Marinov and Lynch Biology Direct (2016) 11:18
DOI 10.1186/513062-016-0119-4

Conservation and divergence of the

Biology Direct

@ CrossMark

histone code in nucleomorphs

Georgi K. Marinov" and Michael Lynch

Abstract

Background: Nucleomorphs, the remnant nuclei of photosynthetic algae that have become endosymbionts to
other eukaryotes, represent a unique example of convergent reductive genome evolution in eukaryotes, having
evolved independently on two separate occasions in chlorarachniophytes and cryptophytes. The nucleomorphs of
the two groups have evolved in a remarkably convergent manner, with numerous very similar features. Chief among
them is the extreme reduction and compaction of nucleomorph genomes, with very small chromosomes and
extremely short or even completely absent intergenic spaces. These characteristics pose a number of intriguing
questions regarding the mechanisms of transcription and gene regulation in such a crowded genomic context, in
particular in terms of the functioning of the histone code, which is common to almost all eukaryotes and plays a

central role in chromatin biology.

Results: This study examines the sequences of nucleomorph histone proteins in order to address these issues.
Remarkably, all classical transcription- and repression-related components of the histone code seem to be missing
from chlorarachniophyte nucleomorphs. Cryptophyte nucleomorph histones are generally more similar to the
conventional eukaryotic state; however, they also display significant deviations from the typical histone code. Based
on the analysis of specific components of the code, we discuss the state of chromatin and the transcriptional

machinery in these nuclei.

Conclusions: The results presented here shed new light on the mechanisms of nucleomorph transcription and gene
regulation and provide a foundation for future studies of nucleomorph chromatin and transcriptional biology.
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Background

A common trend in the evolution of endosymbiont
genomes is their reduction [1, 2], best exemplified by
organellar (chloroplast and mitochondrial) genomes in
eukaryotes. This trend is also evident in the fate of sec-
ondary endosymbionts (i.e., eukaryotes that have become
endosymbionts of other eukaryotes), which have arisen on
several occasions in eukaryote evolution [3]. In most lin-
eages bearing secondary plastids, all that remains from the
eukaryotic endosymbiont is the plastid, with the nucleus
having been lost. There are two notable exceptions to this
rule, the chlorarachniophytes and the cryptophytes, which
retain a remnant of the endosymbiont’s nucleus and its
genome in the form of a nucleomorph [4, 5].
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Strikingly, the chlorarachniophyte and the cryptophyte
nucleomorphs do not share a common origin, having been
acquired from a green and a red alga, respectively, yet
their genomes have evolved convergently to a remark-
ably similar state [6, 7]. Nucleomorph genomes are the
smallest eukaryote genomes known, typically just a few
hundred kilobases in size; in all known cases, they are
organized into three AT-rich chromosomes, with arrays of
ribosomal RNA genes in their subtelomeric regions; they
are extremely compacted, with almost nonexistent inter-
genic spaces (sometimes genes actually overlap), and even
the genes themselves are frequently shortened [8-14].
These generalizations can be made thanks to the availabil-
ity of fully sequenced nucleomorph genomes from several
species: the chlorarachniophytes Bigelowiella natans [13]
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and Lotharella oceanica [12], and the cryptophytes Guil-
lardia theta [9], Hemiselmis andersenii [14], Cryptomonas
paramecium [10], and Chroomonas mesostigmatica [11].

While much has been learned from the analysis of these
genome sequences, numerous important questions about
nucleomorph biology remain unresolved. One such issue
concerns the mechanisms of transcription and transcrip-
tional regulation in such a crowded and compact genomic
environment. All steps of the transcriptional cycle, as well
as virtually every aspect of gene regulation in eukaryotes,
involve the participation of the histone proteins around
which DNA is packaged, usually through their posttran-
scriptional modifications (PTMs). PTMs are deposited
in a regulated manner, most often (but not only) in the
unstructured N-terminal tails of histones. They serve as
recruitment platforms for effector proteins, which have
specific recognition domains for certain marks, thus gen-
erating the so called “histone code” [15]. Hundreds of
histone modifications have been identified [16] and while
most of them are yet to be functionally characterized in
detail, the role of a significant number of histone marks is
well understood. These include specific marks associated
with transcription initiation, transcription elongation, the
formation of repressive heterochromatin, mitotic conden-
sation of chromosomes, and other processes [17]. Impor-
tantly, most of the posttranscriptionally modified residues
are deeply conserved among the majority of eukaryotes
[18], implying the ancient origins the histone code and the
major functional importance of each individual histone
mark.

The extent to which these modifications are conserved
in nucleomorphs may provide valuable insights into their
biology. Some of the open questions are: 1) whether tran-
scription initiation proceeds through similar mechanisms
as in conventional eukaryote nuclei, where the one or two
nucleosomes around the transcription start site acquire
a specific set of modifications [19] (the tightly packed
nucleomorph genes simply do not provide sufficient space
for this arrangement given the ~146 bp minimal foot-
print of the nucleosome); 2) whether the complex cycle
of histone modifications and nucleosome displacement
associated with transcription elongation by RNA Poly-
merase II [20-22] is conserved and operates over the
very short nucleomorph genes; 3) whether repressed het-
erochromatin, which is associated with telomeres, peri-
centromeric areas, and considerable portions of the rest
of the genome in many eukaryotes [23-25] exists in
nucleomorphs; 4) whether the mechanisms for regulating
chromosome condensation during cell division [26] are
conserved in nucleomorphs; 5) whether the patterns of
conservation and divergence from the common eukary-
otic state are as convergent between chlorarachniophyte
and cryptophyte nucleomorphs as are so many other fea-
tures of their genomes and biology.
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This study addresses these questions by analyzing the
sequence of nucleomorph histone proteins and the con-
servation of the key amino acid residues involved in
these processes. Chlorarachniophyte nucleomorph his-
tones appear to have lost almost all major histone mod-
ifications that are core to the functioning of the histone
code. Cryptophyte nucleomorph histones have retained
the capacity for a larger number of the key chromatin
marks, with the exception of Cryptomonas paramecium,
whose histone proteins are most divergent within that
group. In addition, in all species (both in chlorarachnio-
phytes and in cryptophytes), the heptad repeats in the
C-terminal domain (CTD) tail of the largest subunit of
RNA Polymerase II, which play a key role in many aspects
of the transcriptional cycle and mRNA processing [27, 28],
are absent. These results suggest that the transcriptional
machinery in nucleomorph exists in a highly derived state
relative to its ancestral eukaryotic condition.

