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Abstract

Background: The Michaelis-Menten equation, proposed a century ago, describes the kinetics of enzyme-catalyzed
biochemical reactions. Since then, this equation has been used in countless, increasingly complex models of cellular
metabolism, often including time-dependent enzyme levels. However, even for a single reaction, there remains a
fundamental disconnect between our understanding of the reaction kinetics, and the regulation of that reaction
through changes in the abundance of active enzyme.

Results: We revisit the Michaelis-Menten equation under the assumption of a time-dependent enzyme
concentration. We show that all temporal enzyme profiles with the same average enzyme level yield identical
substrate degradation– a simple analytical conclusion that can be thought of as an invariance principle, and which
we validate experimentally using a β-galactosidase assay. The ensemble of all time-dependent enzyme trajectories
with the same average concentration constitutes a space of functions. We develop a simple model of biological
fitness which assigns a cost to each of these trajectories (in the form of a function of functions, i.e. a functional). We
then show how one can use variational calculus to analytically infer temporal enzyme profiles that minimize the
overall enzyme cost. In particular, by separately treating the static costs of amino acid sequestration and the
dynamic costs of protein production, we identify a fundamental cellular tradeoff.

Conclusions: The overall metabolic outcome of a reaction described by Michaelis-Menten kinetics is ultimately
determined by the average concentration of the enzyme during a given time interval. This invariance in analogy to
path-independent phenomena in physics, suggests a new way in which variational calculus can be employed to
address biological questions. Together, our results point to possible avenues for a unified approach to studying
metabolism and its regulation.

Reviewers: This article was reviewed by Sergei Maslov, William Hlavacek and Daniel Kahn.
Background
Cells regulate enzyme levels and activities to address
specific metabolic demands. Despite the availability of
large metabolic and transcriptional data sets, under-
standing the logic and dynamics of metabolic regulation
remains a fundamental ongoing challenge [1,2,3]. This is
partly due to the fact that metabolic regulation depends
on the complex interplay between transcription, transla-
tion, post-translational modifications, and feedback from
metabolism itself [3,4]. While significant strides in this
field are increasingly being made at the level of genome-
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scale models of metabolic and regulatory networks [5,6],
one may wonder whether new insight can still be found
in the study of individual biochemical reactions. To this
end, we investigate how the rate of a biochemical reac-
tion is affected by the control and modification of its
crucial component, the catalyzing enzyme. We do so by
re-examining the classical Michaelis-Menten (MM) en-
zyme catalysis mechanism in conditions where the total
enzyme concentration changes over time.
While enzyme levels can change dramatically through-

out the lifetime of a cell, most mathematical models of
metabolism in which MM equations are used assume
constant enzyme levels. This assumption is often justi-
fied by the fact that enzyme levels change much slower
than the typical relaxation times of metabolic network
dynamics. Importantly, a number of authors have
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addressed the question of how the MM equation would
be modified, under different assumptions of a time-
dependent enzyme concentration (for example, the deg-
radation of enzyme) [7-15]. In addition, models simul-
taneously accounting for enzyme kinetics, enzyme
protein synthesis/degradation and genetic regulation
have been constructed for a number of specific biochem-
ical networks (for example, see [16-19]). However, a
deep understanding of the complex interplay between
these levels of biological organization still represents a
fundamental challenge.
In this work we show how certain properties of a bio-

chemical reaction with time-dependent enzyme concen-
tration can be summarized and explored through a very
simple analytical re-elaboration of the classical MM
equation. In particular, we show that the apparent diver-
sity of behaviors ensuing from different enzyme trajec-
tories can be reduced to the extreme simplicity of an
invariance principle. This principle analytically relates
the amount of substrate consumed in a given period of
time to the average enzyme level during that interval, ir-
respective of the specific enzyme level trajectory. We
analytically illustrate how this simple dependence may
be extended to more complex single-enzyme reactions,
and experimentally verify the invariance to average en-
zyme levels using a β-galactosidase assay. In the final
section, using variational calculus, we apply this invari-
ance principle to ask whether specific enzyme trajector-
ies may be optimally advantageous to the cell under
different assumptions on the relative costs associated
with producing large amounts of enzyme slowly, versus
producing modest amounts of enzyme quickly. Using
classical concepts from optimal control theory and vari-
ational calculus, we show how such questions may be
answered analytically.

