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Abstract

Background: Identification of drug-like molecules is one of the major challenges in the field of drug discovery.
Existing approach like Lipinski rule of 5 (Ro5), Operea have their own limitations. Thus, there is a need to develop
computational method that can predict drug-likeness of a molecule with precision. In addition, there is a need to
develop algorithm for screening chemical library for their drug-like properties.

Results: In this study, we have used 1347 approved and 3206 experimental drugs for developing a knowledge-based
computational model for predicting drug-likeness of a molecule. We have used freely available PaDEL software for
computing molecular fingerprints/descriptors of the molecules for developing prediction models. Weka software has
been used for feature selection in order to identify the best fingerprints. We have developed various classification
models using different types of fingerprints like Estate, PubChem, Extended, FingerPrinter, MACCS keys, GraphsOnlyFP,
SubstructureFP, Substructure FPCount, Klekota-RothFP, Klekota-Roth FPCount. It was observed that the models
developed using MACCS keys based fingerprints, discriminated approved and experimental drugs with higher
precision. Our model based on one hundred fifty nine MACCS keys predicted drug-likeness of the molecules with
89.96% accuracy along with 0.77 MCC. Our analysis indicated that MACCS keys (ISIS keys) 112, 122, 144, and 150 were
highly prevalent in the approved drugs. The screening of ZINC (drug-like) and ChEMBL databases showed that around
78.33% and 72.43% of the compounds present in these databases had drug-like potential.

Conclusion: It was apparent from above study that the binary fingerprints could be used to discriminate approved
and experimental drugs with high accuracy. In order to facilitate researchers working in the field of drug discovery, we
have developed a webserver for predicting, designing, and screening novel drug-like molecules (http://crdd.osdd.net/
oscadd/drugmint/).

Reviewers: This article was reviewed by Robert Murphy, Difei Wang (nominated by Yuriy Gusev), and Ahmet Bakan
(nominated by James Faeder).
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Background
High throughput screening techniques and combina-
torial chemistry had provided substantial boost in our
effort towards discovering new therapeutic molecules
[1-3]. Despite tremendous progress in the field of drug
discovery, there is a high rate of failure of drug mole-
cules in the advanced stage of clinical trials [4,5]. There-
fore, more innovative approaches are required in the
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reproduction in any medium, provided the or
process of developing new drug molecules. Among the
billions of compounds that has been synthesized and
tested to date, only a fraction of them has the potential
to pass through the FDA approval. A recent estimate
suggested that it would take more than 300 years to
increase the number of available drugs by two fold at the
current rate of drug discovery [6]. Therefore, a prior
knowledge that could discriminate the drug-like mole-
cules from its allies would be a welcome step for the
drug discovery/design.
In the past, several attempts have been made to shrink

the chemical space of the molecules having potential for
drug-like properties [7]. Lipinski Rule of Five (Ro5) is
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the most widely accepted drug-like filter, which is based
on simple analysis of four important properties of the drug
molecules i.e. number of hydrogen bond donor, number
of hydrogen bond acceptor, molecular weight, and solu-
bility [8]. Although, Ro5 had been used as a major guide-
line in the drug discovery efforts, it has also several
limitations [9]. This method is not universally applicable
and many compounds particularly those from natural ori-
gin e.g. antibiotics etc. are not recognized by this method
as drug-like compounds [10]. Recently, it has also been re-
ported that among the two hundred best selling branded
drugs in 2008, twenty one had violated Ro5 [11]. Pre-
viously, it has been reported that the real drugs are ~20-
fold more soluble than the drug-like molecules present in
the ZINC database. Specifically, the oral drugs are about
16-fold more soluble, while the injectable drugs are 50–60
fold more soluble [12]. Comparison of the two molecular
properties i.e. molecular weight and ClogP, for different
families of FDA-approved drugs, suggested that the modi-
fied rules of drug-likeness should be adopted for certain
target classes [13]. In 2008, Vistoli et al. summarized the
various kindS of pharmacokinetic and pharmaceutical
properties of the molecules playing an important role in
estimation of drug-likeness [14]. Recently, Bickerton et al.
developed a simple computational approach for prediction
of oral drug-likeness of the unknown molecules [11]. This
is very simple approach applicable only for the oral drugs.
In order to overcome these problems, several models

based on machine learning techniques have been deve-
loped in the past. An earlier computational model deve-
loped in 1998 for predicting drug-like compounds was
based on simple 1D/2D descriptors, which showed a
maximum accuracy of 80% [15]. In the same year, an-
other study also tried to predict the drug-like molecules
based on some common structures that were absent in
the non-drug molecules [16]. Genetic algorithm, deci-
sion tree, and neural network based approaches had also
been attempted to distinguish the drug-like compounds
from the non drug-like compounds [17-19]. These ap-
proaches, although used a large dataset, only showed a
maximum accuracy up to 83%. In comparison, better
success was shown by some recent studies in predicting
drug-like molecules. In 2009, Mishra et al. had classified
drug-like small molecules from ZINC Database based on
“Molinspiration MiTools” descriptors using a neural net-
work approach [20]. The other reports that appeared
promising in predicting the potential of a compound to
be approved were based on DrugBank data [21,22].
The main problem associated with the existing models

is their non-availability to the scientific community. More-
over, the commercial software packages were used to
develop these models, so these studies have limited use
for scientific community. In order to address these pro-
blems and to complement previous methods, we have
made a systematic attempt to develop a prediction model.
The performance of our models is comparable or better
than the existing methods.