Results

Histone genes in nucleomorphs

Histone genes were identified in nucleomorph assemblies
using a combination of HMMER domain scans [29, 30]
and BLASTP [31] searches. It has been previously shown
that in Bigelowiella natans histones H2A and H2B are
encoded in the host nucleus and imported into the nucleo-
morph [32]. Consistent with these reports and the existing
annotations, only histones H3 and H4 can be detected in
both chlorarachniophyte nucleomorph genomes. In con-
trast, all cryptophyte nucleomorphs also encode a version
of H2B, implying that only H2A has been transferred to
the host nucleus in this lineage. Nucleomorph histones
exhibit unique patterns of divergence relative to conven-
tional nuclear histones as evident from their phylogenetic
relationships (Additional file 1: Figures S1, S2, S3 and S4).
No apparent linker histone genes were found in any of the
nucleomorphs.

To gain insight into their functional properties, multiple
sequence alignments of nucleomorph histones were car-
ried out, using nuclear core histones from several other
eukaryotes, in which the role of histone marks in chro-
matin biology has been extensively studied, as reference.
Figures 1 and 2 show these alignments for chlorarachnio-
phyte histones H3 and H4. In both species, a significant
portion of the N-terminal tail of histone H3 (between
residues 10 and 38) is missing, and overall the sequence
is highly divergent. Surprisingly, the Bigelowiella histone
H3 has a 10-amino acid insertion in the core histone
part of the protein, which is not shared with Lotharella;
its significance is not clear at present. The properties of
H4 histones are similar: both species share a ~10-amino
acid deletion at the very end of the N-terminal tail and
the sequences are highly divergent from those of other
eukaryotes.
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Bigelowiella_natans-histone_H3/1-129
Lotharella_oceanica-histone_H3/1-114
histone_H3_[Saccharomyces_cerevisiae]/1-136
histone_H3.3_[Arabidopsis_thaliana]/1-136
histone_H3.1_[Arabidopsis_thaliana]/1-136
histone_H3.3_[Homo_sapiens]/1-136
histone_H3.1_[Homo_sapiens]/1-136
histone_H3_[Drosophila_melanogaster]/1-136

1MSDDKKYCTES------ KEHF - - -------------- KKKRFKPSALTLLE
IMSHTGYNSQRT - - - - - - -------------- oo - ERKRYKTGTLTLLE
1MARTKQTARKSTGGKAPRKQLASKAARKSAPSTGGVKKPHRYKPGTVALRE
1MARTKQTARKSTGGKAPRKQLATKAARKSAPTTGGVKKPHRYRPGTVALRE
1MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRFRPGTVALRE
1MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTVALRE
1MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALRE
1MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALRE

RKYQRSTYLIMQRIPFFRLLKKITN
RKYQKTRQLLFKKIPFYKLIRLITN
RRFQKSTELLIRKLPFQRLVREIAQ
RKYQKSTELLIRKLPFQRLVREIAQ
RKYQKSTELLIRKLPFQRLVREIAQ
RRYQKSTELLIRKLPFQRLVREIAQ
RRYQKSTELLIRKLPFQRLVREIAQ
RRYQKSTELLIRKLPFQRLVREIAQ

Bigelowiella_natans-histone_H3/1-129 56 K1 TKQKFSWNSNSLFIMQE ITEYYLLNFLSELNTCASHGKRLTVSITILNSVERYKTCKQNKRIECFTFESSRL--- 129
Lotharella_oceanica-histone_H3/1-114 52 KYSGME FKWSSNS I FLLQEAFENFLTLFLIDCNICAIHGKRVTI --------- MNKD I YILAKRI - - - - - RGMKFLIN 114
histone_H3_[Saccharomyces_cerevisiae]/1-136 78 DF - KTDLRFQSSAIGALQESVEAYLVSILFEDTNLAAIHAKRVTI - -------- QKKD I KLARRL - - - - - RGERS - - - 136
histone_H3.3_[Arabidopsis_thaliana]/1-136 78 DF-KTDLRFQSHAVLALQEAAEAYLVGLFEDTNLCAIHAKRVTI --------- MPKDIQLARRI - - - - - RGERA- - - 136
histone_H3.1_[Arabidopsis_thaliana]/1-136 78 DF -KTDLRFQSSAVAALQEAAEAYLVGLFEDTNLCAIHAKRVTI - -------- MPKDIQLARRI - - - - - RGERA- - - 136
histone_H3.3_[Homo_sapiens]/1-136 78 DF-KTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIHAKRVTI - -------- MPKDIQLARRI - - - - - RGERA- - - 136
histone_H3.1_[Homo_sapiens]/1-136 78 DF-KTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIHAKRVTI --------- MPKDIQLARRI - - - - - RGERA- - - 136
histone_H3_[Drosophila_melanogaster]/1-136 78 DF - KTDLRFQSSAVMALQEASEAYLVGLFEDTNLCAIHAKRVTI --------- MPKDIQLARRI - - - - - RGERA- - - 136

Fig. 1 Multiple segience alignment of chlorarachniophyte nucleomorph histones H3 and nuclear H3 histones from several representative
eukaryotes. Multiple sequence alignments were carried out using MUSCLE [102] and visualized using Jalview [103]

Cryptophyte histone H3 sequences are generally much
more similar to conventional eukaryotic histone H3
than those of chlorarachniophytes, yet they also exhibit
numerous unconventional features (Fig. 3). The extreme
N-terminal end is particularly well conserved, with the
exception of that of Cryptomonas’s H3, yet all species
display significant sequence divergence roughly coincid-
ing with the deleted region in chlorarachniophyte H3
proteins, including a large insertion in Chroomonas.