Results
Michaelis-Menten kinetics depends on average enzyme
levels
Consider an enzymatically-catalyzed biochemical reac-
tion, in which a substrate S is degraded to a product
P through the action of an enzyme E:

EU þ S ��→k1

←��k�1

C ��→k2 P þ EU ð1Þ

When the total concentration of enzyme E = EU + C
(the sum of unbound enzyme EU and enzyme-substrate
complex C) remains low throughout the course of the
reaction (i.e. E << KM + S, where KM = (k−1+k2)/k1),
Michaelis-Menten (MM) kinetics can be used to model
the reaction (i.e. by applying the quasi-steady-state as-
sumption, see [20]). We further assume that E changes
at a characteristic rate that is much slower than the
rapid equilibration of C, but we do not assume that it is
constant. Instead, as is often done in modeling of hybrid
metabolic-genetic circuits [21,22], we explicitly treat the
concentration of enzyme as a function of time, E(t).
Then, the resulting dynamics of S can be described by
the modified MM equation:

dS
dt

¼ � k2E tð ÞS
KM þ S

ð2Þ

with initial conditions E(t0) = E0, S(t0) = S0. The main
question we ask is: how does substrate dynamics depend
on the details of E(t)? To answer this question, we re-
arrange Equation (2), so as to isolate S(t) and E(t) on op-
posite sides of the equation:

KM þ S
k2S

dS ¼ −E tð Þdt ð3Þ

This equation can be easily integrated between t=t0
and t=tf, giving rise to

−
1

k2Δt
KM ln

Sf
S0

þ Sf −S0

� �
¼ �E ð4Þ

where Sf = S(tf ), Δt = tf – t0, and �E ¼ 1
Δt ∫

tf
toE tð Þdt . The

right hand side of this equation �Eð Þ represents the aver-
age amount of enzyme in the system during the time
interval Δt, and the left hand side is a monotonic func-
tion of the boundary conditions for S.
Eq. (4) states that given an initial amount of substrate,

the amount of substrate consumed during a given time
interval Δt depends only on the average enzyme level
during that interval, and not on the specific, time-dependent
enzyme trajectory. Any two time-course profiles of E en-
countering the same initial substrate concentration S0
and exhibiting identical average amounts of enzyme �E
will degrade precisely the same amount of substrate in a
given time interval. The temporal dynamics of the en-
zyme does not play any role in the final concentration of
substrate: the metabolic process is solely a function of
the average enzyme level.
It is worth noting that the dependence of substrate

kinetics on average enzyme levels also holds, in a modi-
fied form, for more complex biochemical reactions cata-
lyzed by a single enzyme. In the SI text, we explicitly
present two such cases. First, we consider a bisubstrate
reaction, in which two substrates are converted to a
product. Second, we consider the case where two sub-
strates may be simultaneously competing for the active
site of a single enzyme. Such competition for the enzym-
atic active site plays important roles in the behavior of
metabolic pathways [23] as well as synthetic biological
circuits [24]. Although in both cases the formula relating
the boundary conditions of substrate and average en-
zyme levels is more complicated, it remains true that the



Figure 1 Results from the β-galactosidase enzymatic assay,
aimed at testing the metabolic equivalence of different enzyme
trajectories. Red lines correspond to the constant enzyme
experiment, blue lines correspond to the enzyme step-function
experiment. The main figure shows the level of fluorescence due to
the concentration of reaction product, while the inset shows the
enzyme profiles for the two experiments. Black lines correspond to
high and low enzyme controls (see Materials and Methods). Note
that there are no measurements between 125 and 175 seconds for
the step-function experiment because samples were removed from
the fluorimeter (arrow A, 130 sec) so that they could be injected
with additional enzyme (arrow B, 150 sec) and re-inserted in the
fluorimeter (arrow C, ~170 sec) after mixing. A t-test (t-value = 0.225,
p-value = 0.811) confirmed that there was no statistically significant
difference between the fluorescence of the two experimental
conditions at 300 seconds.
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average enzyme level entirely determines the final con-
centration of the substrates given their initial concentra-
tion. These two results highlight the key feature which
renders MM kinetics (and a broad category of other bio-
chemical rate laws) invariant to time-dependent enzyme
profiles with the same average enzyme concentration: the
separability of the rate law into terms corresponding exclu-
sively to enzyme and substrate. In other words, it must be
possible for the rate law to be written as dS/dt = E ∙ f(S).
While it is unlikely that this dependency on average
enzyme levels will directly generalize to larger networks of
metabolic reactions (where such separability is in general
no longer possible), the notion of finding and exploiting
conserved dynamical quantities in such systems may be a
prominent route for future work.
As far as we can tell, the invariance of MM kinetics to

the time-dependent details of enzyme trajectories with
identical average concentrations seems not to have been
explored in the enzyme kinetics and computational biol-
ogy literature, despite its simplicity. In the next section,
we describe an experiment aimed at verifying the validity
of this analytically derived result. Then, we illustrate
how this invariance principle may be used to probe the
nature of metabolic regulation.