Results and discussion
Analysis of dataset
Principal Component Analysis (PCA)
We used the principal component analysis (PCA) for
computing the variance among the experimental and the
approved drugs [23]. As shown in Figure 1, the variance
decreased significantly up to the PC-15. Afterwards, it
remained more or less constant. The variance between
PC-1 and PC-2 for the whole dataset was 15.76% and
8.91% respectively [Figure 2]. These results clearly indi-
cated that the dataset was highly diverse for developing
a prediction model.

Substructure fragment analysis
To explore the hidden information, the dataset was fur-
ther analyzed using SubFP, MACCS keys based finger-
prints using the formula given below;

Frequency of a fragment ¼ Nfragment class � Ntotal=Nfragment total � Nclass
� �

Where Nfragment_class is the number of fragments
present in that class (approved/experimental); Ntotal is
the total number of molecules studied (approved + ex-
perimental); Nfragment_total is the total number of frag-
ments in all molecules (approved + experimental); Nclass

is the number of molecules in that class (approved/
experimental).
Our analysis suggested that some of the substructure

fragments were not preferred in the approved drugs. The
substructure-based analysis suggested that primary alco-
hol, phosphoric monoester, diester and mixed anhydride
were non-preferable functional groups that were present
in the experimental drugs with higher frequency [Table 1].
Similarly, MACCS keys 66, 112, 122, 138, 144, and 150
were highly desirable and present with higher frequency
in the approved drugs [Table 2, Additional file 1: Table-S1
and Figure 3]. Therefore, while designing new drug-like
molecule in the future, the exclusion of SubFP fingerprints
and the inclusion of certain MACCS keys might increase
the probability of designing a better molecule.

Classification models
In order to evaluate the performance of different finger-
prints, we have developed various models on different
sets of descriptors that were calculated by PaDEL soft-
ware. Separate models were developed on fingerprints
selected using attribute selection modules rm-useless
and CfsSubsetEval of Weka.



Figure 1 Variance of components in our dataset.

Figure 2 Two-dimensional plot of Principal Component Analysis for approved and experimental drugs, each drug molecule is
represented by circle.
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Table 1 Top-10 Substructure fingerprints and their respective frequency in our dataseta

SubFP Description Approved Experimental Frequency difference

Nfrag_aprd Faprd Nfrag_exp Fexp (Faprd -Fexp)

SubFP13 Primary_alcohol 139 0.69 539 1.13 -(0.44)

SubFP41 1-2Diol 67 0.31 663 1.29 -(0.98)

SubFP48 Aldehyde 4 0.16 79 1.35 -(1.19)

SubFP126 Alpha_hydorxyacid 1 0.07 50 1.39 -(1.32)

SubFP224 Sulfenic_derivatives 23 0.59 108 1.17 -(0.58)

SubFP237 Phosphoric_monoester 5 0.06 289 1.4 -(1.34)

SubFP238 Phosphoric_diester 3 0.2 47 1.33 -(1.13)

SubFP246 Phosphoric_acid_derivatives 16 0.1 506 1.38 -(1.28)

SubFP281 Sugar_pattern_1 71 0.34 627 1.28 -(0.94)

SubFP291 Mixed_anhydride 3 0.05 214 1.4 -(1.35)
aNfrag_aprd: number of fragment in approved class, Nfrag_exp: number of fragment in experimental class, Faprd: frequency of particular fragment in approved class,
Fexp: frequency of particular fragment in experimental class, negative sign indicates that these fingerprints are not preferable in approved drug.
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Fingerprints based models
The initially developed models based on Estate, PubChem,
Extended, FingerPrinter, GraphsOnly, Substructure finger,
Substructure count, Klekota-count, Klekota-fingerprint
showed nearly equal performance with MCC value in the
range of 0.5 to 0.6 [Table 3]. However, the models deve-
loped using 159 MACCS keys, achieve maximum MCC
0.77 with accuracy 89.96% [Table 3, Figure 4]. In addition
to that, we have also applied Monte-Carlo (MC) approach
by generating 30 times training and testing dataset for
five-fold cross-validation. We have observed that these
results were more or less same with previously used five-
fold cross-validation results having average 87.88%/90.36%
sensitivity/ specificity, 89.63% accuracy with MCC value
0.76 (Additional file 1: Table-S2).

