
Lyubetsky et al. Biology Direct 2012, 7:48
http://www.biology-direct.com/content/7/1/48
RESEARCH Open Access
Cubic time algorithms of amalgamating gene
trees and building evolutionary scenarios
Vassily A Lyubetsky1*, Lev I Rubanov1, Leonid Y Rusin1,2 and Konstantin Yu Gorbunov1
Abstract

Background: A long recognized problem is the inference of the supertree S that amalgamates a given set {Gj} of
trees Gj, with leaves in each Gj being assigned homologous elements.
We ground on an approach to find the tree S by minimizing the total cost of mappings αj of individual gene trees
Gj into S. Traditionally, this cost is defined basically as a sum of duplications and gaps in each αj. The classical
problem is to minimize the total cost, where S runs over the set of all trees that contain an exhaustive
non-redundant set of species from all input Gj.

Results: We suggest a reformulation of the classical NP-hard problem of building a supertree in terms of the global
minimization of the same cost functional but only over species trees S that consist of clades belonging to a fixed
set P (e.g., an exhaustive set of clades in all Gj). We developed a deterministic solving algorithm with a low degree
polynomial (typically cubic) time complexity with respect to the size of input data.
We define an extensive set of elementary evolutionary events and suggest an original definition of mapping β of
tree G into tree S. We introduce the cost functional c(G, S, f) and define the mapping β as the global minimum of
this functional with respect to the variable f, in which sense it is a generalization of classical mapping α.
We suggest a reformulation of the classical NP-hard mapping (reconciliation) problem by introducing time slices
into the species tree S and present a cubic time solving algorithm to compute the mapping β. We introduce two
novel definitions of the evolutionary scenario based on mapping β or a random process of gene evolution along a
species tree.

Conclusions: Developed algorithms are mathematically proved, which justifies the following statements. The
supertree building algorithm finds exactly the global minimum of the total cost if only gene duplications and losses
are allowed and the given sets of gene trees satisfies a certain condition. The mapping algorithm finds exactly the
minimal mapping β, the minimal total cost and the evolutionary scenario as a minimum over all possible
distributions of elementary evolutionary events along the edges of tree S.
The algorithms and their effective software implementations provide useful tools in many biological studies. They
facilitate processing of voluminous tree data in acceptable time still largely avoiding heuristics. Performance of the
tools is tested with artificial and prokaryotic tree data.

Reviewers: This article was reviewed by Prof. Anthony Almudevar, Prof. Alexander Bolshoy (nominated by Prof. Peter
Olofsson), and Prof. Marek Kimmel.

Keywords: Phylogenetics, Fast algorithms, Tree inference, Species tree, Tree amalgamation, Tree reconciliation,
Supertree, Evolutionary events, Gene duplication, Gene loss, Horizontal gene transfer, Gene gain, Time slices
* Correspondence: lyubetsk@iitp.ru
1Institute for Information Transmission Problems, The Russian Academy of
Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Moscow 127994,
Russia
Full list of author information is available at the end of the article

© 2012 Lyubetsky et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:lyubetsk@iitp.ru
http://creativecommons.org/licenses/by/2.0

Lyubetsky et al. Biology Direct 2012, 7:48 Page 2 of 20
http://www.biology-direct.com/content/7/1/48
Background
Problems in supertree inference
Denote S a tree of species or other taxonomic units, pro-
teins, etc. The long recognized problem is to infer a tree S
that amalgamates a given set {Gj} of trees Gj, with leaves
in each Gj being assigned homologous sequences from an
j-th family of homologous elements. Only leaf names, not
sequences themselves, are considered. Henceforth, assume
that leaves in S are labeled with species names x, leaves in
each Gj – with species-gene names x-y (gene “y” exists in
species “x”); paralogs are allowed. Refer to S as a species
tree, and to each Gj as a gene tree.
We elaborate a traditional approach from [1,2] to find

the tree S such that it minimizes the total cost of map-
pings of individual gene trees Gj into S.
Traditionally, some cost c(G,S) of mapping of a gene

tree G into a species tree S is defined. Choosing a par-
ticular definition of c(G,S) (ref. e.g. to [2,3] and see
Results) is not essential in terms of solving the classical
problem below. For a given set {Gj} of gene trees the
total cost is defined as

c Gj
� �

; S
� � ¼

X
j

c Gj; S
� �

or

c Gj
� �

; S
� � ¼

X
j

kj:c Gj; S
� � ð1Þ

where kj are certain weights. The classical problem is to
find such S that globally minimizes the functional c({Gj},
S), where S runs over the set of all species trees that
contain an exhaustive non-redundant set of species from
all input Gj. Such S is called a supertree for the given set
{Gj}. Denote V0 a set of all species names occurring in
leaves of the input trees Gj. Thus, the classical problem
is to find the global minimum of cost functional (1) over
all species trees S that possess the set V0 of leaf names.
The supertree building problem is NP-hard, i.e., any

algorithm to solve it must possess an exponential complex-
ity (if NP ≠ P). Numerous heuristics exist (e.g. in [4-6]),
which however do not provide evaluations of the runtime
of corresponding algorithms. Unless NP = P, none of them
can possess a polynomial complexity and be proved to find
the true global minimum.
We propose a reformulation of the classical problem