Experimental validation
We sought to directly obtain direct experimental con-
firmation of the validity of our analytical predictions.
Towards this goal, we implemented a simple set of
assays based on the enzyme β-galactosidase and its
synthetic fluorescent substrate 4-methylumbelliferyl
β-D-galactopyranoside (MUG). The product of the
hydrolysis of MUG by β-galactosidase is fluorescent
at 460nm when excited at 360 nm. In one experi-
ment, MUG was exposed to a constant amount of 0.125
U of β-galactosidase for 5 minutes. In a second experi-
ment, the time-profile of β-galactosidase was designed to
be a step function, with a concentration of 0.0625U for
the first 2.5 minutes, and a concentration of 0.1875 units
for an additional 2.5 minutes. Thus, the two assays
contained precisely the same average enzyme concentra-
tion, but starkly different temporal enzyme profiles. The
results of the experiment are shown in Figure 1. As pre-
dicted, the concentration of the product (measured by
fluorescence) is identical for the two experimental con-
ditions at 5 minutes, i.e. precisely at the moment when
their average enzyme levels match.

Enzyme dynamics as a variational problem
The invariance principle demonstrated above for meta-
bolic reactions indicates that there are infinitely many
ways for the cell to modulate enzyme levels to bring
substrate from a particular initial concentration to a par-
ticular final concentration in a given time interval. The
sole common characteristic among these distinct en-
zyme time courses is the average enzyme level. The next
question we ask is whether, given this degeneracy among
enzyme time courses, we may expect the cell to use a
specific enzyme profile in time. In many cases, cellular
regulation of enzyme levels may have evolved so as to
perform metabolic tasks with minimal energetic effort,
e.g. minimal cost of enzyme production and degradation.
Hence, we reason that by using appropriate optimization
criteria it may be possible to search, among the degener-
ate enzyme trajectories, for the one that minimizes a
given cost function.
What do we expect this cost function to look like?

First, notice that we want to pose this question over a
time interval (i.e. the time window (t0, tf ) ). The total
cost CT to be minimized will therefore be the integral of
an instantaneous cost c(t). This instantaneous cost c(t)
should depend on the shape of the function E(t). An in-
stantaneous cost with pure linear dependence on E
would lead to a total cost CT identical for all trajectories,
due to the invariance to average enzyme levels. However,
previous work [25] has highlighted the nonlinear nature
of individual enzyme cost. This nonlinearity follows from
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assuming that fitness is a saturating function of common
cellular resources, and that these resources are seques-
tered in proportion to the enzyme concentration. Fur-
thermore, the possible enzyme trajectories may differ
significantly in the extent of enzyme production and
degradation, which are typically both costly. For ex-
ample, an average of four high energy phosphate bonds
are necessary to add an amino acid to an enzyme being
translated [26,27]. Additional energy resources would
then need to be devoted to proteases involved in the
degradation process [28]. In what follows we will explore
how different assumptions on the cost of enzyme pro-
duction and degradation lead to different optimal
enzyme profiles.
Based on the above considerations, we model the cost

of an enzyme trajectory by extending the model pro-
posed in [25]. Specifically, we take into account two dis-
tinct components which we call the “static” and
“dynamic” cost. The static cost is due to the presence of
a given amount E of total enzyme, which causes the se-
questration of enzyme building blocks (resource RS, e.g.
amino acids), leading to a nonlinear dependence on E
(see Materials and Methods). The dynamic cost takes
into account the fact that faster transcription-translation
(i.e. larger _E ) implies increased use of other resources
RD (such as ribosomes). We assume that the dynamic
cost is symmetric in its dependence on production and
degradation, and hence a function of _E2 . Furthermore,
when the cell is not dedicating any dynamic resources to
the maintenance of protein levels, the dynamic cost
reaches a minimum. At this minimum, protein levels are
only subject to the effects of cellular dilution, which oc-
curs at a rate μ. Thus, the dynamic cost should attain a
minimum precisely at _E ¼ −μ , and the dynamic cost

should take the form _E þ μ
� �2

. Upon writing an explicit
cost function that combines the static and dynamic com-
ponents, and performing a Taylor expansion (see Mate-
rials and Methods for further details), we obtain an
effective instantaneous cost.

c tð Þ ¼ α1E tð Þ þ α2E
2 tð Þ

z}|{Static Cost

þ α3 _E tð Þ þ μ
� �2z}|{Dynamic Cost

ð5Þ
where the α parameters are strictly positive and quantify
the relative importance of the static cost to the dynamic
cost. Thus, the cost function diverges for very large en-
zyme levels and production/degradation rates, and
achieves a minimum at zero enzyme level and a degrad-
ation rate _E ¼ −μ . While this cost function constitutes
an approximation of the full expression, it has the ad-
vantage of being analytically tractable (see below), and of
capturing the essential nonlinearities in E and _E . In the
Additional file, we provide details on how to solve the
variational problem for a different type of cost function
which is asymmetric with respect to _E . Importantly, the
fitness of an enzyme trajectory would in principle also
depend on the benefit derived from metabolizing a given
amount of substrate with the available enzyme. Here, we
focus only on solving the problem of minimizing the
cost of an enzyme trajectory for a target average enzyme
level (in other words, for a fixed benefit). As discussed
in the Conclusion section, the more general problem of
maximizing the difference between the benefit and cost
of an enzyme trajectory constitutes an interesting open
question.
Our problem of cost minimization along enzyme tra-

jectories can be now posed as a variational problem, in
which the invariance relative to average enzyme levels
plays a key role. Under the constraint that S(0) = S0,
S(tf ) = Sf, we ask what time-course profile E(t) minimizes
the total cost incurred throughout this time interval.
This total cost CT is dependent on the choice of
the function E(t), and can be therefore expressed as a
functional:

CT E; _E
� � ¼ ∫

tf

t0
α1E tð Þ þ α2E

2 tð Þ þ α3 _E tð Þ þ μ
� �2� 	

dt

ð6Þ
To solve the problem of minimizing CT, we employ

variational calculus. Variational calculus is an optimization
technique which finds minima and maxima of functionals.
It has had extremely deep impacts in fields such as
mechanics (Lagrangian mechanics) and control theory
(optimal control), and we refer the reader to [29] for a
thorough introduction.
Due to the invariance to average enzyme levels, if we

know the appropriate boundary conditions for S (i.e.
how much substrate must be degraded in a certain
amount of time), then there must exist a particular aver-
age value of enzyme �E (given KM and k2) which will sat-
isfy these boundary conditions. Hence, our minimal cost
problem can be expressed as

minCT E; _E
� �

S:T: ∫
tF

t0
E tð Þdt ¼ �E ð7Þ

If we let F ¼ α1E þ α2E2 þ α3 _E þ μ
� �2

and G = E, then
we can pose the optimization problem stated in Eq. (7)
in a more familiar form. In particular, minima of this
variational problem must satisfy the Euler-Lagrange
equation, which takes the form

dF
dE

þ λ
dG
dE

−
d
dt

dF

d _E
þ λ

dG

d _E

� �
¼ 0 ð8Þ

For our particular problem, the Euler-Lagrange equa-
tion becomes
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2α3€E ¼ 2α2E þ λþ α1 ð9Þ

Solving this, we find

E tð Þ ¼ −λ−α1
2α2

þ C1e
t

ffiffiffi
α2
α3

p
þ C2e

−t
ffiffiffi
α2
α3

p
ð10Þ

where the constants C1 and C2 and Lagrange multiplier
λ can be calculated using the boundary conditions and
auxiliary constraint:

E 0ð Þ ¼ E0; E tf
� � ¼ Ef ; ∫

tf
0 Edt ¼ �E

Eq. (10) provides the enzyme time profile that mini-
mizes the total cost, for a given relative importance of
the static versus dynamic cost of protein expression, de-
scribed by the parameters αi. Notably, the ratio of static
to dynamic costs depends only on α2/α3, while the mag-
nitude of α1 simply rescales the Lagrange multiplier λ.
Different time-dependent enzyme profiles for different
values of α2/α3 are plotted in Figure 2. When α2/α3 be-
comes large, the cost is entirely static, and the cell pays
no price for synthesizing or degrading the enzyme very
quickly. At the same time the nonlinear dependence of
the cost on E penalizes any unnecessary deviation from
the average level �E . Hence, as shown in Figure 2, in this
case the optimal profile approaches a rectangular shape
where enzyme rapidly reaches the necessary average
Figure 2 Optimal enzyme profiles for the cost functional
defined in Eq. (10). The boundary conditions were chosen to be
E0 = Ef = 1 μM, and Ē = 3 μM, based on substrate parameters S0 = 15
μM, Sf = 2.4 μM, k2=1000 sec-1, k-1 = 1000 sec-1, k1 = 2 μM-1sec-1,
KM = 1000 μM, Δt = 0.6 sec. In inset, different lines correspond to
different values of α: solid line (α1 = α2 = 0.933, α3 = .067), circles
(α1 = α2 = 0.981, α3 = .019) and crosses (α1 = α2 = 0.998, α3 = .002). For
the trajectory with the fastest rate of change of enzyme (α1 = α2 = 0.998,
α3 = .002), δ = 226, tE ~ .01 sec, tC = .5 msec.
level and remains there for most of the time course. At
the opposite extreme (α2/α3 is small, CT e _E2), there is a
substantial cost associated with the production and deg-
radation of enzyme. Under these conditions, the cell will
try to make the smoothest transitions possible compat-
ible with the average enzyme constraint, leading to an
optimal enzyme profile that approaches a gradual para-
bolic shape. The transition of enzyme time courses from
rectangular profile to parabola reflects the need to bal-
ance the costs incurred by using both static and dynamic
resources to produce enzyme in the cell.
It should be noted that, for certain choices of parame-

