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Abstract

Background: Epigenetic regulation contributes to many important processes in biological cells. Examples include
developmental processes, differentiation and maturation of stem cells, evolution of malignancy and other. Cell cycle
regulation has been subject of mathematical modeling by a number of authors that resulted in many interesting
models and application of analytic techniques ranging from stochastic processes to partial differential equations
and to integral, functional and operator equations. In this paper we address the question of how the regulation of
protein contents influences the long-term dynamics of the population. To accomplish this, we follow the
philosophy of a 1984 model by Kimmel et al., but adjust the details to fit the experimental data on protein PRC1
from a more recent paper.

Results: We built a model of cell cycle dynamics of the PRC1 and fitted it to the data made available by Cohen
and his co-authors. We have run the model for a large number of cell generations, recording the PRC1 contents in
all cells of the resulting pedigree, at constant time intervals. During cell division the PRC1 is unequally divided
between daughter cells. The picture emerging from simulations of Data set 1 is that of a very well-tuned regulatory
circuit that provides a stable distribution of PRC1 contents and interdivision times. Data set 2 seems qualitatively
different, with more variation in cell cycle duration.

Conclusions: The main question we address is whether the regulatory feedbacks deduced from single cell cycle
data provide epigenetic regulation of cell characteristics in long run. PRC1 is a good candidate because of its role in
setting timing of division. Findings of the current paper include tight regulation of the cell cycle (particularly the
timing of the cell cycle) even that PRC1 is only one of the players in cell dynamics. Understanding that association,
even close, does not necessarily imply causation, we consider this an interesting and important result.

Reviewers: This article was reviewed by Ollivier Hyrien, Anna Marciniak-Czochra and Alberto d’Onofrio.
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Background
Epigenetic regulation contributes to many important pro-
cesses in biological cells. Examples include developmental
processes, differentiation and maturation of stem cells,
evolution of malignancy and other [1]. One of the pro-
cesses, which have been studied for at least several de-
cades, is regulation of cell size and cell cycle duration.
More specifically, how the dynamics of protein production
and the manner in which proteins are split between the
two progeny cells leads to preservation of cell population

age and size structure (homeostasis). A related question is
under what circumstances these dynamics lead to phe-
nomena such as bimodality and, as a consequence, separ-
ation of distinct cell subpopulations.
Cell cycle regulation has been subject of mathematical

modeling by a number of authors which resulted in
many interesting models and application of analytic
techniques ranging from stochastic processes to partial
differential equations and to integral, functional and op-
erator equations [2, 3]. Some of the models have been
applied to data on bacterial and eukaryotic cells, also in
the context of cancer modeling [4].
An example of an early model devised to capture cell

cycle regulation and unequal division of mass among pro-
geny cells, is the model by Kimmel et al. [5] (Fig. 1), which
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considers the dynamics of the distribution of the total
mass of cell RNA in a growing cell population. In that
model, the birth-mass of a cell, represented by random
variable (rv) X0, determines both the mass at division, X2,
and the time,T, to division (cell-cycle duration).

X2 ¼ ϕ X0ð Þ; T ¼ ψ X0ð Þ ð1Þ
At division, the parent-cell mass is randomly split be-

tween the two progeny cells, according to the expression

X0
0 ¼ UX2; X0} ¼ 1−Uð ÞX2 ð2Þ

in which the rv U is independent of rv X2, and it is
distributed symmetrically over the interval (0, 1), so
that E(U) = 1/2. Uneven partition of mass among progeny
cells is the only source of randomness in the basic model.
A more general version of the model retains the determin-
istic mass growth, but includes stochastic time to division
[6]. In other models, the growth of mass is deterministic or

Fig. 1 Schematics of the models of asymmetric division. a Model of Kimmel et al. (1984). Birth-mass of a cell, represented by random variable (rv)
X0, determines both the mass at division, X2, and the time, T, to division (cell-cycle duration): which considers the dynamics of the distribution of
the total mass of cell RNA in a growing cell population. In that model, the birth-mass of a cell, represented by random variable (rv) X0, determines
both the mass at division, X2, and the time, T, to division (cell-cycle duration): X2 = ϕ(X0), T = ψ(X0). At division, the parent-cell mass is randomly
split between the two progeny cells, according to the expression X0 ' = UX2, X0 ' ' = (1 − U)X2 in which the random variable U is independent of rv
X2, and it is distributed symmetrically over the interval (0, 1), so that E(U) = 1/2. Uneven partition of mass among progeny cells is the only source
of randomness in the basic model. b Model of Kimmel (1997). Large particles (biological cells), follow a binary fission process. Each of the large
particles is born containing a number of small particles (genes, proteins, viruses, organelles), which multiply or decay during the large particles
lifetime. Small particles are then split between the two progeny of the large particle and the process continues in each of them
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stochastic and division occurs when a randomly assigned
mass threshold is reached [3]. The model leads to stable
exponential growth, a process in which the numbers of
cells in all possible subsets of (X0, X2,T) values grow expo-
nentially at a rate defined by a Malthusian parameter λ.
Please see the Conclusions Section for further remarks.
Cell-to-cell differences are present in any cell population.