Chroomonas also has large insertions in the N-terminal
tail of its histone H4 (Fig. 4) though the rest of the
sequence is relatively similar to that of other eukaryotes,
as are those of the other three cryptophytes.

Unlike chlorarachniophytes, cryptophytes also have a
nucleomorph-encoded histone H2B protein. It should
be noted that higher levels of sequence divergence are
observed for H2A and H2B proteins within eukaryotes
in general. Nevertheless, their conservation character-
istics in cryptophytes are similar to those of crypto-
phyte H3 and H4 nucleomorph histones (Additional
file 1: Figure S5), with significant divergence seen in the
N-terminal tail (which is completely missing in Cryp-
tomonas and Guillardia, and has large deletions in
Chroomonas and Hemiselmis).

The histone code in nucleomorphs
To assess the conservation of the histone code in nucle-
omorphs, the preservation of modified residues and their

immediate three- and five-amino acid sequence con-
texts was analyzed. There are some limitations to this
approach. While the conservation of a given residue does
not necessarily mean that its post-translational mod-
ifications are also conserved, its absence does mean
that the corresponding modifications have been lost. In
addition, sequence context conservation can be due to
the presence of independent constraints on the residue
and its neighborhood rather than because of conserva-
tion of its posttranscriptional modifications. Neverthe-
less when observed, such conservation makes it more
plausible that the capacity for depositing the modifica-
tion has been retained. The conservation of the best
functionally understood residues on histones H3 and
H4 in chlorarachniophyte and cryptophyte nucleomorphs
as evaluated according to these criteria is shown in
Fig. 5.

Histone marks associated with heterochromatin

In most eukaryotes, heterochromatin occupies the peri-
centromeric and telomeric regions of chromosomes and
is also used as a mechanism for silencing transposable ele-
ments as well as some host genes. Histone marks play a
central role in the formation of heterochromatin, in par-
ticular the trimethylation of histone 3 lysine 9 (H3K9me3),
which classically serves as a recruitment platform for
the HP1 heterochromatin protein [33-35]. Other marks

Bigelowiella_natans-histone_H4/1-95 1
Lotharella_oceanica-histone_H4/1-98 1

------- MEK - -KSDIQKSRLSINNIT-SKSYISKLSITKRLARKSGI|KRMSCT/I 44
——————— MSRILIMNY SNKHKKDTND IMLSKK I FQQKSLLRI IRRSGIKRISRSV47

histone_H4_[Saccharomyces_cerevisiae]/1-103 1MSGRGKGGKGLGKGGAKRHRKILRD---NIQGITKPAIRRLARRGGVKRISGL 51
histone_H4_[Arabidopsis_thaliana]/1-103 1MSGRGKGGKGLGKGGAKRHRKVLRD---NIQGITKPAIRRLARRGGVKRISGLIS51
histone_H4_[Homo_sapiens]/1-103 1MSGRGKGGKGLGKGGAKRHRKVLRD---NIQGITKPAIRRLARRGGVKRISGLIS51
histone_H4_[Drosophila_melanogaster]/1-103 1MTGRGKGGKGLGKGGAKRHRKVLRD---NIQGITKPAIRRLARRGGVKRISGLIS51
Bigelowiella_natans-histone_H4/1-95 45 YAE INKFIVEFLTKIVKDI I I FCRYENRTLIKVSDVLVVILRRYGKMYYG - KR 95
Lotharella_oceanica-histone_H4/1-98 48 Y IELNS I IKKFLLKIVKDTLIVCIYNHRKI ITASDVIFSLKRNGQNIYG-GL 98
histone_H4_[Saccharomyces_cerevisiae]/1-103 52 YEEVRAVLKSFLESVIRDSVTYTEHAKRKTVTSLDVVYALKRQGRTLYGFGG 103
histone_H4_[Arabidopsis_thaliana]/1-103 52 YEETRGVLKIFLENVIRDAVTYTEHARRKTVTAMDVVYALKRQGRTLYGFGG 103
histone_H4_[Homo_sapiens]/1-103 52 YEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG 103
histone_H4_[Drosophila_melanogaster]/1-103 52 YEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG 103