ters, the solution to the variational problem may not sat-
isfy the conditions required for the validity of MM
kinetics. There are two specific conditions which need
to be verified: (i) that the time scale of E is significantly
longer than the time scale of C, so that the quasi-steady-
state assumption used to derive MM kinetics in [20]
may still be applied, and (ii) that the concentration of E
is sufficiently small so that E << KM +S. As detailed in
the SI Text, one can derive bounds on the enzyme tra-
jectory in Eq. (10) which ensure that these two condi-
tions are both satisfied. While all solutions presented in
Figure 2 satisfy these conditions under a realistic choice
of parameters, one should be aware, in future work, that
optimal solutions of the variational problem may have to
be further screened for these criteria.
Discussion
The metabolic equivalence of enzyme trajectories with
identical average enzyme levels Implies that the cell has
potentially many ways of achieving a given metabolic
goal. At one extreme the strategy is to maintain enzyme
level very high, with no need for fast response capabil-
ities. The opposite strategy is to maintain a minimal en-
zyme level, but be able to respond quickly. All strategies
in between these two extremes give rise to the same net
metabolic behavior. One may see this spectrum of possi-
bilities as a fundamental tradeoff between the supplies
invested in the enzyme itself (static resources) versus the
investment necessary for fast enzyme production and
degradation (dynamic resources). Such a tradeoff was in-
deed recently suggested by the analysis of mRNA and
protein levels and half-lives in mammalian cells [30]. In
particular, it was found that different cellular subsystems
exhibited different ratios of resting levels (referred to as
"stability") of proteins and mRNAs. For example, en-
zymes for metabolic subsystems which are frequently
used, such as glycolysis, tend to be maintained at high
stable levels, compatible with a high usage of static re-
sources, but minimal usage of dynamic ones. Conversely,
subsystems which are less frequently used but must
react quickly tend to have stable mRNA but unstable
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proteins, consistent with low sequestration of static re-
sources but a high demand on dynamic resources.
Looking forward, a prospect for future studies will be

assessing whether the invariance to average enzyme
levels may be generalized to biological conditions in
vivo. We suggest that two approaches may be taken to-
ward addressing this question. First, current high-
throughput technologies are beginning to enable the
quantification of temporal variation in enzyme abun-
dance arising naturally within the cell. Changes in abun-
dance are affected by a variety of distinct processes,
from phosphorylation and dephosphorylation cycles to
enzyme translation and degradation. By concurrently
monitoring the amount of metabolite converted by a re-
action and the dynamical changes of the corresponding
active enzyme pool, it may be possible to assess the val-
idity of our findings in a living system. A second ap-
proach may arise from newly developed techniques in
synthetic biology, where the expression of a single en-
zyme may be precisely and arbitrarily controlled over
time. In particular, in analogy with the previously pub-
lished analysis of yeast’s response to a nutrient supply
“signal” that oscillates at a given frequency [31], it may
be possible to study the input–output properties of reac-
tions and pathways based on signal processing tech-
niques. For example, one could explore whether the
insensitivity to certain enzyme changes demonstrated
here could be explained in terms of a low pass filter. In-
deed, such behavior was observed in [31], where very
fast variations in periodic changes of the carbon source
were ignored by the yeast population.
Our analysis highlights the existence of a spectrum of

resource utilization strategies and ensuing tradeoffs in
enzyme dynamics. It will be interesting to more directly
assess whether the choice of specific strategies for meta-
bolic regulation could be a direct target of evolutionary
adaptation. As pointed out in [30], mRNA and protein
levels for different subsystems may be explainable as op-
timal strategies for energy usage, specifically targeted by
different evolutionary pressures. The invariance to aver-
age enzyme levels allows one to address this question in
a general way, namely by asking what enzyme profile
minimizes a given combination of static and dynamic
enzyme-associated cost. For certain categories of cost
functions, the problem can be solved analytically, using
variational calculus. We focused specifically on the case of
a cost function that is inspired by a previously experimen-
tally validated cost-benefit model [25]. In this case, the op-
timality principle provides specific enzyme trajectories
whose dependence on enzymatic parameters is amenable
to future experimental testing. Importantly, the timescales
of enzyme change predicted by the variational principle
may overlap with timescales of substrate kinetics,
suggesting that our findings should be interpreted under
the assumption that enzyme changes may result from a
combination of slow (e.g., transcription-translation and
degradation) and fast (e.g., allosteric regulation, or phos-
phorylation) processes.
The use of symmetry principles and variational calcu-

lus in physics is widespread and has led to very import-
ant conceptual and practical insight. Some progress has
been made in applying similar variational principles to
biological problems, usually in the framework of optimal
control theory using numerical optimizations (for ex-
ample, [21,32]). It will be interesting to see whether vari-
ational approaches like the one we are proposing can be
used to rederive some of the results from [21,32] analyt-
ically. Variational calculus has also been applied to me-
tabolism in a very different context, namely the study of
thermodynamic constraints on metabolic fluxes [33].