The sources of variation in population include the extrinsic
and intrinsic noise and are well characterized for many cell
types (e.g., [7, 8]). Non-genetic intrinsic heterogeneity stems
from the random (thermal) nature of interaction of individ-
ual molecules, such as mRNA and proteins. Since some of
these biomolecules are present in a relatively small number
in a cell, their stochastic fluctuations are, unlike in classical
test-tube chemistry, not averaged out [1]. As stated above,
an equally important source of heterogeneity is the unequal
distribution of cellular mRNA and proteins between two
daughter cells after cell division.
In this paper we address the question of how the regula-

tion of protein contents influences the long-term dynamics
of the population. To accomplish this, we follow the phil-
osophy of Kimmel et al. model [5], but adjust the details to
fit the experimental data on protein PRC1 from the paper
by Cohen et al. [9]. PRC1 protein is expressed at relatively
high levels during S and G2/M phases of the cell cycle be-
fore dropping dramatically after mitotic exit and entrance
into G1 phase. PRC1 is a substrate of several cyclin-
dependent kinases (CDKs) and it has become a novel hu-
man protein of cytokinetic importance since its identifica-
tion [10]. PRC1 takes part in midzone microtubule
formation and is essential to the cytokinetic machinery of
mammals, via collaboration with Kinesin-4 in setting up a
controlled zone of overlapping, antiparallel microtubules
at the spindle midzone [11]. Upon anaphase onset and re-
moval of inhibitory CDK1 phosphorylation, PRC1 dimers
form, which recruit Kinesin-4, a plus-end directed motor
protein that inhibits microtubule dynamics, helps stabilize
and regulate spindle microtubule assembly within cytokin-
esis. The PRC1-Kinesin-4 complex identifies and regulates
the spindle midzone microtubules during cell division,
which is crucial in order for cytokinesis to progress prop-
erly. Our model assumes that PRC1 dynamics contributes
to determination of the duration of the cell cycle, with in-
fluence of other factors represented as noise.
Further information concerning the role of PRC1 is

found in the papers [12–16]: The role of PRC1 in cancer
has been considered in references [12, 17] and the role
in radiation resistance and stemness in reference [18].

Methods
Hypotheses
As already mentioned, the model we use is patterned
after the model by Kimmel et al. [5]. Dynamics of PRC1
during a single cell cycle are separated into two phases:

degradation and accumulation. The following variables
are used to describe the two phases:
X0 – the number of PRC1 molecules at the beginning

of the cell cycle,
X1 – minimum number of molecules, at the end of the

degradation phase and the beginning of the accumula-
tion phase,
X2 – number of molecules at the end of the cell cycle,
T1 - duration of the degradation phase,
T2 – duration of the accumulation phase,
a – protein degradation rate, and
b – protein production rate.
We assume that in the degradation phase the dynam-

ics of the protein are described as exponential decay,
while in the accumulation phase they are described as
exponential growth

X1 ¼ X0 exp −aT 1ð Þ; X2 ¼ X1 exp bT2ð Þ ð3Þ
We assume that following cell division, the protein is

split unequally among the two progeny cells according to
expressions (2). In the balanced exponential growth, X0, X2,
and U are distributed identically in each cell and so we
have X0 =UX2 which by independence of X2 and U implies

V X0ð Þ ¼ E X2
2

� �
E U2
� �

−E X2ð Þ2E Uð Þ2
¼ V X2ð ÞE U2

� �þ E X2ð Þ2V Uð Þ

V X0ð Þ
E X0ð Þ2 ¼

V X2ð ÞE U2
� �

E X0ð Þ2 þ E X2ð Þ2V Uð Þ
E X0ð Þ2

Considering that because of symmetry E(U) = 1/2 and
E(X0) = E(X2)/2 we obtain

V X0ð Þ
E X0ð Þ2 ¼ 4

V X2ð ÞE U2
� �

E X2ð Þ2 þ 4V Uð Þ

and passing to the coefficients of variation
ðcvX ¼ ffiffiffiffiffiffiffiffiffiffiffi