Fig. 2 Multiple segience alignment of chlorarachniophyte nucleomorph histones H4 and nuclear H4 histones from several representative
eukaryotes. Multiple sequence alignments were carried out using MUSCLE [102] and visualized using Jalview [103]
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Cryp s_paramecium-histone_H3/1-137 1IMAKTKI LQQKTSENLLFKKELSE I KHETP - - - - ------------- - ITDFIDTKKMHRYKPGTVALREIRKLQRSTD 60
Guillardia_theta-histone_H3/1-136 1MARTKQTARKTVGGD INSR- 1 SEKRAKSD - - - - - - - - - - - -~ ----- NSKNIDLKKVHRYKPGTVALREIRKYQKSTN 59
Chr 5 i ica-histone_H3/1-154 1 MARTKQTARKSTGGKMNKK | | TGKASRKS I TGKASKKFSSVEKKTKNI SNNEESKKGHRYRPGTVALREIRKYQKSTD 78
Hemiselmis_andersenii-histone_H3/1-136 1MARTKQTARKSTGGKAPRKQLPNESGNKP - - - - - ----------- - NNLSMEKKKVHRYRPGTVALREIRKYQKSTE 60
histone_H3_[Saccharomyces_cerevisiae]/1-136 1MARTKQTARKSTGGKAPRKQLASKAARKS - - - - - - - - - --------- APSTGGVKKPHRYKPGTVALREIRRFQKSTE 60
histone_H3.3_[Arabidopsis_thaliana]/1-136 1MARTKQTARKSTGGKAPRKQLATKAARKS - - - - - - ------------ APTTGGVKKPHRYRPGTVALREIRKYQKSTE 60
histone_H3.1_[Arabidopsis_thaliana]/1-136 1MARTKQTARKSTGGKAPRKQLATKAARKS - - - --------------- APATGGVKKPHRFRPGTVALREIRKYQKSTE 60
histone_H3.3_[Homo_sapiens]/1-136 1MARTKQTARKSTGGKAPRKQLATKAARKS - - - - - ----------- - APSTGGVKKPHRYRPGTVALREIRRYQKSTE 60
histone_H3.1_[Homo_sapiens]/1-136 1MARTKQTARKSTGGKAPRKQLATKAARKS - - - - - - - - - - -------- APATGGVKKPHRYRPGTVALREIRRYQKSTE 60
histone_H3_[Drosophila_melanogaster]/1-136 1MARTKQTARKSTGGKAPRKQLATKAARKS - - - - - - ------------ APATGGVKKPHRYRPGTVALREIRRYQKSTE 60

Cryp s_paramecium-histone_H3/1-137 61 LLIKKMPFKRI IRELAQDFKSDLRFQNSAILALQEAAEMYLIALFEDTNLCAIHAKRVTVMPKDIRLAKRMRREGML 137
Guillardia_theta-histone_H3/1-136 60 LLIRKLPFQRLVRELAQDYKSDLRFQNSAVLALQEASESYLVNLFEDTNLCAIHAKRVTIMPKDIYLARRIRGEMIF 136
Chroomonas_mesostigmatica-histone_H3/1-154 79 LL I RKLP FQRLVRE LAQDFRNDLRFQGSAVLALQEATEAFLVGLFEDTNLCALHAKRVT IMPKDLLILARRIRGEKF - 154
Hemiselmis_andersenii-histone_H3/1-136 61 LLIRKLPFQRLVRELAQDYRGDLRFQGSAVSALQEATEAFLVGLFEDTNLCAIHAKRVTIMPKDILLARRIRGEKF - 136
histone_H3_[Saccharomyces_cerevisiae]/1-136 61 LLIRKLP FQRLVRE | AQDFKTDLRFQSSAIGALQESVEAYLVSILFEDTNLAAIHAKRVTIQKKDIKLARRLRGERS - 136
histone_H3.3_[Arabidopsis_thaliana]/1-136 61 LLIRKLPFQRLVREIAQDFKTDLRFQSHAVLALQEAAEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA - 136
histone_H3.1_[Arabidopsis_thaliana]/1-136 61 LLIRKLPFQRLVREIAQDFKTDLRFQSSAVAALQEAAEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA - 136
histone_H3.3_[Homo_sapiens]/1-136 61 LLIRKLPFQRLVREIAQDFKTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA - 136
histone_H3.1_[Homo_sapiens]/1-136 61 LLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA - 136

histone_H3_[Drosophila_melanogaster]/1-136 61 LLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA - 136

Fig. 3 Multiple segience alignment of cryptophyte nucleomorph histones H3 and nuclear H3 histones from several representative eukaryotes.
Multiple sequence alignments were carried out using MUSCLE [102] and visualized using Jalview [103]

associated with heterochromatin include H4K20me3
[35, 36] and H3K64me3 [37]. In addition, another repres-
sive mechanism operates through the H3K27me3 mark,
which is key to Polycomb complex-mediated gene repres-
sion in both plants and metazoans [38, 39]. It should
be noted that different combinations of marks might be
associated with distinct types of heterochromatin in mul-
ticellular eukaryotes [40, 41].

Strikingly, H3K9 and H3K27 are completely absent in
chlorarachniophyte nucleomorphs. H4K20 and H3K64
are observed in Lotharella, but their sequence context is
not conserved.

In cryptophytes, H3K9 and its sequence context are
conserved in Chroomonas and Hemiselmis; H3K9 is
present in Cryptomonas and Guillardia, but the sequence
context is not conserved. H3K27 is absent from Cryp-
tomonas and Guillardia, and present in Chroomonas
and Hemiselmis, but without the context being con-
served. H3K64 is well conserved in cryptophytes with
the exception of Cryptomonas, while H4K20 is present in
all species but its context is perfectly conserved only in
Hemiselmis.

Phosphorylation marks associated with chromosome
dynamics during mitosis
Histone proteins contain multiple phosphorylation sites,
which play an important role in the regulation of the
dynamics of chromosome condensation during mito-
sis. These include H3T3ph [42-44], H3S10ph [45-48],
H4S1ph [49], and others [50—53]. In addition, H3S28ph is
associated with transcriptionally active chromatin [54, 55].
These marks seem to be largely absent from chlorarach-
niophyte histones (H3T3 is present in Lotharella and
H3S10 in Bigelowiella, but no sequence context conserva-
tion is observed; H4S1 is absent from both species).
Chroomonas, Guillardia and Hemiselmis retain H3T3,
H3S10 is conserved in Chroomonas and Hemiselmis but
absent from the more divergent tails of Cryptomonas and
Guillardia. H4S1 is also absent from cryptophytes.
H3S28 is nearly absent from all nucleomorphs.