Conclusions
A major open challenge in systems biology is to model
metabolic and regulatory networks in a unified mathem-
atical framework. At present, there is a tendency to de-
velop models for larger-scale and more detailed
representations of cellular networks, whose complex dy-
namic behavior is measurable with high throughput exper-
iments. In contrast, we focus here on enzyme regulation
for a single metabolic reaction and suggest that new
insight can still be obtained by studying this fundamental
building block of biochemical networks, the “hydrogen
atom” of metabolism. Despite the apparent complexity of
dealing with time-dependent enzyme concentrations, we
show that for a category of problems there is an under-
lying simplicity. The fact is that, in simple metabolic reac-
tions, different enzyme trajectories with identical average
levels yield the same substrate flux over a given time inter-
val. A standard enzyme assay allowed us to experimentally
confirm the validity of this result.
Given the potential insight into metabolic regulation

from invariance laws and variational calculus, we conclude
by posing two challenges for future research, whose reso-
lution would substantially increase the impact of this
approach.
First, suppose that the benefit that the cell obtains from

metabolizing a given amount of substrate, ΔS, in a time
interval, Δt, can be described by a function B = B(ΔS, E,
Δt). Then, extending previous work (e.g. [21,25,34]) one
could try and solve through variational calculus the bio-
logically more accurate problem of maximizing the differ-
ence between such benefit, and the enzyme-associated
cost described by Eq. (6). Under reasonable assumptions

on B, i.e. B i:e: ∂B
∂ΔS > 0; ∂2B

∂ΔS2 < 0
� 	

, do general strategies

exist for how the cell should modulate enzyme levels in
order to maximize the difference between benefit and
cost? If so, what are the characteristics of these strategies?
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Second, the relevance of our variational approach to
deeper biological questions is contingent on the feasibil-
ity of extending this formalism to larger metabolic sys-
tems. In particular, is it possible to find invariant
quantities, relating enzyme levels to net changes in sub-
strate concentrations, for systems comprised of more than
one reaction, i.e. metabolic networks? Can such invariant
quantities be exploited to understand strategies for the
regulation of whole pathways or even larger modules?
Irrespective of whether these questions can be solved

analytically, thinking about metabolic regulation in
terms of dynamical optimization of trajectories may pave
new ways of understanding how living systems gather
their regulatory machinery to respond to environmental
changes, and in turn guide synthetic biology efforts for
the design of engineered organisms.
Methods
Enzyme Assay
For the enzyme assay, 6.9 mg of 4-methylumbelliferyl
β-D-galactopyranoside (MUG) was diluted in 50 mL
of buffer containing 100 mM sodium phosphate, 1 mM
MgCl2, and 50 mM beta-mercaptoethanol. β-galactosidase
dilutions were made fresh daily from a stock of 250 U/mL
with deionized water to 2.5 U/mL. Enzyme was kept on ice
during use. Fluorescence (corresponding to the concentra-
tion of MUG) was monitored every second over the length
of the study, by excitation at 360 nm and measuring
emission at 460 nm. Samples were maintained at 37°C
during measurements. In the first experiment, 50 μL of
β-galactosidase were added to 3 mL of MUG solution
and monitored for 5 minutes for fluorescence. For the
second experiment, 25 μL of β-galactosidase were added
to 3mL of MUG solution and fluorescently monitored
for 2.5 minutes, followed by an additional injection of
50 μL of β-galactosidase, and again monitored for
2.5 minutes. The net difference in working volume
between the two experimental conditions was 25 μL out
of 3 mL, or approximately 1%, and was deemed to be
negligible in contrast to other sources of error in the
system. Two controls were used for the experiment. In the
high enzyme control, 75 μL of β-galactosidase were added
to 3 mL of MUG solution and monitored for 5 minutes.
In the low enzyme control, 25 μL of β-galactosidase
were added to 3 mL of MUG solution and monitored for
5 minutes.
All the enzyme used in the experiment was prepared

ahead of time, and placed in ice to prevent denaturation.
We performed each of the nine replicates in the experi-
ment (3 replicates for each time course × 3 time courses =
9 total replicates) one after the other. The total time for
the experiments was approximately two hours, and in this
time we observed negligible loss of catalytic activity.
Derivation of instantaneous enzyme cost function
To identify, among all possible equivalent enzyme time
courses, the ones of potential biological significance, we
need to estimate the cost associated with each trajectory.
We model the cost of a trajectory by extending the
model proposed in [25]. Specifically, we assume that the
cost a cell incurs upon producing an enzyme can be cal-
culated as the reduction in the cell’s fitness due to the
utilization and sequestration of resources. Extending
the previous model, we take into account two distinct
components of fitness which we call the “static” and
“dynamic” fitness (associated with resources RS and RD

respectively). We assume a symmetric cost of both pro-
duction _E > 0

� �
and degradation _E < 0

� �
of enzyme, so

that the dynamic cost is dependent on _E2 . Furthermore,
cellular growth results in the dilution of cellular re-
sources at a rate μ. Thus, the minimum dynamic cost (at
which the cell is not expending dynamic resources) oc-
curs when _E ¼ −μ. Then, following [25], the total fitness
in the presence of enzyme level E and enzyme change
rate _E is expressed as