V Xð Þp
=E Xð Þ for rv X), we obtain

cv2X0
¼ cv2U cv2X2

þ 1
� �

þ cv2X2

Solving the above for cvU
2 results in

cv2U ¼ cv2X0
−cv2X2

cv2X2
þ 1

ð4Þ

Data-based model building
We have at our disposal the four PRC1 data sets available
from the Supplemental Data to reference [9]. Each of the
data sets consists of individual-cell measurements of
PRC1 contents collected at constant time intervals. The
trajectories are depicted in Fig. 2, the legend of which con-
tains the relevant details. Briefly, after division, the level of
PRC1 decreases and then increases, to reach a maximum
value immediately before division.
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Fig. 2 Empirical and simulated trajectories of the PRC1 protein content for the 4 data sets from reference [9]. a Data set 1. Published in the main
body of [9] The composite picture includes illustration of outlier removal, empirical trajectories excluding outliers, and simulated trajectories.
b Data set 2. We use it for comparison with Data set 1. (c and d) Data sets 3 and 4
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Fig. 2 (continued)
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Detailed model description and estimation
Based on data analysis, the model entails the following
detailed principles:

1. ln(a) depends linearly on X0 with additive Gaussian
noise,

2. ln(T1) (T1 in case of Data set 2) depends linearly on
ln(a) with additive Gaussian noise,

3.

X1 ¼ X0 exp −aT 1ð Þ;

4. ln(b) depends linearly on ln(a) and X1 with additive
Gaussian noise,

5. T2 depends linearly on T1 with additive Gaussian noise,
6.

X2 ¼ X1 exp bT 2ð Þ;

7. X0 ' =UX2, X0 ' ' = (1 −U)X2, i.e., in multi-generation
simulations, the next-generation starting protein
contents are modeled using Eq. 2, where the
distribution of the random variable U is assumed to
belong to the Beta-family.

Table 1 depicts the correlations computed from the
data. They indicate a strong positive correlation be-
tween ln(a) and X0, which supports item 1 above. Simi-
larly, there exists a strong negative correlation between
ln(T1) and ln(a), which supports item 2. For Data set 2,
the correlation is slightly better for T1 and ln(a). Then,
X1 can be computed from the exponential decay expres-
sion as in item 3. Further, there exists a strong positive
correlation between ln(b) and ln(a), and a strong negative
correlation between ln(b) and X1, which supports item 4.
Finally, there exists a strong negative correlation between
T1 and T2, which supports item 5. Then, X2 can be com-
puted from the exponential growth expression as in item 6.

Detection and removal of outliers in the data
The first step was finding and removing the outlier
trajectories of PRC1 protein. In all 4 data sets the indi-
vidual measurements differed with respect to the dy-
namic of this protein. We decided that the most
important is how much the amount of PRC1 increases
during cell cycle. When the X2/X0, ratio was calculated,
in raw data in some cells the number of protein mole-
cules at the end of the cell cycle was up to fifty times
higher than at the beginning, which is biologically un-
likely. We use a modification of Tukey test to eliminate
the outliers [19]. Figure 2 shows the X2/X0 ratio and dis-
tributions before and after removal of outliers.
We believe that outliers result from measurement er-

rors. The beginning or the end of the cell cycle might
have been identified incorrectly.

Table 1 Data-derived correlations between pairs of variables
characterizing the PRC1 trajectories in Data sets 1–4

