have clarified this point. As stated in
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the updated manuscript, we consider an in vitro culture
system.

I appreciate the efforts of the authors to adopt relevant
values of the parameters based on the literature. How-
ever, the value of y taken seems particularly high (it gives
a doubling time of log(2)/gamma x 24 = 3.34 hours,
which is much faster than the fastest mammalian cell cycle
time [1]). This explains why, in Fig. 1b, the cell population
reaches the carrying capacity so fast, probably much faster
than in the biological reality. The authors might want to
choose a more meaningful value for the duration of the
fittest cancer cells’ cycle duration, such as about 25 h. [1]
Steel, G. G. and Lamerton, L. F. (1966). The growth rate of
human tumours. Br. J. Cancer, 20(1):74—86

Authors’ response: We thank the Reviewer for this sug-
gestion. Following the Reviewer’s advice, we updated the
value of the parameter y so that the duration of the fittest
cancer cells’ cycle duration is about 25 h. Because of this, we
updated also the values of the parameters p and n follow-
ing the reasonings presented in the updated manuscript,
and we rerun all simulations. Therefore, all figures in the
paper have been updated.

All minor issues pointed out by the Reviewers have been
addressed.

Reviewer 3 - Heiko Enderling

Lorenzi et al. present a mathematical model of pheno-
typically structured cancer cell populations, and track the
evolution of phenotype heterogeneity in the absence of or
under selection pressure of a cytotoxic drug. The model
is based on previous literature and extended to study con-
tinuous heterogeneity and plasticity. The manuscript is
well prepared, the work is coherently presented, and the
results are clearly discussed. Most of the results are as
one would expect, attributing to careful model develop-
ment. Some results are intriguing, for example indications
that maximum tolerable dose may not be the best long-
term strategy for tumour control, and that a metronomic
scheme may provide a suitable alternative. While certainly
plausible, these scenarios can be readily explored with
the model and should be included in the manuscript. In
particular, it would be interesting to see the temporal evo-
lution of trade-offs between tumour volume reduction
and selection for resistance in an MTD vs. metronomic
setting.

Authors’ response: We thank the Reviewer for this
suggestion. To address the Reviewer’s question, we have
performed new numerical simulations comparing the
administration of high-drug doses separated by drug-free
periods with the continuous delivery of relatively low-drug
doses. The results obtained are summarised by Fig. 8 and
are discussed at point R10 in the revised manuscript. These
results suggest that the first type of protocol causes a dras-
tic reduction in the number of cancer cells, although it
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fosters an increase in the average level of resistance in the
population. On the other hand, the second type of proto-
col maintains a larger tumour burden characterised by a
relatively lower average level of resistance. A more accu-
rate comparison between the efficacy of the two therapeutic
approaches would require a careful investigation of the
respective adverse effects on healthy cells, which cannot
be performed using our model. However, we can envisage
a lower drug-induced toxicity being associated to the sec-
ond type of protocols [see, for instance, Gately, S., Kerbel,
R. (2001). Antiangiogenic scheduling of lower dose cancer
chemotherapy. Cancer J., 7(5), 427-436]. In the light of this
observation, the analytical results of Theorem 2 and the
numerical results summarised in Fig. 8 suggest that ther-
apeutic protocols consisting of phases of high-dose delivery
separated by drug-free periods may not offer the best long-
term strategy for tumour control, and that protocols based
on the continuous delivery of relatively low-drug doses may
represent a suitable alternative.

My major critique is the discussion of cancer stem cells
for treatment resistance. The authors introduce a trade
off between proliferation and quiescence opposing a gra-
dient of differentiated and cancer stem cells. While this
might be biologically realistic, the developed mathemati-
cal model does not reflect a cellular hierarchy. In contrast,
in the model as is, a population of non-stem cancer cells
would grow infinitely in the absence of an initiating and
propagating cancer stem cell — a clear violation of the
biological concept. As the presented model, results and
discussion are solely dependent and reproducible with a
proliferation gradient alone, I recommend the stem cell
component to be dropped. The often-attributed cancer
stem cell quiescence may be discussed as further support
for applicability of the model at the end of the manuscript.

Authors’ response: We thank the Reviewer for this obser-
vation. Following the Reviewer’s advice, we do not make
any reference to stemness in the revised manuscript, as it is
unnecessary for our conclusions to hold.

Additional files

Additional file 1: Evolution of an initial population which is mainly
composed of cells in the phenotypic state that corresponds to the highest
level of cytotoxic-drug resistance, in the absence of xenobiotic agents. This
movie shows the evolution of an initial population which is mainly
composed of cells in the phenotypic state x = 1 (i.e, the phenotypic state
that corresponds to the highest level of cytotoxic-drug resistance) for

c(-) = 0 (ie, in the absence of xenobiotic agents). The values of the model
parameters are as in Table 1. The pink line indicates the equilibrium
population density for c(-) = 0 [i.e, the population density n(x) of Eq. (11)].
In agreement with the experimental results presented in [14], it takes
approximatively 18 days for the population to reconstitute the equilibrium
phenotypic distribution. (MOV 203 kb)

Additional file 2: The cancer cell population regains cytotoxic-drug
sensitivity when drug delivery is discontinued. This movie shows the
evolution of an initial population which is mainly composed of highly
proliferative cells (e, cells in the phenotypic state x = 0) exposed to
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periodic phases of high-dose delivery (drug dose corresponding to the
LCqo) separated by drug-free periods. The values of the model parameters
are as in Table 1. The red and blue lines highlight the highly proliferative
state x = 0 and the highly drug-resistant state x = 1.In agreement with
the experimental results presented in [62], these results clearly show that
administering the cytotoxic drug in an alternate fashion leads to the
emergence of cycling subpopulations of drug-resistant and drug-sensitive
cells. (MOV 415 kb)
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