f E; _E
� � ¼ RS−E

K þ RS−E
∙

RD− _E þ μ
� �2

K þ RD− _E þ μ
� �2 ð11Þ

The cost can then be computed as

c E; _E
� � ¼ f E; _E

� �
−f 0; 0ð Þ

f 0; 0ð Þ

¼ C1E þ C2 _E þ μ
� �2 þ C3E _E þ μ

� �2
C4−C5Eð Þ C6−C7 _E þ μ

� �2� 	 ð12Þ

where the Ci parameters can be inferred from Eq. (11). The
resulting expression in Eq. (12) is not directly amenable to
analytical calculations. However, we can capture the main
nonlinearity of this cost function (such as its linear depend-
ence with respect to E when is E is sufficiently small, and its
rapid divergence when E is large) in a simplified version,
obtainable through a Taylor expansion about zero. In
particular, we assume the sequestration of static and
dynamic resources to be small in comparison to the total

amount of resources in the cell (i.e. both E and _E þ μ
� �2

are sufficiently small so that the E and _E þ μ
� �2

terms dom-
inate over other terms in a Taylor expansion), and that the
coupling between static and dynamic costs (captured by the

C3E _E þ μ
� �2

term in the numerator of Eq. (12)) is suffi-
ciently small so as to be negligible. This yields the instantan-

eous cost c tð Þ ¼ α1E tð Þ þ α2E2 tð Þ þ α3 _E tð Þ þ μ
� �2

, where
the αi are positive constants. More accurate approximations
of Eq. (12), such as those which account for the coupling be-
tween static and dynamic resources, are possible, but may
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lead to analytically intractable dynamic optimization
problems.

Reviewer comments
Reviewer 1: Dr. Sergei Maslov
Comment: I liked the conceptual idea of this study
according to which organisms are solving a dynamical
optimization problem that in addition to static terms in-
troduced in Ref. [25] also includes dynamic terms. These
terms quantify energy and sequestration costs of operat-
ing ribosomes as well as other (smaller) costs associated
with protein production and active degradation. I also
liked the fact that authors confirmed their mathematical
results with a dedicated experimental data.
Response: We are grateful to the reviewer for the posi-

tive feedback, and very helpful comments, which we ad-
dress in detail below.
Comment: I found the application of this conceptual

idea somewhat less convincing. Figure 2 shows an opti-
mal enzyme profiles for different relative weights of static
and dynamic terms. The biological relevance of the
optimization problem solved in this study is not well
explained. Indeed, why should an organism care to find
the best E(t) for given <E> and S_f/S ? Should not it be
that both S_f/S as well as E(t) need to be optimized to get
the best fitness? I would be much more interested if au-
thors ’formalism could quantify what they stated in the
discussion section: “… enzymes for metabolic subsystems
which are frequently used, such as glycolysis, tend to be
maintained at high stable levels, compatible with a high
usage of static resources, but minimal usage of dynamic
ones. Conversely, subsystems which are less frequently
used but must react quickly tend to have stable mRNA
but unstable proteins, consistent with low sequestration
of static resources but a high demand on dynamic re-
sources.” To quantify this tradeoff authors need to apply
their optimization formalism to multiple (periodic?) cy-
cles of nutrient availability as opposed to a single cycle
considered in this study.
Response: We thank the reviewer for giving us the op-

portunity to clarify and elaborate on the biological rele-
vance of the cost functional we use in the variational
problem. We addressed this issue in multiple ways:
First, we moved the explicit derivation of our cost

function from the Additional file 1 SI to the Materials
and Methods section. This derivation, now expanded for
increased clarity, shows in detail how we arrive at our
cost functional based on previously proposed models of
protein cost, and on simplifying assumptions.
Second, in presenting the cost function, we now expli-

citly mention that fitness of the cell would in principle
depend both on the cost of enzyme production, as well
as on the benefit derived from metabolized a given
amount of substrate (in between Eqs. (5) and (6)).
However, the solution of an optimization problem using
a cost functional (a function of functions of time) is
quite different, and substantially harder to solve, than
previous optimization problems using cost functions,
which depended simply on two variables (such as sub-
strate and enzyme levels in [25]). Our approach is in it-
self a novel way of expressing a problem of metabolic
regulation, making it possible to use variational calculus
for obtaining exact analytical solutions.
Third, as far as we can tell, the only way to explicitly

account for the benefit derived from metabolizing sub-
strate using our current framework (other than solving a
much more complicated and potentially intractable vari-
ational problem with two dependent functions E(t), and
S(t) ) would be to invert Eq. (4), and express substrate
consumed as a function of <E>, using the Lambert W
function. Doing so renders the variational problem,
which now contains the W function in the objective,
analytically intractable. However, the reviewer raises a
very compelling and challenging question, which we
now pose as an open problem for future research at the
end of our Conclusion section. Notably, a special case of
our proposed problem would be the situation where a
substrate is subject to multiple, periodic inflows over a
time interval.
Comment: For a constant growth rate \mu maintaining