Data set 1

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 −0.02

X2 0.30 0.11

T1 −0.08 0.25 −0.05

T2 0.05 −0.25 0.15 −0.62

T1 + T2 −0.03 −0.02 0.13 0.39 0.48

a 0.24 −0.58 0.06 −0.75 0.57 −0.17

ln(a) 0.31 −0.71 0.05 −0.76 0.55 −0.21 0.93

b 0.05 −0.71 0.18 0.11 −0.29 −0.22 0.29 0.38

ln(b) 0.05 −0.75 0.19 0.10 −0.27 −0.21 0.30 0.41 0.98

Data set 2

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 0.06

X2 0.35 0.19

T1 0.22 0.13 0.00

T2 0.07 −0.22 0.32 −0.42

T1 + T2 0.26 −0.11 0.31 0.45 0.62

a −0.03 −0.63 −0.04 −0.59 0.24 −0.27

ln(a) 0.10 −0.77 −0.01 −0.66 0.43 −0.12 0.87

b −0.02 −0.78 0.11 −0.04 −0.12 −0.14 0.63 0.60

ln(b) −0.01 −0.81 0.12 0.02 −0.12 −0.10 0.60 0.59 0.99

Data set 3

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 0.06

X2 0.26 0.29

T1 0.23 0.12 0.02

T2 0.09 −0.19 0.33 −0.34

T1 + T2 0.27 −0.08 0.32 0.47 0.67

a 0.03 −0.63 −0.10 −0.55 0.22 −0.23

ln(a) 0.17 −0.76 −0.11 −0.61 0.38 −0.10 0.88

b −0.04 −0.77 0.04 −0.06 −0.15 −0.19 0.62 0.59

ln(b) −0.03 −0.79 0.06 0.00 −0.15 −0.14 0.58 0.57 0.99

Data set 4

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 0.21

X2 0.31 0.18

T1 0.31 0.19 0.06

T2 0.26 −0.39 0.50 −0.11

T1 + T2 0.41 −0.25 0.48 0.44 0.84

a 0.17 −0.58 0.03 −0.40 0.41 0.16

ln(a) 0.23 −0.66 0.01 −0.36 0.48 0.27 0.84

b −0.22 −0.73 −0.07 −0.03 −0.04 −0.06 0.49 0.46

ln(b) −0.25 −0.79 −0.06 −0.06 0.00 −0.03 0.48 0.46 0.97
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Estimation of model parameters
Following determination of the structure of the model,
estimation of the coefficients of the linear relationships
and the variances of noise has been accomplished using
standard regression techniques [19]. Final relationships
for Data set 1 are presented in Table 2. Table 3 presents
the simulation-based counterparts of experimental
correlations from Table 1 (Data set 1). Each cell has
different values of all parameters.
Comparison of the scatterplots of experimental vs.

model-based relationships among model variables is
depicted in Fig. 3 (Data sets 1–4). Comparison demon-
strates a very good agreement of experiment and model-
based data, especially for Data set 1, which was used to
construct the model.
We have not observed many cases where calculated

parameter was negative. Nevertheless, when such a case

Table 2 Regression-based coefficients for the 4 versions of the
model based on Data sets 1–4, respectively

Data set 1

1 X0 ln(a) T1 X1 ε

ln(a) −1.600 3.9 × 10−6 - - - N(0, 0.62)

ln(T1) 1.110 - −0.514 - - N(0, 0.124)

ln(b) −1.570 - −0.100 - −1.78 × 10
−5

N(0, 0.07)

T2 19.970 - - −0.6564 - N(0, 1.62)

Data set 2

1 X0 ln(a) T1 X1 ε

ln(a) −3.37 7.82 × 10
−5

- - - N(0,0.45)

T1 4.81 0.0465 - - N(0,2.00)

ln(b) −1.7 - −0.0157 - −9.89 × 10
−5

N(0,0.08)

T2 18.93 - - −0.75 - N(0,2.54)

Data set 3

1 X0 ln(a) T1 X1 ε

ln(a) −1.75 5.01 × 10
−6

- - - N(0,0.
0.35)

ln(T1) 1.18 −0.349 - - N(0,0.15)

ln(b) −1.8 - −0.0151 - −2.12 × 10
−5

N(0,0.09)

T2 19.91 - - −0.40 - N(0,2.53)

Data set 4

1 X0 ln(a) T1 X1 ε

ln(a) −2.10 1.39 × 10
−5

- - - N(0,0.485)

ln(T1) 1.41 −0.1123 - - N(0,0.11)

ln(b) −1.9 - −0.0437 - −3.16 × 10
−5

N(0,0.11)

T2 20.90 - - −0.37 - N(0,2.16)

Table 3 Simulation-based correlations between pairs of
variables characterizing the PRC1 trajectories in Data sets 1–4