PCA based model
In the previous section, we have observed that the
models developed using MACCS keys based fingerprints
perform better in comparison to the models developed
using other fingerprints. We used this class of fingerprint
Table 2 Highly significant MACCS fingerprints and their respe

Fingerprint Accuracy
(%)

Approved

Nfrag_aprd Faprd

MACCS112 66.35 1288 1.58

MACCS122 66.66 1105 1.57

MACCS144 69.21 972 1.64

MACCS66 73.97 557 1.98

MACCS150 57.57 1227 1.36

MACCS138 65.91 910 1.52
aNfrag_aprd: number of fragment in approved class, Nfrag_exp: number of fragment in
Fexp: frequency of particular fragment in experimental class.
for developing a PCA based model. First model, which
was developed on all 166 components, achieved maxi-
mum MCC 0.79 and ROC 0.96 [Table 4]. The models de-
veloped using top-20 fingerprints [Figure 1], achieved
maximum MCC 0.72 with a marginal decrease in the
value of ROC to 0.94. Furthermore, the models developed
using top-15, and top-10 components resulted in a MCC
value of 0.68 and 0.61 respectively. A slight decrease in
the MCC value was observed on further reducing the
number of components to 5.

Hybrid models
In this section, we described hybrid models developed
by combining the descriptors that were selected from
Table 3. First, a Hybrid model (Hybrid-1) was developed
using the top-5 positively correlated fingerprints from
each (10 types of ) class and this model obtained MCC
up to 0.7. Second hybrid model (Hybrid-2) based on the
top-5 negatively correlated descriptors achieved MCC
value 0.36 [Table 5]. A third hybrid model (Hybrid-3)
was developed by combining the top-5 positively and the
ctive frequency in our dataseta

Experimental Frequency difference

Nfrag_exp Fexp (Faprd - Fexp)

1473 0.76 0.82

1276 0.76 0.81

1027 0.73 0.91

395 0.59 1.39

1812 0.85 0.52

1115 0.78 0.74

experimental class, Faprd: frequency of particular fragment in approved class,



Figure 3 Representation of the selected MACCS keys.

Table 3 Performance of various Fingerprints and selection-algorithm

Fingerprints Selection-algorithm Descriptors Threshold Sensitivity Specificity Accuracy MCC AUC

Estate rm-useless 52 0 70.23 80.6 77.53 0.49 0.82

cfsSubsetEval 9 0.3 70.9 71.68 71.45 0.4 0.77

Extended rm-useless 1012 0 62.44 92.51 83.62 0.59 0.86

cfsSubsetEval 25 −0.4 60.13 85.93 78.3 0.47 0.79

Fingerprinter rm-useless 1024 0 61.99 92.36 83.37 0.58 0.86

cfsSubsetEval 40 −0.2 63.62 85.84 79.27 0.5 0.81

GraphsOnly rm-useless 1024 0 67.78 86.28 80.8 0.54 0.85

cfsSubsetEval 43 0 69.86 73.71 72.57 0.41 0.78

Pubchem rm-useless 704 0 63.85 92.11 83.75 0.59 0.87

cfsSubsetEval 27 0.4 66.59 79.76 75.86 0.45 0.8

MACCS rm-useless 159 0 88.42 90.61 89.96 0.77 0.95

cfsSubsetEval 10 0 89.83 81.72 84.12 0.67 0.87

Substr-count rm-useless 192 0 93.1 87.84 89.39 0.77 0.95

cfsSubsetEval 16 −0.3 84.71 78.32 80.21 0.59 0.88

Sub-finger rm-useless 192 0 76.32 78.45 77.82 0.52 0.84

cfsSubsetEval 18 0 50.71 84.44 74.46 0.37 0.74

Klekota-count rm-useless 2273 −0.2 63.92 90.42 82.58 0.57 0.85

cfsSubsetEval 57 0 72.31 80.82 78.3 0.51 0.82

Klekota-finger rm-useless 2273 0 61.84 92.89 83.7 0.59 0.86

cfsSubsetEval 51 0 53.75 91.98 80.67 0.51 0.81
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Figure 4 Various sets of descriptors versus Matthew’s Correlation Coefficient (MCC).
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top-5 negatively fingerprints and it resulted in a slight
increase in the performance in comparison to the indi-
vidual ones and showed a MCC value of 0.77 [Table 5].
Next, by combining the descriptors of CfsSubsetEval

module for each fingerprint, a hybrid model (Hybrid-4)
was developed which showed accuracy up to 90.07% with
a MCC value of 0.78 [Table 5]. Finally, a hybrid (Hybrid-5)
model on 22 descriptors was obtained upon further redu-
cing these descriptors (296) by CfsSubsetEval module and
it resulted in a slight decrease in MCC value to 0.7 with a
significant reduction in the number of descriptors.