E_dot =0 requires constant production to compensate for
dilution term. Thus E_dot=0 is not the minimum and the
minimum should be reached at E_dot=-\mu. Would that
modify authors’conclusions?
Response: We thank the reviewer for the insightful

point. Indeed, when the cell is not dedicating any dy-
namic resources to maintaining protein levels, these
levels should experience a dilution effect. We have
accounted for this effect in our calculations in the main
text, as shown in Eqs. (5) and (6). This modification does
not modify the outcome of the optimization problem, or
our conclusions.
Comment: Dimensionality of Eq. (6) is confusing. Ap-

parently E is made dimensionless so that E+E^2 makes
sense and time is also made dimensionless. These nor-
malizations should be better explained. Perhaps they
contain some information on the typical value of alpha.
Response: We thank the reviewer for pointing out this

problem with dimensions in the definition of the cost
function. Indeed, as suggested by the reviewer, we could
have resolved this by defining non-dimensional vari-
ables. Instead, we revised our use of the coefficients in
the definition of the cost (Eq. (5)) to make it clear that
these constants have distinct dimensions, so that the
terms of the cost function are consistent with each
other dimensionally. We have revised our calculations
throughout the manuscript, including Figure 2, to re-
flect this point.
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Comment: For the sake of completeness the expression
for K_M in terms of k_1 and k_{-1} and k_2 needs to be
written.
Response: Thank you for the suggestion. We have ex-

plicitly indicated immediately following Eq. (2) the rela-
tionship between KM and the underlying mass-action
rate constants.
Comment: Use brackets under the integral in Eq. (6).
Response: Thank you for the comment. We have

modified the notation in Eq. (6) in line with the re-
viewer’s recommendation.
Reviewer 2: Dr. William Hlavacek
Comment: The authors consider a system in which the
level of an enzyme can vary with time. The kinetics of the
reaction catalyzed by the enzyme E+S<->(ES)->E+P is as-
sumed to be governed by the Michaelis-Menten rate law.
The authors show that the amount of substrate consumed
over a given period of time depends only on the average
level of enzyme. The derivation of this result is straightfor-
ward. I have not seen the result discussed before. It is con-
ceivable that the result is already in the literature,
somewhere. In any case, it is probably fair to say that the
result is not well known. The authors validate the result
experimentally, which is interesting. Because there are
many trajectories E(t) that yield the same average enzyme
level, the authors investigate optimality. For certain as-
sumptions and a cost function taken from the literature,
the authors solve an optimization problem and derive a
formula for the optimal time-dependent enzyme level. The
cost function could be explained in a little bit more detail
and more clearly in the manuscript, although it is not ab-
solutely necessary, because a reference is given. The au-
thors are careful to think about and/or check various
assumptions upon which their derivations are based and
to show how the analysis extends to rate laws more com-
plex than the Michaelis-Menten rate law. The manuscript
is well written, and the work appears to be technically
sound. The report could be useful to researchers who are
interested in how time-dependent enzyme levels (varying
because of gene regulation) influence metabolic reactions.
Response: We are grateful to the reviewer for the posi-

tive feedback and useful comments. We were indeed
surprised ourselves not to find the dependence on the
average enzyme anywhere in the literature, not even as a
simple exercise in textbooks. To reflect the reviewer’s
suggestion that it may have been written somewhere be-
fore, we modified accordingly the paragraph immediately
preceding the section on Experimental Validation. We
also added a new sentence to clarify the definition of the
cost function, right after its definition. In addition, we
now mention more explicitly that a detailed derivation
and additional comments on the biological significance
of this cost function are presented in the Supplementary
Materials.
Comment: A possible nice way to improve the manu-

script, which might increase its potential impact a little
bit, would be to extend the analysis to consider a (small)
metabolic network, meaning a system with more than
one reaction.
Response: We thank the reviewer for pointing to this in-

teresting challenge, which we had ourselves wondered
about. Our ability to derive analytical results for this system
largely depended on relating changes in substrate levels to
average enzyme levels via an invariance principle. It re-
mains unclear to us whether such invariance principles
exist for larger, more complicated metabolic systems. In
light of this comment, we have added at the end of our
Conclusion section an explicit mention of this idea, and of
the associated mathematical challenge. By making the
community aware of the difficulty of this problem and of
the potential insight to be gained (i.e. the possibility of un-
derstanding metabolic regulation through variational calcu-
lus), we hope to catalyze a route to its resolution.

Reviewer 3: Dr. Daniel Kahn
This reviewer provided no comments for publication.
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