Data set 1

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 0.23

X2 −0.04 0.08

T1 −0.25 0.55 −0.06

T2 0.16 −0.34 0.56 −0.62

T1 + T2 −0.08 0.20 0.60 0.37 0.60

a 0.34 −0.63 −0.20 −0.75 −0.20 −0.29

ln(a) 0.30 −0.74 −0.09 −0.91 −0.09 −0.33 0.91

b −0.34 −0.90 0.09 −0.36 0.09 −0.13 0.46 0.54

ln(b) −0.36 −0.91 0.10 −0.35 0.10 −0.13 0.44 0.53 0.99

Data set 2

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 −0.03

X2 −0.28 0.33

T1 0.04 −0.58 −0.42

T2 −0.04 0.27 0.79 −0.48

T1 + T2 −0.02 −0.12 0.56 0.21 0.56

a 0.75 −0.45 −0.34 0.04 −0.34 −0.01

ln(a) 0.77 −0.40 −0.29 0.06 −0.29 0.00 0.89

b 0.12 −0.94 −0.31 0.54 −0.31 0.11 0.53 0.45

ln(b) 0.00 −0.97 −0.25 0.56 −0.25 0.12 0.42 0.36 0.97

Data set 3

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 0.57

X2 0.16 0.25

T1 −0.19 −0.03 −0.11

T2 0.03 0.01 0.75 −0.17

T1 + T2 −0.05 0.00 0.68 0.25 0.68

a 0.31 −0.43 −0.09 −0.60 −0.09 −0.16

ln(a) 0.31 −0.43 −0.07 −0.63 −0.07 −0.17 0.97

b −0.50 −0.86 0.01 0.04 0.01 0.01 0.38 0.37

ln(b) −0.51 −0.88 0.01 0.04 0.01 0.01 0.37 0.37 0.99

Data set 4

X0 X1 X2 T1 T2 T1 + T2 a ln(a) b

X1 0.33

X2 0.01 0.31

T1 −0.20 0.10 0.06

T2 0.01 −0.01 0.57 −0.10

T1 + T2 −0.05 0.02 0.58 0.19 0.58

a 0.43 −0.59 −0.35 −0.44 −0.35 −0.10

ln(a) 0.45 −0.60 −0.29 −0.48 −0.29 −0.10 0.93

b −0.34 −0.87 −0.03 −0.05 −0.03 −0.01 0.50 0.48

ln(b) −0.35 −0.90 −0.02 −0.05 −0.02 −0.01 0.48 0.48 0.98
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Fig. 3 Data-based vs. simulation-based scatterplots of relationships among principal model variables for Data sets 1–4 (a–d). Symbols: data-based,
red diamonds; simulation-based, blue triangles
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happened we rejected the calculated parameter and draw
another ε value. Effectively, this means we use Gaussian
noise, conditional on nonnegativity.
As for the unequal division, the coefficient of vari-

ation of the random variable U, characterizing the
asymmetry of division, is estimated from Eq. (4). In
simulations, the amount of proteins received by daugh-
ter cells was sampled from a symmetric beta distribu-
tion, which has the variance equal to V(U) = (8α + 4)− 1.
Values of parameters of beta for all data sets are depicted
in Table 4.

Results and discussion
Simulations of population dynamics
We have run the model for a large number of cell
generations, recording the PRC1 contents in all cells of
the resulting pedigree, at constant time intervals. To
generate the population of cells, simulation was started
with a single ancestor cell. During cell division the
PRC1 is unequally divided between daughter cells as
described above.
Results of long-term simulations of the model based

on Data sets 1 and 2 are presented in Fig. 4. The picture
emerging from simulations of Data set 1 is that of a
very well-tuned regulatory circuit that provides a
stable distribution of PRC1 contents and interdivision
times. Outliers, being usually particularly high values
of X2 appear sporadically and are eliminated in the
succeeding 1 or 2 generations. Data set 2 seems quali-
tatively different, with more variation in cell cycle
duration.

Simplified mathematical model explaining the cell cycle
regulation
The equations of the model can be written explicitly,
including the noise terms, based on the detailed model
description (items 1–6 from the list earlier on), with

parameter values depending on the data set, as listed
in Table 2. It is instructive to consider a model stripped
of noise, which very clearly shows the straightforward
nature of cell cycle regulation as estimated from the
data. The model will be shown to be very robust to
noise introduced by asymmetric division and, at least

Table 4 Parameters of the beta distribution of the random
variable U, characterizing the asymmetry of division

Data set 1

α 29.29

β 29.29

Data set 2

α 15.79

β 15.79

Data set 3

α 35.41

β 35.41

Data set 4

α 25.95

β 25.95
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Fig. 4 Results of long-term simulations of the model based on Data
set 1 (a) and Data set 2 (b). Composite figures include: Dynamics of
the time series of the PRC1 contents in a randomly chosen lineage
of descendants of the ancestor cell; and color-scale depiction
of the simulated genealogies in linear scale (highlighting outliers) and
semi-logarithmic scale
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numerically, this can be extended to any source of noise.
The equations of the model without noise are as
follows:

ln að Þ ¼ b1 þ b10X0

ln T1ð Þ ¼ b2 þ b21 ln að Þ Data sets 1; 3; 4ð Þ
T 1 ¼ b2 þ b21 ln að Þ Data set 2ð Þ
ln X1ð Þ ¼ ln X0ð Þ−aT 1

ln bð Þ ¼ b4 þ b41 ln að Þ þ b43X1

T 2 ¼ b5 þ b52T1

ln X2ð Þ ¼ ln X1ð Þ þ bT 2

ð5Þ

Explicit expressions for all the variables can be
found, although they are cumbersome. In particular,
we obtain the functions X2 = ϕ(X0), T = ψ(X0), with
T = T1 + T2, which define the Kimmel et al. model [5].
Figure 5 depicts X1, X2, T1, and T2, as functions of
X0, for Data sets 1 and 2. The relationships are
somewhat different in both cases; Data set 1 exhibits
monotonous increasing dependence of X2 on X0,

while for the Data set 2, the X2 graph attains a max-
imum and then decays to 0. Remarkably, T1, and T2

are practically constant as functions of X0 in both
cases.
In the case of the deterministic model (5), if in addition

the divisions are symmetric, the equilibrium value of X0

satisfies the equation

X0 ¼ ϕ X0ð Þ=2 ð6Þ
as shown in Fig. 6. However, with asymmetric division,

the equilibrium is disrupted since

X0
0 ¼ Uϕ X0ð Þ ð7Þ

where X0 ' is the initial PRC1 contents in the randomly
chosen progeny. This results in the values of X0 oscillating
from one generation to another, while the values of X2 =
ϕ(X0) are much less affected (Fig. 7), which illustrates the
efficiency of the regulatory mechanism. This is exactly the

Fig. 5 Relationships derived from the deterministic version of the
model based on Data sets 1 (a) and 2 (b). Horizontal axis, X0, graphs
depict variables X1, X2, T1 and T2, as functions of X0

Fig. 6 Graphical depiction of the equilibria based on the model
and Data sets 1 (a) and 2 (b). Horizontal axis, X0, graph of X2 as
a function of X0 (continuous line), intersected with the graph
of 2X0
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case considered in [5] and in [20] and the equilibrium
distribution can be computed using methods of these
papers. Finally, if the full stochastic model is used, then
both X0 and X2 oscillate, since the uncertainty embedded
in the model counteracts the regulatory feedback. This
latter case has not been studied analytically.