Performance on validation dataset
We evaluated the performance of our three; i) rm-useless,
ii) PCA based, and iii) CfsSubsetEval based models using
validation dataset created from MACCS fingerprints (see
detail in material and method section). Each model were
trained and validated by internal five-fold cross validation
[Table 6]. The best-selected models were further used to
estimate the performance on validation dataset. The first
Table 4 Performance of PCA based models on MACCS descrip

Selection-algorithm Descriptors Threshold Sens

ALL 166 −0.1 91.24

Top-20 20 0.0 82.93

Top-15 15 0.0 85.97

Top-10 10 0.0 86.27

Top-5 5 −0.1 75.95
model based on 159 (rm-useless) fingerprints showed sen-
sitivity/specificity 90.37%/87.21% with MCC value 0.77 on
validation dataset. Next, model was built on top 20 PCs
shows sensitivity/specificity 81.85%/87.21% with MCC
value 0.67 [Table 6]. However, the CfsSubsetEval based
model developed on 10 fingerprints shows maximum
MCC 0.62 on validation dataset. This decrease in MCC
value on validation dataset might be due to reduction in
number of descriptors.

Performance on independent dataset
We tested our MACCS (ISIS) keys based model on the in-
dependent dataset and achieved 84% sensitivity, 38.92%
specificity with accuracy value of 41.15%. These results
also indicated that ~61% of the molecules present in our
independent dataset have the potential to be in the ap-
proved category in future. Recently, twenty-one drugs
were approved in the DrugBank v3.0, which was not clas-
sified as approved in the earlier release. Interestingly, all
these compounds were classified in the ‘drug-like’ class by
tors

itivity Specificity Accuracy MCC AUC

90.33 90.60 0.79 0.96

90.05 87.94 0.72 0.94

85.03 85.31 0.68 0.92

78.95 81.11 0.61 0.88

80.57 79.20 0.54 0.84



Table 5 Performance of various hybrid models developed using combination of descriptorsb.

Model Descriptors Threshold Sensitivity Specificity Accuracy MCC AUC

Hybrid-1 50 0 86.86 86.28 86.45 0.7 0.92

Hybrid-2 50 0 74.09 65 67.69 0.36 0.73

Hybrid-3 100 −0.1 92.43 87.99 89.3 0.77 0.95

Hybrid-4 296 0 90.57 89.86 90.07 0.78 0.96

Hybrid-5 22 0 87.75 84.68 85.59 0.69 0.9
bHybrid-1: top 5 descriptors from each fingerprints based on their positive correlation against activity, Hybrid-2: top 5 descriptors from each fingerprints based on
their negative correlation against activity, Hybrid-3: sum of descriptors from Hybrid-1 and Hybrid-2, Hybrid-4: sum of all 10 types of fingerprints after applying
CfsSubsetEval algorithm, Hybrid-5: Running the CfsSubsetEval algorithm on the descriptors set of Hybrid-4 (296).
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our model and this result clearly exemplified the perfor-
mance of our model. Together, these results also indicated
that our model could be very useful in the prediction of
drug-like properties of a given compound in advance.

Screening of databases
We predicted drug-like potential of molecules in three
major databases ChEMBL, ZINC and directory of useful
decoys (DUD). The screening of 10384763 compounds
from ZINC database showed that 78.33% (8134753 mole-
cules) among them have the potential to be drug-like
(http://crdd.osdd.net/oscadd/drugmint/data/zinc.csv).
Similarly, ChEMBL dataset contained 1251913 mole-
cules, only 72.43% (906791 molecules) were predicted
to have drug-like properties (http://crdd.osdd.net/oscadd/
drugmint/data/chembl.csv). Finally, our software predic-
ted ~62% and ~64% of the compounds that are present
in active and decoys datasets respectively to be drug-
like [Additional file 2]. These results indicated that des-
pite the growth of a large number of chemicals showing
pharmacological activity in a particular condition, not
all molecules have potential for satisfying the drug-like
properties.

Conclusions
This study showed that a better predictive model for dis-
criminating the approved drug from the experimental
drugs could be developed using simple binary fingerprints.
Table 6 Performance of Models on New training and
validation dataset built using MACCS fingerprints