Histone marks associated with the transcription elongation
cycle

The process of transcription faces a major barrier
in eukaryotes in the form of the nucleosome, which

Cryptomonas_paramecium-histone_H4/1-104 40 ARRGGVKR

|
Guillardia_theta-histone_H4/1-104 40 ARRGGVKR I
Chroomonas_mesostigmatica-histone_H4/1-130 66 ARRGGV KR |
Hemiselmis_andersenii-histone_H4/1-104 40 ARRGGVKR I
histone_H4_[Saccharomyces_cerevisiae]/1-103 39 ARRGGVKR |
histone_H4_[Arabidopsis_thaliana]/1-103 39 ARRGGVKR I
histone_H4_[Homo_sapiens]/1-103 39 ARRGGVKR |

|

histone_H4_[Drosophila_melanogaster]/1-103 39 ARRGGVKR

Cryptomonas_paramecium-histone_H4/1-104 1MVSNKGKN - - - - - - -~ ---
Guillardia_theta-histone_H4/1-104 1MTVGKGKYV - - - - = = = = = = - -
Chroomonas_mesostigmatica-histone_H4/1-130 1

Hemiselmis_andersenii-histone_H4/1-104 1MVVGTGKG - - - - - - == -~ - -
histone_H4_[Saccharomyces_cerevisiae]/1-103 1 -MSGRGKG - - - - - - - - - - - -
histone_H4_[Arabidopsis_thaliana]/1-103 1 -MSGRGKG - -~ ------=---
histone_H4_[Homo_sapiens]/1-103 1 -MSGRGKG - - -~ -~ - -~ -+~
histone_H4_[Drosophila_melanogaster]/1-103 1 -MTGRGKG - - - ------=---

-------------- GKSLGKGGTKRHKKVLKDNIQGITKPAIRRL 39
-------------- GKGLGKRGTKRHKKVLRDSIQGITKPAIRRL 39
MVTGIGKTGELKKNTGKIGKLKKGTGKIAEVGKIGKGLGKAGAKRHRKILRDNIQGITKPAIRRL 65
-------------- GKGLGKGGTKRHRKVLRDNIQGITKPAIRRL 39
-------------- GKGLGKGGAKRHRKILRDNIQGITKPAIRRL 38
-------------- GKGLGKGGAKRHRKVLRDNIQGITKPAIRRL 38
-------------- GKGLGKGGAKRHRKVLRDNIQGITKPAIRRL 38
-------------- GKGLGKGGAKRHRKVLRDNIQGITKPAIRRL 38

SGLIYEETRNILKVFLETIVKDAVTYTEHNRRKTVTAMDV I CALRRQGKTLYGFGV 104
SGLIYEETKIVLKLFLENVVKDAVTYTEHARRKTVTAMDVIYALKRQGRTIYGFGY 104
SGLVYEETRNVLKSFLESIIKDAVTYTEHARRKTVTAMDVVHALKRQGRTLYGFGY 130
SGLIYEETRNVLKIFLESVVKDAVTYTEHARRKTVTPMDVVYALKRQGRTLYGFGS 104
SGLIYEEVRAVLKSFLESVIRDSVTYTEHAKRKTVTSLDVVYALKRQGRTLYGFGG 103
SGLIYEETRGVLKIFLENVIRDAVTYTEHARRKTVTAMDVVYALKRQGRTLYGFGG 103
SGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG 103
SGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG 103

Fig. 4 Multiple segience alignment of cryptophyte nucleomorph histones H4 and nuclear H4 histones from several representative eukaryotes.
Multiple sequence alignments were carried out using MUSCLE [102] and visualized using Jalview [103]
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A Bigelowiella Lotharella Chr Guillardia Hemiselmis
H 3 natans oceanica igmatica ium theta andersenii
radius: 0 1 2 0 1 2 1 2
R 2 0 0 0 0 0 0 0 0
T3 [ o] o] o o | o o | o
K 4 H o | o o | oo o | o
T6 0 0 0 0 0 0 0 0
K9 0 0 0 0 0 0 0 0 0 0
s 10 o | o oo o o | o o | oo
K14| o | o | o ol oo o] o o | oo
K 18 0 0 0 0 0 0 0 0 0 0 0
K 23 0 0 0 0 0 0 0 0 H 0 0
K 27 0 0 0 0 0 0 0 0 0 0 0
s28| o | o | oo oo o o | o o | oo
K36| o | o] o ol oo o | o 0| o
K 56 0 0 0 0 0 0 0
K 64 0 0 0 0 0 0 0
K 79 - 0| o o | oo 0 o | o 0| o
B Bigelowiella Lotharella Ch Guillardia Hemiselmis
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Fig. 5 Conservation of key posttranscriptionally modified residues in chlorarachniophyte and cryptophyte nucleomorph histones H3 and H4. a
Histone H3; b Histone H4. The radius r refers to the size of the context considered when scoring conservation. When r = 1, only the residue itself is
considered; when r = 0, a perfect match to the three-amino acid peptide also including the flanking residues on each side is required; when r = 2,
the five-amino acid peptide also including the two flanking residues on each side is considered. A score of 1 means conservation according to these
criteria, while a score of 0 means lack of conservation. Conservation was scored against the Homo sapiens histone H3.3 and H4 sequences

inhibits transcriptional elongation. A complex cascade
of molecular events, which involves a number of his-
tone modifications, has evolved in response to this con-
straint. Acetylation marks are deposited on nucleosomes
in front of the elongating polymerase, in order to facili-
tate the opening of chromatin. The FACT complex [56, 57]
plays the role of a histone chaperone, partially disassem-
bling nucleosomes so that the polymerase can transcribe
through them, then reassembling them. This process also
involves the monoubiquitination of histone H2B at a spe-
cific site (H2BK120ub1 [58, 59]). Transcriptional elonga-
tion is also associated with the deposition of H3K36me3
[60, 61], which plays an important role in recruiting his-
tone deacetylases after the polymerase has passed [62—64]
so that the newly deposited acetylation marks can be
removed and potential cryptic transcription repressed
[65]. Methylation of H3K79 is also associated with tran-
scriptional elongation [66—69]. Finally, in addition to its
role in elongation, H3K36me3 seems to also be involved
in the regulation of splicing and RNA processing [70-75].