Parent-progeny and sib-sib correlations
These correlations were computed in [9] for Data set 1.
We present model-based correlations in Fig. 8. They are
somewhat different from those in the original paper,
which however may be the question of scaling and
color-coding.

Conclusions
It is interesting and important to understand the mecha-
nisms of epigenetic regulation in proliferating eukaryotic

cells. There exist a number of models, with very strong
experimental background, which explain the interplay of
signaling pathways underlying the timing of cell division
including stochastic effects [21]. In addition to this, there
exists a very large body of literature addressing experi-
mental relationships among cell size at birth, duration of
the cell cycle and asymmetry of division. Idiosyncratically,
we may mention models of Kimmel et al. [5], Dyson et al.
[3], and Di Talia et al. [22]. One of these models [23] based
on observations on embryonic cells led to a bimodal
distribution of cell sizes in the population.
Asymmetry of division has been deemed to play a major

role in generation of variability in cell populations. Various
molecular mechanisms may underlie asymmetric cell div-
ision. For example, in our previous works, we use a sto-
chastic model based on branching processes, which
qualitatively describe new wave of single cell-based

Fig. 7 Oscillations of the PRC1 levels before and after division, generated by models based on Data sets 1 (a) and 2 (b). For several generations
of a randomly chosen lineage started by an ancestral cell, series of values of X0 and X2 (interpolated by smooth lines for optical convenience) are
depicted. Continuous lines, X0; dashed lines X2. For the case of a deterministic model with asymmetry of divisions being the only source of
randomness, the continuous line is superimposed on the reference deterministic equilibrium
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observation. The model, originally devised in [24] to
model evolution of unstable gene amplification and then
analyzed mathematically by other, is presented in Fig. 1b.
We consider a set of large particles (biological cells),
following a binary fission process. Each of the large parti-
cles is born containing a number of small particles (genes,
proteins, viruses, organelles), which multiply or decay
during the large particle’s lifetime. The arising population
of small particles is then split between the two progeny of
the large particle and the process continues in each of
the progeny. This “division-within-division” or “branch-
ing-within-branching” occurs in various settings in cell
and molecular biology. Examples include tightly regulated
phenomena such as replication of chromosomal DNA,
but also processes in which the number of objects pro-
duced in each biological cell is a random variable.
Recent progress in single-cell measurement tech-

niques enabled a much more precise look at cell cycle
kinetic in individual cells. We based our modeling up-
to-date on the publicly available data from Alon’s la-
boratory. They tracked levels of a number of cell-cycle
related and other proteins, some of them over a

number of cell cycles and presented synthetic statistics
for some of them [9].
Methodologically, we developed a relatively simple model

allowing peeling off layers of stochasticity, related to inter-
mediate stages in PRC1 regulation. The initial variability of
PRC1 is party cancelled by resetting it to a low level and
then increasing its contents until division. We do not know
how the timing of the minimum of PRC1 is related to the
cell-cycle phases; this is an interesting question in itself.
The model, when stripped of stochasticity except for
asymmetry of division, reduces to the old model of
Kimmel et al. [5], which has been completely character-
ized mathematically [20] using tools of the operator semi-
group theory.
It may be mentioned that in another paper, Arino and

Kimmel [25] analyzed a model, which included more sto-
chastic elements than the original model in ref. [5]. In that
model, in addition to the asymmetric division, the time
the progeny cell spends in the cycle is a random variable
with conditional distribution density given its birth size. It
has been demonstrated that this approach, originating in
the theory of branching processes, is essentially equivalent
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to the more typical (at the time) formulation in the form
of a transport partial differential equation with a nonlocal
feedback through boundary condition. For further discus-
sion, see ref. [25].
In the current paper, we used a mathematical model to

reproduce experimental trajectories of the PRC1 protein
published in [9] and extend the results to model long-range
dynamics of the cell population. The main question we ad-
dress is whether the regulatory feedbacks deduced from
single cell cycle data provide epigenetic regulation of cell
characteristics in long run. PRC1 protein is regulated by the
cell cycle. This protein is absolutely required in cytokinesis,
without it cell cannot divide to form two daughter cells
[26]. PRC1 is a good candidate because of its role in setting
timing of division. Findings of the current paper include
tight regulation of the cell cycle (particularly the timing of
the cell cycle) even that PRC1 is only one of the players in
cell dynamics. Understanding that association, even close,
does not necessarily imply causation, we consider this an
interesting and important result.
In recent publications authors analyzed single-cell