Dataset Sensitivity Specificity Accuracy MCC AUC

Model based on 159 MACCS keys after rm-useless

New train 90.25 89.40 89.65 0.77 0.95

Validation 90.37 87.21 88.14 0.77 0.95

Model based on Top-20 PCs

New train 85.70 88.65 87.78 0.72 0.94

Validation 81.85 87.21 85.62 0.67 0.92

Model based on 10 MACCS keys after CfsSubsetEval

New train 89.42 81.83 84.07 0.67 0.89

Validation 84.07 81.44 82.22 0.62 0.88
In terms of sensitivity, specificity, accuracy as well as
MCC values, the performance of our model was better
than those described earlier in the literature. Moreover,
this could be achieved with ~50% reduction in the number
of descriptors which is highly significant. Our study also
suggested that the CfsSubsetEval algorithm could be used
for the selection of the informative descriptors to increase
the speed of calculation without compromising the effi-
ciency of the model. From the PCA based models, we
observed that 20 PCs were sufficient to develop a predic-
tion model. We have also evaluated the performance of
QED method on datasets used in this study, QED cor-
rectly classified 44.8% approved and 81.28% experimental
drugs from the training dataset and 40% approved and
52.5% experimental drugs from the independent dataset.
The performance of QED particularly sensitivity was very
poor, it might be due to that QED approach was specifi-
cally developed for oral drugs whereas our datasets con-
tained all types of drugs. Among the various numbers of
selected fingerprints, some were preferable in the ap-
proved drugs while others on the experimental drugs. In
addition to that our MACCS keys based model correctly
predicted the twenty-one drugs recently listed by FDA in
the approved category. Similarly on the independent data-
set, our model performed with sensitivity values up to
84%. Our analysis suggested that primary alcohol, phos-
phoric monoester, diester and mixed anhydride were non-
preferable functional groups. The efficiency of the freely
available software was quite similar to that of the commer-
cially available software. We predict that this webserver will
be useful in future for selecting the drug-like molecules.

Web server
The major drawback of most of chemo-informatics stu-
dies is that they are mainly based on commercial software
packages. This is the reason most of the predictive studies
described in literature are not available for public use in
the form of software or web server. In order to overcome
this drawback, we have used freely available software and
achieved results comparable to those that have used com-
mercial software. Our study is implemented in the form of
a webserver without any restriction. In this server, we have
provided the facility to design, screen and predict the

http://crdd.osdd.net/oscadd/drugmint/data/zinc.csv
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Table 7 Shows the number of descriptors present in each
type of fingerprint

Fingerprint name Fingerprints
count

Fingerprint
name

Fingerprints
count

Fingerprinter 1024 PubChem 881

Extended
fingerprinter

1024 MACCS 166

GraphOnly 1024 KlekotaRoth FP 4860

SubStructure FP 307 KlekotaRoth
FPcount

4860

Substructure 307 Estate 79
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drug-likeness score of chemical compounds. The scree-
ning results of ZINC and ChEMBL library are also pro-
vided in the option of database search. In order to provide
this free service to the community, we have developed
“drugmint” (http://crdd.osdd.net/oscadd/drugmint) a user-
friendly webserver for discriminating the approved drug
from the experimental drugs. This server allows users to
interactively draw/modify a molecule using a Marvin
applet [24]. This server is installed on Linux (Red Hat)
operating system. The common gateway interface (CGI)
scripts of “drugmint” are written using PERL version 5.03.
fingerprintercount
Methods
Dataset source
Training dataset
The dataset used in this study was taken from Tang et al.
[22], contained 1348 approved and 3206 experimental
drugs derived from DrugBank v2.5. The PaDEL software
was unable to calculate the descriptors of one approved
drug with DrugBank ID DB06149. Therefore, we did not
include this molecule in our final dataset, comprises of
1347 approved and 3206 experimental drugs.
Validation dataset
We have also created a validation dataset from the final
dataset by randomly taking 20% of data from the whole
dataset. Thus, our new training dataset consist of 1077
approved, 2565 experimental drugs and validation data-
set comprises of 270 approved and 641 experimental
drugs.
Independent dataset
We also created an independent dataset from DrugBank
v3.0. Initially, all the 1424 approved and 5040 expe-
rimental drugs from DrugBank v3.0 were extracted. All
molecules used in our main or training dataset were re-
moved and finally we got 237 approved and 1963 expe-
rimental drugs. Our final independent dataset comprises
of 100 approved and 1925 experimental drugs after
excluding the compounds for which structure was not
available in the database.
Descriptors of molecules
In this study, PaDEL was used for calculating the des-
criptors of the molecules [25]. This software computed
approximately 800 descriptors (1D/2D/3D) and 10 types
of fingerprints (e.g., Fingerprinter, Extended, GraphOnly,
SubStructure, Substructure count, PubChem, MACCS
keys [26], KlekotaRoth , KlekotaRoth count, Estate). The
number of descriptors in each type of fingerprint is
given in Table 7.
Selection of descriptors
It has been shown in previous studies that all descriptors
are not relevant [27]. Thus, the selection of descriptors is
a crucial step for developing any kind of prediction model
[28,29]. In this study, we used two modules of Weka i)
Remove Useless (rm-useless) and ii) CfsSubsetEval with
best-fit algorithm [30]. In case of rm-useless, all those de-
scriptors, which either varies too much or variation is neg-
ligible, have been removed. The CfsSsubsetEval module of
Weka is a rigorous algorithm; it selects only those features
or descriptors that have high correlation with class/activity
and very less inter-correlation.

Cross-validation techniques
Leave one out cross-validation (LOOCV) is a preferred
technique to evaluate the performance of a model. This
technique is time consuming and CPU intensive particu-
larly when dataset is large. In this study, we have used
five-fold cross-validation technique to reduce the compu-
tational time for developing and evaluating our models. In
this technique, the whole data set is randomly divided into
five sets of similar size, four sets are used for training and
remaining set for testing. This process is repeated five
times in such a way that each set is used only once for
testing. Overall performance is computed on the whole
dataset after repeating the aforesaid process five times.