Remarkably, H3K36 is completely absent in chlorarach-
niophytes, and is present, but with a poorly conserved

sequence context, in cryptophytes. H3K79 is observed
in Bigelowiella, Cryptomonas, and Guillardia, and its
sequence context is moderately conserved, but it is absent
from all other species. H2BK120 is present in all cryp-
tophytes (Additional file 1: Figure S6), but without any
conservation of the sequence context.

Histone marks associated with promoters

The classical marker of eukaryotic promoters is the depo-
sition of H3K4me3 [76, 77]. A lysine residue is present at
that position in Bigelowiella, but its sequence context is
very different, and it has been replaced with a glycine in
Lotharella.

The three cryptophytes with relatively well-conserved
N-terminal tails do possess a correspondingly well-
conserved H3K4, the exception being the highly divergent
Cryptomonas tail.

Histone marks associated with activation/repression of
transcription

A number of histone marks have been described as hav-
ing a positive or negative correlation with transcription,
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either by regulating the modification of other residues
(what is often referred to as histone mark “crosstalk”),
by generally serving to create a more open chro-
matin state (acetylation being the primary example), or
through other less well understood means. These include
methylation on several arginines (H3R2me2 [78-80],
H4R3me2 [81, 82]), which can have positive or neg-
ative effects on transcription depending on whether
the dimethylation is symmetric or asymmetric, H3T6ph
[83] and acetylation marks with generally activating
effects (H3K14ac, H3K18ac, H3K23ac, H4K5ac, H4K8ac,
H4K12ac, H4K1l6ac, H4K3lac, H2BK5ac, H2BK12ac,
H2BK15ac, H2BK20ac, and others), as well as acetylation
marks with better understood specific roles (for example,
H3K56ac [84—86] and H4K91lac [87], which might also
play a role in nucleosome assembly in addition to gene
regulation).

All of these residues are either completely missing
or poorly conserved in chlorarachniophytes, but display
higher levels of conservation in cryptophytes (with the
Cryptomonas being the exception).

Absence of RNA Polymerase Il CTD heptad repeats in
nucleomorphs

The histone code is not the only code playing a major
role in transcriptional elongation. It operates in concert
with the so called CTD code [88], consisting of the post-
transcriptional modifications of the C-terminal domain
tail of the largest subunit of RNA Polymerase II (Rpbl).
Ancestrally to all extant eukaryotes [89], the CTD domain
contains a large number of repeats of the consensus hep-
tad sequence YSPTSPS [90] (note that the repeats are
not always perfect matches to the consensus). The hep-
tad contains five phosphorylation sites and two proline
isomerization sites. Specific modifications are deposited
on the tail during each phase of the transcriptional cycle,
and serve to recruit various effector and regulatory pro-
teins [27, 28]. As a result the CTD repeats play a pivotal
role in almost all aspects of transcriptional elongation and
mRNA processing, and their status in nucleomorphs is of
significant interest.

All six nucleomorphs encode an Rpbl protein. How-
ever, all of these proteins completely lack heptad repeats
(Additional file 1: Figure S7) indicating a corresponding
absence of conservation of the CTD code.

Discussion
The analysis of nucleomorph histone protein sequences
presented here reveals a number of puzzling and poten-
tially fascinating aspects of nucleomorph chromatin
biology.

The first major observation is that while nucleo-
morph histones are generally quite derived in all species,
this is much more so in chlorarachniophytes than in
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cryptophytes, with most of the classic sites of histone
modification completely missing in the former, and signif-
icantly higher conservation observed in the latter. How-
ever, even within cryptophytes one species, Cryptomonas
paramecium, also exhibits a significant divergence from
the conventional state and the loss of most key histone
mark residues. The evolutionary forces and biochemical
constraints responsible for these patterns remain to be
elucidated by future studies.

Second, it seems that typical heterochromatin is most
likely absent from nucleomorphs given that the key
residues participating in its formation have been lost.
This is not entirely surprising — the extremely small
size, compact nature and high transcriptional activity
[91] of nucleomorph chromosomes presumably elimi-
nates the need for heterochromatin, even in telomeric
regions.

A similar relaxation of biochemical constraints might
be behind the loss of the phosphorylation sites involved
in chromosome condensation during mitosis. The mech-
anisms of nucleomorph division, its regulation, as well
as the chromosome dynamics during the process, remain
very poorly understood, so future studies will have to
bring more light onto this subject. Still, it is conceivable
that nucleomorph chromatin is not compacted in a fash-
ion similar to that of autonomous eukaryote nuclei during
mitosis.