data. Authors of the first paper [27], used the Fucci
system (the first marker indicates G0/G1 phases, and the
second one the S/G2/M phases) to calculate the length
of the cell cycle and the cell cycle phases. They calcu-
lated correlations between parent-progeny (no correl-
ation), siblings and cousins (high correlations) cell cycle
lengths. Obtained results can be explained by circadian
clock control over the mammalian cell cycle in cell.
Dynamic of the two Fucci makers was not analyzed, so it
is difficult to compare ref. [28] with our work, which is
mainly focused on protein dynamics.
In another paper [28] authors analyzed what impact on

cell signal response intrinsic and extrinsic noise has and how
cells can eliminate variability causes by extrinsic noise. They
performed single-cell measurements of three key signal path-
ways: extracellular signal-regulated kinase, calcium and nu-
clear factor kappa-B. Again, this paper has a different focus.
Also recently, single-cell expression of cell cycle regu-

lators was analyzed in ref. [29], but the authors ex-
plained variability in cell cycle length in the terms of
a mammalian clock control. To confirm their theory
they proposed a simple linear mathematical model.
We used a more parsimonious paradigm of correlation
and regression methods to predict what directed influ-
ences on a cell cycle are caused by number of protein.
The novelty of the present study is the combination of sin-
gle cell experimental data, correlation analysis and math-
ematical modeling of individual cell dynamics.

Reviewers’ Comments
First of all we would like to thank the referees for their
comments and suggestions that were addressed as follows:

Reviewer’s report 1: Prof. Ollivier Hyrien, University of
Rochester
This manuscript deals with studying the contribution of
PRC1 to the regulation of the cell cycle. A mathematical
framework is proposed that describes (1) the dynamics of
PRC1 during the cell cycle, (2) the random allocation of
the protein at division, and (3) cell kinetics. The model is
interesting and developed based on an earlier stochastic
model proposed by Kimmel and colleagues (1984). An
application of this model is presented in which the au-
thors analyze data on the protein dynamics in H1299
non-small cell lung cancer cell lines published by
Cohen et al. (2009). Simulations indicate that the model
achieves a good description of experimental data.
Authors’ response: Thank you for a positive overview.
Page 5, Eq. 3. Are the parameters a and b constrained

to be positive? Are they random (i.e., cell-specific) or are
they identical across cells?
Authors’ response: Parameters a and b are always posi-

tive. Every cell has different values of these parameters.
Based on initial number of molecules (X0) we use linear
regression to calculate log(a)

log að Þ ¼ b1 þ b10X0 þ ε

b1, b10 and ε are as described in Table 2 (similar prin-
ciples are used to estimate log(b)). They differ among
data sets.
As you can see, we do not have to constrain a and b to

be positive.
We add additional information on page 5.
Page 6: “T2 depends linearly on T1 with additive Gaussian

noise”. Since T2 is a duration, perhaps what is meant here
is simply that T2 is linearly associated with T1, without
making any distributional assumption about the noise.
This would preserve the positivity of T2.
Authors’ response: The noise term is needed to obtain

agreement with the data. We have not observed many
cases where calculated T2 was a negative value. Never-
theless, when such case happened we rejected calculated
T2 and drew another ε value. Effectively, this means we
use Gaussian noise, conditional on nonnegative T2.
Page 7: “… at the end of the cell cycle was up to 50

times higher than at the beginning, which is biologically
unlikely”. Is it the beginning of the cell cycle of the
beginning of the accumulation phase. Also, could the
authors comment briefly on possible explanations for why
the ratio X2/X1 was so high in some cells? For example,
could this be due to the nonlinearity of the relationship
between fluorescence intensity and number of molecules,
or to measurement errors?
Authors’ response: Apologies for misprint. We calcu-

late the X2/X0 ratio, so the ratio between number of mol-
ecules at the beginning and at the end of the cell cycle.
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We believe that outliers result from measurement errors.
The beginning or the end of the cell cycle might have been
identified wrongly. The measurements were performed
before 2009, when cell tracking was less well developed.
Page 7: Was parameter estimation performed on the

trajectory of protein concentration for each cell indi-
vidually? Pages 8–9: In running model simulations, were
the random times T1 and T2 assumed to follow specific
distributions?
Authors’ response: Parameters in equations (5) were

estimated using data from all cells. In this paper, we
have not made any distributional assumptions, except
for Gaussian distributions of noise terms.
Page 9: The dependence structure induced by the as-

sumed mechanism of protein dynamics is an interesting
feature of the model. Could the authors elaborate on the
comparison between model-based correlations and those
obtained from experimental data?
Authors’ response: Model-based (Table 3) and data-

based correlations (Table 1) are in good agreement, particu-
larly when their absolute values are high. The agreement is
best for Data set 1, which was used as a reference to create
the model.