Model development
In this study, we have developed Support Vector Machine
(SVM) based models for prediction of drug-like molecules
using SVMlight software package. SVM is based on the
statistical and optimization theory and it handles complex
structural features, and allows users to choose a number
of parameters and kernels (e.g. linear, polynomial, radial
basis function, and sigmoid) or any user-defined kernel.
This software can be downloaded freely from http://www.
cs.cornell.edu/People/tj/svm_light/.

Evaluation parameters
All the models developed in this study were evaluated using
standard parameters such as i) Sensitivity (percentage of

http://crdd.osdd.net/oscadd/drugmint
http://www.cs.cornell.edu/People/tj/svm_light/
http://www.cs.cornell.edu/People/tj/svm_light/
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correctly predicted approved drug), ii) Specificity (Percen-
tage of correctly predicted experimental drug), iii) Accu-
racy (percentage of correctly predicted drugs) and iv)
Matthew’s Correlation Coefficient (MCC). These parame-
ters can be calculated using following equations 1 to 4.

Sensitivity ¼ TP
TP þ FN

� 100 ð1Þ

Specificity ¼ TN
TN þ FP

� 100 ð2Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

� 100 ð3Þ

MCC ¼ TP � TNð Þ− FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TN þ FPð Þ TP þ FPð Þ TN þ FNð Þ½ �p

ð4Þ

where TP and TN are the number of truly or correctly
predicted positive (approved) and negative (experimental)
drugs, respectively. FP and FN are the number of false
or wrongly predicted approved and experimental drugs,
respectively. Matthew’s correlation coefficient (MCC)
is considered to be the most robust parameter of any
class prediction method. We have also used a threshold-
independent parameter called receiver-operating curve
(ROC) for evaluating performance of our models.

Reviewers’ comments
Reviewer number 1: Dr Robert Murphy
Comment-1: This manuscript describe a fairly simply de-
sign of a machine learning system for predicting whether
a chemical structure is similar to previously approved
drugs. It describes a web server to provide predictions
about new structures.
The manuscript does not provide sufficient discussion

of relevant prior work and quantitative comparison with
other published approaches for which code is available
(e.g., Bickerton et al. 2012). Approaches such as features
reflecting drug dynamics (e.g., Vistoli et al. (2008) Drug
Discovery Today 13:285–294 (doi:10.1016/j.drudis.2007.
11.007) are also not discussed.
Response: In the revised version, we have discussed

the previous studies as suggested by reviewer. After get-
ting comments from the reviewer, we evaluate perfor-
mance of QED model on our datasets, QED correctly
predict 44.8% (sensitivity) approved and 81.28% (specifi-
city) experimental drugs. While on independent dataset,
it shows only 40% sensitivity and 52.5% specificity. QED
(Bickerton et al. 2012) perform poor on our dataset be-
cause it is developed for predicting oral drug-likeness of
a molecule. The high sensitivity and specificity of our
models described in this study implies its usefulness in
predicting drug-likeness of a molecule.
Comment-2: There is a potentially serious concern with
the validity of the results due to the fact that the experi-
mental design may result in overfitting. Even though
cross-validation was used internally for combinations of
features and learners to evaluate predictive accuracies,
when these results are subsequently used to make deci-
sions (such as which features to use) it compromises any
conclusions from further analysis of the same training and
testing data. A related problem may also arise from
maximization of ROC area when some of the experimen-
tal drugs may indeed be drug-like. These concerns were
shown to be warranted because the final evaluation using
an independent dataset showed much lower accuracy.
However, it is somewhat encouraging that twenty-one
molecules in the test set that were recently approved as
drugs were classified as “drug-like” by the authors’ model.
Response: We are thankful to reviewer for this valu-

able comment. In order to further validate our predic-
tion model, we used Monte-Carlo approach where we
randomly create training and testing datasets 30 times
and compute average performance. We achieved sensi-
tivity 87.88%, specificity 90.36% and accuracy 89.63%
when evaluated using Monte-Carlo approach. The result
for every set is provided in supplementary document
(Additional file 1: Table-S2) in the form of sensitivity,
specificity, accuracy and MCC along with their mean
and standard deviation. These results were more or less
same to the previous five fold results. The result indi-
cates that our models are not over-fitted and will be use-
ful in real scenario.
Comment-3: The web server model does not seem ap-

propriate for the primary use case, which is envisaged to
be making predictions for users with novel structures.
Since users may wish to keep their structures private, an
open source approach would be strongly preferable to a
public server. This would secure use of the system and
also permit inspection and modification of the methods
used.
Response: We are thankful for this suggestion. We

understand the limitation of the webserver used for pre-
diction. In order to facilitate and for the sake of user priv-
acy, we developed a standalone version of this software,
which is available for download from http://osddlinux.
osdd.net, now user can run our software on their local
machine.
Additional comment-1: The author list contains “Open

Source Drug Discovery Consortium” which is not a per-
son and is not mentioned elsewhere in the manuscript.
Response: We are thankful for this comment. In the

revised version, we have acknowledged the Open Source
Drug Discovery Consortium instead of authors list.
Additional comment-2: The abstract refers to scree-

ning but the manuscript does not describe any screening
results.

http://osddlinux.osdd.net
http://osddlinux.osdd.net
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Response: The authors are thankful for this suggestion.
In the revised manuscript, we have provided the detailed
of chemical libraries and their screening results under
the paragraph screening of databases.
Quality of written English: Needs some language cor-

rections before being published.
Response: We have corrected the language in the re-

vised manuscript.