The most striking loss of functionality in nucleomorphs
is associated with transcription initiation and elonga-
tion. The potential for initiation-associated methylation
of H3K4 at least exists in cryptophytes, but is certainly
lost in chlorarachniophytes. The mechanisms for pro-
moter definition and the details of transcription initiation
in this context are at present a mystery. The situa-
tion is even more puzzling when it comes to transcrip-
tional elongation. It is possible that H3K79 methylation
is happening in cryptophytes, and H3K36 methylation
and H2BK120 ubiquitination cannot be confidently ruled
out, but they are almost certainly completely absent in
chlorarachniophytes. Equally striking is the absence of
heptad repeats from the tail of the RNA Polymerase
IT largest subunit. In total, these observations suggest
that both the nucleosome dynamics during transcrip-
tional elongation and the coupling of transcription with
mRNA processing have evolved to a highly derived state
in nucleomorphs. One possibility is that the high tran-
scriptional activity of nucleomorphs allows for a perma-
nently open nucleosome state; however, it is not clear
how cryptic transcription can be prevented if that is the
case, and such a hypothesis only explains the absence
of H3K36me3, but not that of Rpbl’s CTD repeats,
which are crucial for a wide variety of other processes
in addition to the acetylation/deacetylation cycle during
elongation.
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The poor conservation of many of the residues known
primarily for being acetylated (and not yet linked to
specific functions beyond that) is also not entirely sur-
prising, as the role of opening chromatin can probably
be taken over by other lysine residues (indeed, stud-
ies in yeast in which lysine residues have been sys-
tematically mutated have shown substantial redundancy
between acetylation sites [92, 93]). Histone acetylation is
almost certainly happening in nucleomorphs, as all six
nucleomorph genomes encode a single histone deacety-
lase protein, histone acetyltransferases are detected in all
cryptophyte nucleomorphs (Additionalf file 1: Figure S8),
and additional ones might be imported from the host
(although it is possible that they are retained because
of their importance for the acetylation of non-histone
proteins and not of histones themselves). Unfortunately,
the problem of identifying the complete set of readers
and writers of epigenetic marks in nucleomorphs is cur-
rently quite difficult because it is not known how many
and which proteins are imported from the host. Thus
while the presence of a given protein in the nucleo-
morph genome confirms its presence in the nucleomorph,
its absence from the genome does not necessarily mean
that it is not imported from the host; the histone genes
themselves are a prime example of the ubiquity of this
phenomenon.

Histone mark readers, writers, and erasers include the
Dotl methyltransferase, which methylates H3K79, no
examples of which are found in nucleomorphs genomes
(Additional file 1: Figure S8); SET domain proteins, which
deposit all other lysine methylations [94], two of which
are found in Chroomonas, Guillardia, and Hemiselmis
nucleomorphs, but none in Cryptomonas paramecium
and the chlorarachniophytes; histone acetyltransferases
(HATSs) [95] (found in cryptophyte nucleomorph genomes
but not in chlorarachniophytes); the sirtuin deacety-
lases [96] (also not present in any of the species);
bromodomain-containing proteins, which read acetyla-
tion marks [97] (found in some cryptophyte nucleo-
morphs); chromodomain-containing proteins, which read
lysine methylated residues [98] (none found in nucleo-
morphs); PHD finger proteins, readers of lysine and argi-
nine methylations [99] (also not present), and the Jumonyji
and LSD1 families of lysine demethylases [100] (not
present in nucleomorphs either). A putative SWI/SNF
chromatin remodeling protein is identified in most nucle-
omorphs, as is a Hira histone chaperone [101] in both
cryptophytes and Bigelowiella as well as an ASF1 his-
tone chaperone [101] in cryptophytes (Additional file 1:
Figure S8). No FACT homologs are identified, and
neither are DNA methyltransferases or other typical
eukaryotic DNA methylation-related proteins (methyl-
binding domains), which read DNA methylation in
eukaryotes.
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Conclusions

Overall, the observations presented here suggest that a
substantial fraction of the epigenomic toolkit has been
lost from nucleomorphs (consistent with the divergence of
their histone sequences) and much of whatever remains of
it has been transferred to the nucleus, as has happened to
many other genes previously resident in the nucleomorph
genome. The loss of the code has most likely happened
in concert with a loss of at least some of the chromatin
remodeling and regulation functionality that it is nor-
mally a part of. However, how much exactly has been lost
remains to be determined by future experiments. Given
that some of the processes concerned are fundamental to
the biology of transcription in eukaryotes, it is not easily
envisioned how they could have been lost. One tantalizing
possibility is that even if much of the conventional histone
code has been lost, substantial innovation has occurred in
parallel, and other residues have assumed the roles pre-
viously played by the classical modified residues known
from autonomous nuclei. The several large insertions in
histone proteins observed in Chroomonas, containing a
number of lysine residues, lending some support to such
an idea.

Future studies utilizing the power of modern pro-
teomics and functional genomics should provide insight
into these questions, by identifying the post-translational
modifications of nucleomorph histones, and by map-
ping the chromatin structure, the distribution of modified
histones, and the positions and identities of regu-
latory and transcriptional elements in nucleomorph
genomes.

Methods

Except where otherwise stated, all analyses were per-

formed using custom-written python scripts.
Nucleomorph genome sequences were obtained from

the NCBI nucleotide database (GenBank: DQ158858.1,

GenBank: DQ158857.1, GenBank: DQ158856.1,
GenBank: CP003682.1, GenBank: CP003681.1,
GenBank: CP003680.1, GenBank: CP002174.1,
GenBank: CP002173.1, GenBank: CP002172.1,
GenBank: NC_002753.1, GenBank: NC_002752.1,
GenBank: NC_002751.1, GenBank: CP000883.1,
GenBank: CP000881.1, GenBank: CP000881.1, Gen-

Bank: CP006629.1, GenBank: CP006628.1, GenBank:
CP006627.1).

Histone genes were annotated using a combination of
HMMER3.0 [29] scans against the Pfam 27.0 database
[30] (scanning for histone fold domains) and BLASTP
[31] searches (using histone sequences from Homo sapi-
ens, Saccharomyces cerevisiae, Drosophila melanogaster,
and Arabidopsis thaliana as queries). Multiple sequence
alignments were carried out using MUSCLE [102] and
visualized using Jalview [103].
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Chromatin modification and remodeling proteins were
identified using HMMER3.0, with an e-value cutoff of
1078, as well as an additional BLAST search using chro-
matin proteins from Homo sapiens, the red alga Cyanid-
ioschyzon merolae and the green algae Chlamydomonas
reinhardtii and Micromonas pusilla as queries.