Reviewer’s report 2: Prof. Anna Marciniak-Czochra, University
of Heidelberg
Authors consider a mathematical model of epigenetic
control of the cell cycle, taking into account stochastic
effects and resulting heterogeneity of cell population.
Such models have been conceived in the past (see Kim-
mel’s own model published in 1984), but have been
largely abandoned for the lack of precise measurements
of biomolecules at a single-cell scale. The topic has be-
come important in part because of progress in quantifi-
cation and in part because of recent emphasis on
epigenetic controls of the cell cycle.
The model employs publicly available data from Alon’s

laboratory, in particular, single-cell trajectories of the
PRC1 protein involved in cell cycle controls. Using a mul-
tistep estimation procedure, authors successfully build a
model that reconstructs the stochastic dynamics at the
single-cell level and marginal and joint distributions of
most of the meaningful parameters. Authors also demon-
strate that if stripped of various layers of dynamics, the
model can be reduced to Kimmel et al. 1984 model of cell
cycle regulation. Also, it leads to cell population homeo-
stasis when run for extended times.
There are some interesting points that the authors

should address before the paper becomes suitable for
Biology Direct:
The model in its mathematical framework considers a

factor (protein) that may be an active regulator of the
cell cycle. It might be worthwhile to discuss if PRC1
qualifies as such factor.

Authors’ response: PRC1 protein is not an active
regulator of the cell cycle per se, but it is regulated by the
cell cycle. This protein is absolutely required in cytokinesis,
without it cell cannot divide to form two daughter cells.
More precisely, the central spindle bundle is not formed
and this prevents the final abscission event [26]. We think
that because of a strong correlation to cell-division events,
PRC1 protein qualifies to be used in our model.
Authors provide simulations of the long-term dynamics of

the model under variable levels of stochasticity. What is
missing is a discussion of mathematical results that might be
relevant for establishing long-term homeostasis of the model.
Authors’ response: Recently, single-cell expression of cell

cycle regulators was analyzed in ref. [29], but the authors
explained variability in cell cycle length in the terms of a
mammalian clock control. To confirm their theory they
proposed a simple linear mathematical model.
We used a more parsimonious paradigm of correlation

and regression methods to predict what directed influ-
ences on a cell cycle are caused by number of protein.
The novelty of the present study is the combination of
single cell experimental data, correlation analysis and
mathematical modeling of individual cell dynamics.
Finally, recently, there have been a number of new pa-

pers published, which either involve similar models, or
show new techniques for obtaining data at single-cell level
(see Nature 2015, 519, 468–471, or Science 2014, 346,
1370–1373). Enhanced discussion of these models, com-
pared to the model in the present manuscript, is desirable.
Authors’ response: In these two publications authors an-

alyzed single-cell data. Authors of the first paper [27], used
the Fucci system (the first marker indicates G0/G1 phases,
and the second one the S/G2/M phases) to calculate length
of cell cycle and cell cycle phases. They calculated correla-
tions between parent-progeny (no correlation), siblings and
cousins (high correlations) cell cycle lengths. Obtained
results can be explained by circadian clock control over
the mammalian cell cycle in cell. Proteins dynamic of
two makers was not analyzed, so it is hard to compare
that with our work, which is mainly focused on protein
dynamics.
In the second paper [28] authors analyses what impact

on cell signal response have intrinsic and extrinsic noise
and how cell can eliminate variability causes by extrinsic
noise. They performed single-cell measurements of three
key signal pathways: extracellular signal-regulated kin-
ase, calcium and nuclear factor kappa-B.

Reviewer’s report 3: Prof. Alberto d’Onofrio, International
Prevention Research Institute

In this computational epigenetics works the authors inves-
tigate how the regulation of the PRC1 protein content
influence the long term behaviour of a cellular population.
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The general topic of how epigenetic changes impact on
a population is one of the most important of molecular
biology, and it is at the interface between systems biology
and population dynamics. I think that the idea of the
manuscript is very good, the work is well written (apart an
important minor detail) and the results are of interest.
Authors’ response: Thank you for a very positive

comment.
I recommend its acceptance upon a minor but import-

ant change is implemented. The changes concerns that
fact the in this work the authors do not provide enough
mathematical details of the original model of unequal
divisions by Kimmel et al. (1984), which makes the paper
more difficult to be read for those who, differently form
myself, did not read it.
Authors’ response: We included additional informa-

tion about the model of Kimmel et al. 1984.
I suggest of inserting in the full text the supplemental

figure S1.
Authors’ response: We included Figure S1 in the main

body of the paper (currently Fig. 3)
There is some typos. For example in the abstract “we

follow the philosophy of a 1984 model by Kimmel model”
Authors’ response: Apologies for the typos. We corrected

all of them.
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