Reviewer number 2: Prof Difei Wang (nominated by
Dr Yuriy Gusev)
In general, this is an interesting work and it is important
to predict drug-like molecules using various types of
molecular fingerprints. However, I do have some ques-
tions about the manuscript.
Comment-1: On page7, the authors stated that “Simi-

larly, MACCS fingerprint elements 112, 122, 144, and
150 were highly desirable and present with higher fre-
quency in the approved drugs [Table 2, Figure 3]”. How
to interpret this observation? What are the definition of
MACCS-144 and −150 etc.? It will be very useful if the
authors can clearly explain what are these features. Also,
MACCS-66 is missing here but it does show up in the
Table. Is there any reason to exclude MACCS-66 here?
Response: We are thankful to the reviewer for this nice

suggestion. Here, we are providing the selected MACCS
keys description that would be useful to interpret the re-
sults [Additional file 1: Table-S1].

a) MACCS 66: A tetrahedral carbon atom connected
with 3 carbons and one (that may or may not be
carbon) atom.

b) MACCS 112: Any atom connected with four atoms
by any kind of bond (single, double or triple).

c) MACCS 122: A nitrogen atom joined with 3 other
atoms by any kind of bond.

d) MACCS 138: An aliphatic carbon connected with 3
atoms of which one atom is not the carbon or
hydrogen, second is any atom and third is with 2
further hydrogen’s.

e) MACCS 144: Any four atoms connected by non-
aromatic bonds.

f ) MACCS 150: Any four atoms connected of which
atom 1,2 and 3,4 connected by non-ring bond and
atom 2,3 joined by ring bond.

Comment-2: What is the score cutoff value for drug
like and non drug like molecules for database screening
results? What are the meaning of “drug like, low”, “drug
like, high” and “non drug like, low”? What false-positive
rate do we expect here?
Response: The authors are thankful for this comment.

In this study, we have used a threshold value 0 for dis-
crimination of the approved and experimental drugs.
The SVM score is categorized into three groups:

a) Very High: used when the score is >1 (drug-like)
and < −1.0 (Non drug-like).

b) High: used when the score is between 0.5-1.0
(drug-like) and in between −1.0 to −0.5 (Non drug-
like).

c) Low: when the score lies in between 0–0.5 (drug-
like) and in between −0.5 to 0 (Non drug-like).

False positive rate has been calculated via 30 times shuf-
fling the dataset in five fold cross-validation and the aver-
age value of FPR is 9.64% (Additional file 2: Table-S2).
Comment-3: How many distinct structural families in

drugbank3.0? How structurally diverse of this dataset?
Are there many drugs having similar structures? If the
answer is yes, will it bias the fingerprint selection and
model creation?
Response: We are thankful for this valuable comment.

After getting this comment, we analyzed the structural
family of drugs in drugbank3.0 and found that at present
these were classified into 233 different families (http://
www.drugbank.ca/drug_classes). This clearly shows the
dataset is highly diverse and suitable for model
development.
Comment-4: I tried the example on the web server. But

it seems slow and could not give me the result. Is this ser-
ver really functional?
Response: We are thankful to the reviewer for this com-

ment. Now, the server is completely functional.
Comment-5: Will it possible to have a standalone ver-

sion of the web server? It will be great if there is a stan-
dalone version available to the community.
Response: We are thankful for such a nice suggestion.

To improve the visibility of this work, we have developed
a standalone version of this software. This is available to
the users at http://osddlinux.osdd.net.
Comment-6: On page 1, "can predict drug-likeness of

molecules with precession." Is "precession" a typo?
Response: We are thankful to the reviewer for pointing

out this typo error. In the revised version, we have cor-
rected this mistake and also take care of any other gram-
matical error.
Comment-7: I am not sure if this topic is suitable for

this computational biology-centric journal. Maybe, this
work is more suitable for publishing in journals like BMC.
Response: We are thankful for this suggestion and we

think this kind of work is well suited for this journal.
Quality of written English: Acceptable