Reviewers’ comments
Lakshminarayan lyer (Reviewer 1)
Marinov and Lynch provide a useful analysis of the
nucleomorph histone code using the existing completely
sequenced nucleomorph genomes. By comparing histone
sequences, the study brings into focus the unique aspects
of transcriptional/chromatin regulation in these nucleo-
morphs. In particular, one can posit what type of modifi-
cations are likely to be retained in these reduced genomes,
of which some might be provided from their eukaryotic
hosts. The sequence analysis of the histones is thorough.
I do have a few additional pointers that pertains to the
discussion and supplementary Figure 4. Comments: 1.
The list of domains involved in post-translational mod-
ifications that were analyzed isnt complete (For other
domains including readers and modifiers see PMIDs:
21507350, 21507349, 19092802). It would be prudent to
check domains such as CXXC, LSD1, SAD/SRA and so on.
2. A word of caution: some PTM proteins and readers can
diverge, so searches with individual proteins as starting
points in addition to running automatic profiles should be
done. For example, I detected a GCN5 acetyltransferase
in the Guillardia theta nucleomorph (gi: 162606188) pos-
sessing both the acetylase and bromo domains. This is
in line with the conservation of lysine residues in H3
such as H3K9, H3K14 and H3K23 that are substrates for
this acetylase, in this nucleomorph. I have not checked
the other nucleomorph genomes, but it might be pru-
dent to check individual genomes carefully for divergent
homologs.

Authors response: Thank you for you suggestions. The
analysis of chromatin modifying and remodeling proteins
has been updated accordingly.

Berend Snel (Reviewer 2)

Reviewer summary

The authors present an in depth analysis of the align-
ments of the histone proteins of nucleomorph genomes to
reveal the evolutionary fate of the histone code of these
genomes. Although the histone residues provide inter-
esting and relevant discussion, I missed certain analyses
and information which I think should be added. Moreover
the results are somewhat limited as it basically consists
of 2 alignments with some textual description of histone
modifying enzymes, and without additional phylogenetic
analysis.
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Reviewer recommendations to authors

Upon first reading the manuscript quite some relevant
information which at least for me was necessary to under-
stand the story was missing or only presented in the
discussion. Specifically the following issues are I think
unclear or missing but needed for context or as results.
First that the machinery for depositing relevant histone
marks is needed to modify the histones, and to what
extent this machinery is present on the nucleomoprh
genome or the host nuclear genome. And if it is present on
the nuclear genome, to what extend these proteins might
or might not be targeted to the nucleomoprh nucleus.
These points are to a certain extent present in the dis-
cussion, but part of these points are results and should
be in the results (e.g. the histone modification enzymes
encoded by the nuclear host genome as discussed on page
8). Other points are not sufficiently discussed at all while
they are relevant for the interpretation. I specifically think
that the manuscript insufficiently discusses what we know
about proteins being translocated to the nucleomorph.
What signals are present in sequences being targeted to
the nuceomorph and if bioinformatics or proteomics can
or has helped in identifying such proteins.

Authors response: The reasons we did not do a thor-
ough analysis of the nuclear genomes are that first, we only
have nuclear genome sequences for one chlorarachniophyte
(Bigelowiella) and one cryptophyte species (Guillardia),
thus there was no way to generalize results over the whole
of each group, and second and more important, in silico
nucleomorph targeting predictions are very far from being
reliable. Direct proteomic measurements exist only for the
Bigelowiella natans nucleomorph [104] and that particu-
lar study only identified 324 proteins. Of those, only half
had predicted SP and/or TP targeting sequences, and the
imported histones and transcription factors had no obvious
such sequences at all.

After reading the manuscript I was convinced that
the nucleomorph histones are indeed quite diverged but
this information cannot be fully interpreted if its (pre-
dicted) proteomic context is not at least partially provided.
Related to the previous point. Obviously the nuclear host
genome can also encode proteins of nucleomorph origin.
And some of these might still be active in the nucle-
omorph cytoplasm or nucleus. In addition, the nucle-
omorph encoded histones of especially the chlorarach-
niophyte are so diverged I was wondering if they are in
fact even orthologous to H3 or H4. Both of these issues
could perhaps be clarified by constructing gene trees
(although that is exceedingly difficult for histone proteins
and especially for such highly diverged proteins). Never-
theless it would be very interesting if such a gene tree
would show for example a host nuclear encoded protein
in Bigelowiella that is closely related to the green algae.
Even in the absence of any firm biochemical knowlegde on
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the transfer mechanism such a gene would provide good
candidates for a potential histone protein that could be
active in the nucleomorph nucleus and could “rescue” the
diverged nucleomorph encoded protein. A quick panther
scan of the Bigelowiella genome with the H3 profile finds 9
predicted histone H3 proteins. This number indeed raises
the question of paralogy, orthology and orther “pseudo”
orthologs originated by nuclear transfers of secondary
endosymbiosis.

Authors response: We did not initially carry out a phy-
logenetic analysis of all Bigelowiella and Guillardia his-
tone proteins because that has been previously done in
Hirakawa et al. 2011, while our focus was on the func-
tional inferences we can generate based on the sequences,
as a starting point towards a future experimental dis-
section of that functionality. An updated such analysis
will be of great interest in the future when more nuclear
genomes become available, but at the moment there are
only these two. We have included phylogenetic trees of the
relevant sequences using transcriptome assemblies from
the Marine Microbial Eukaryote Transcriptome Sequenc-
ing Project (MMETSP) [105] as supplementary figures in
the revised manuscript.

Minor issues
I do not understand why the alignments in Figs. 1, 2 and
3 are presented in the way they are. i.e. why is the for
example the alignment of reference eukaryote H3 with
histone H3 of Bigelowiella a separate alignment from that
of Lotharella? I see no reason why this could not be a single
alignment. Normally I would also expect the cryptophyte
histones to be in a single alignment with the reference
species.

Authors response: The figures have been modified
according to the reviewer’s suggestions.

Additional file

Additional file 1: Supplementary Figures. (PDF 7127 kb)
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