Reviewer number 3: Mr Ahmet Bakan (nominated by Prof
James Faeder)
Comment-1: The authors developed various classifi-
cation models using an exhaustive set of chemical

http://www.drugbank.ca/drug_classes
http://www.drugbank.ca/drug_classes
http://osddlinux.osdd.net
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fingerprints for discriminating approved drugs from ex-
perimental drugs and made these models available via a
web server. In the past years, many newly approved drug
molecules are breaking the widely accepted rule of 5 for
drug-likeness, this improving and updating methods for
calculating drug-likeness is an important problem. How-
ever, I don't understand why authors developed models
that discriminate "approved" drugs from "experimental"
drugs. Experimental drugs are molecules that are under
investigation. Being experimental does not meet the com-
pound is not drug-like, so any model that discriminates
approved from experimental does not have any value. The
exhaustive approach would be valuable if models were de-
veloped to discriminate drug-like, safe compounds from
potentially toxic, non-drug-like compounds.
Response: We completely agreed with the reviewer

comment. Although, studies have been done previously
with focused towards the discrimination of drug-like mol-
ecules from non-drug-like ones. But most of these were
based on the use of commercial dataset like MDDR, CMC
as drug-like and ACD as non drug-like dataset. Thus,
availability of the dataset is the major issue. In contrast,
our method is an attempt to discriminate two closely re-
lated drug-like molecules. This will be an advance step in
drug design process because despite the in vitro drug-like
properties, many drugs failed in clinical trial (experimental
stage). Thus, it is very important to discriminate these two
classes of molecules. This is the only dataset that is avai-
lable for public use and will be an excellent asset for deve-
lopment of public domain servers.
Quality of written English: Not suitable for publication

unless extensively edited
Response: We are thankful to the reviewer for this

comment. In the revised version, we have tried our best
to improve quality of English in revised version of
manuscript. Hopefully, the revised version will be suit-
able for publication.

Response to the Reviewers’ comments after
revision
Reviewer number 1: Dr Robert Murphy
The authors did not respond adequately to my concern
about overfitting. By using the results from cross-vali-
dation to make choices (such as which features to use),
the expected accuracy of the system so configured is no
longer the cross-validation accuracy for that configuration.
Simply adding more cross-validation trials does not ad-
dress the issue. The problem may be clarified by consi-
dering that some combination of features and model
parameters will optimize performance on any finite data-
set but that the same combination may not be optimal for
another finite dataset even if chosen from the same under-
lying distribution. Optimization of these choices does not
allow the accuracy to be estimate for the new dataset. The
point is that in order for cross-validation to be used to es-
timate future performance, all choices must be made using
the training set only. The observation that the perfor-
mance on the independent dataset (from DrugBank v3.0)
was significantly worse suggests that the two datasets may
have been drawn from different distributions (likely) but
also that the cross-validation accuracy from the original
dataset was an overestimate.
Response: After getting above comments on our revised

version, we recheck reviewers comment and our previous
response. We realize that we misunderstood comments,
this is the reason we make more cross-validation trials.
We agree with reviewers that we perform feature selection
from whole dataset so there is biasness in feature selec-
tion. In this version of manuscript, we also evaluated
performance of our models to avoid the ambiguity of bias-
ness. We randomly picked 20% of the data from the whole
dataset and called this dataset as validation dataset (for de-
tail see Methods section). Remaining dataset (80% data of
whole dataset) called New training dataset, were used for
training, testing and evaluation of our models using five-
fold cross validation. Now, each and everything such as
parameter optimization, feature selection, model building
was done on New training dataset (80% dataset). Final
model with optimized parameters and features was used
to evaluate performance on validation dataset (this dataset
never used in any kind of training process or feature selec-
tion). The performance of our models on training and
validation is shown in Table 6. As shown in our results on
validation dataset are in agreement with training dataset.
We also observed that the prediction performance of
MACCS 159 keys based model is same for the New trai-
ning and validation dataset as well as model developed on
whole training dataset. However, a slight decrease in MCC
value from 0.72 to 0.67 on PCA based model and 0.67 to
0.62 on CfsSubsetEval based model was observed for New
Training and validation dataset. This implies that model
developed on 159 MACCS keys is suitable for further pre-
diction because the prediction accuracy is highly similar
on both New Train and validation dataset. These results
suggested that the models developed in this study are not
over-optimized.
Quality of written English: Acceptable

Reviewer number 2: Prof Difei Wang (nominated by
Dr Yuriy Gusev)
The authors' responses for my questions are acceptable.
However, it seems the server still has some problems
running examples for virtual screening and design ana-
logs. If possible, it is better to give an estimate of run-
ning time. Then the users could decide if they should
wait for the results. The output of search database is
kind of confusing. The first column gives molecule no.
What is this for? Why did the example give the same
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molecule no. (2) for both ZINC00000053 and CHEM
BL505943? It is better to show both database IDs and
the corresponding structures.
Response: We are thankful to the reviewer for this valu-

able suggestion. We have rectified the bug regarding the
confusion created by assigning the same molecule number
to different compounds. We have also implemented the
applet for visualization of chemical structure. Now, the
user by clicking on the ID of molecule could visualize the
structure of chemical compound. We have also provided
the estimated time on the webserver to complete a job.
Additionally, an email option has been provided in the
webserver. Thus, user will receive a mail after finishing
the job.
Quality of written English: Acceptable

Additional files

Additional file 1: Results of the MACCS based model using Monte
Carlo approach and significant MACCS keys description.

Additional file 2: Screening results of the DUD dataset having
drug-like properties.
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