and develop an effective deterministic algorithm that
meets many biological prerequisites (Description of the
first algorithm and Results). Namely, the supertree S is
sought for as a global minimum of (1) but S runs over a
set of such species trees that mostly contain clades
present in input trees Gj, [3,7,8]. A set of species names
assigned to leaves of a subtree in Gj with the root v is
called a clade (of vertex v in Gj) and denoted by cl(v).
The set P includes all clades from trees Gj and
additionally the set of species names V0. Such P is re-
ferred to as a standard set. Its cardinality has the order
of nm, where n is the number of gene trees, and m is the
total number of species. For the standard set P, the algo-
rithm’s running time is cubic and determined by formula
(2) below.
Further, suppose that cl(v1), cl(v2) are the clades of two

noncomparable vertices v1, v2 in a tree Gj, and the inter-
section I(v1,v2) of these clades is not empty. Optionally,
the sets cl(vi) – I(v1,v2), (i=1, 2) are also included in P;
and for each vertex v that is ancestral to vi (i=1 or i=2)
but not to another vertex from the pair v1, v2, the set cl
(v) – cl(vi) is included in P. In so doing, horizontal gene
transfers are accounted for in a species tree, ref. to [9].
If P includes any other nonempty subsets of V0 and its

cardinality is arbitrary, the algorithm remains cubic in
time but with respect to cardinality |P| of set P, ref. to
formula (3) below.
Therefore, the non-standard problem formulated in

this study consists of finding the global minimum of
functional (1) among species trees S that have the set of
leaves V0 and a set of clades belonging to a fixed set P.
Thus, P is a parameter of the problem and of the solving
algorithm. The algorithm operates equally with any P.
The solution is also referred to as a supertree or a “lim-
ited supertree” with respect to P.
A mapping of Gj into S, as well as defyning any sce-

nario, requires a pre-defined fixed set of elementary evo-
lutionary events. The standard set (of events) contains
only gene duplications and losses. The extended set (of
events) additionally contains horizontal gene transfers,
gains, etc. The list of elementary evolutionary events and
their definitions are given in Description of the first al-
gorithm. Henceforth, edges in a species tree are referred
to as tubes to contrast the difference with the edges in
gene trees.
With the standard event set, the algorithm possesses

the running time of

O n m3 nþmð Þ� � ð2Þ

For simplicity, here we assume that the average num-
ber of leaves in given trees Gj is multiple of m.
If set P has an arbitrary cardinality, the mentioned

time has the order of

O Pj j3 þ Pj j2nmþ Pj jm3
� � ð3Þ

Let a set {Gj} of gene trees and its associated P be
fixed. A set V∈P is defined as basic if it is either a single-
ton set or can be split into two basic sets. Let us intro-
duce the condition

“V0 is a basic set” (*)

RR

S R'

d0

S0 R'

d0

d *1 2 3 d *1 2 3

Figure 1 A transition from tree S to tree S0. Leaves 1, 2, 3
contain in-group species, leaf d* contains an auxiliary outgroup
species. Leaf d* is connected to the root by the outgroup tube
(shown in bold). All tubes acquire additional vertices during
transition to S0 (right, shown in bold) to delimit time slices (here
four slices are separated by dashed lines). Each slice thus contains
one segment of the outgroup tube in S (left), which forms the
outgroup tubes in S0 (each shown in bold). Any such segment, as
well as the outgroup leaf-species, are denoted as d*. The root tube
d0 is attached to the root, by analogy with the edge e0 in a gene
tree G.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 3 of 20
http://www.biology-direct.com/content/7/1/48
The condition imposes a certain dependency between
sets {Gj}, P and V0.
With the standard event set and condition (*), the

algorithm was mathematically proved [7], which means
that it outputs the true global constrained minimum of
the corresponding functional.
It is difficult, however, to mathematically prove the

algorithm for the case of the extended event set and/or
a relaxation of condition (*). We believe that including
horizontal gene transfers still produces valid results [7],
and/or condition (*) can be relaxed.
The authors are unaware from published literature of

analogous approaches to find a mathematically proved
supertree in cubic time.
In Testing of the algorithms we present testing of the

supertree building algorithm with artificial and biological
data.
A relevant biological discussion of our approach is

provided in [8]. The mapping cost in [3] is similar to the
cost from [2] in the case of standard event set.

Problems in inferring evolutionary scenario
Patterns of gene evolution possess a number of various
types of events that co-occur with the species evolution.
Identification of these types and assembling elementary
events into an evolutionary scenario is crucial for under-
standing the evolutionary histories of genes, genomes,
species, and higher taxonomic lineages, ref. e.g. to [10-12].
Important is to create a model that incorporates all known
event types, as well as a model of co-evolution of regulatory
systems, genes and species, e.g. [13]. Studies (e.g. in [14])
show the importance of considering suboptimal (in terms
of the total cost) solutions in searches, as those might rep-
resent optimal scenarios when the costs of elementary
events are slightly varied. This problem is partially tackled
in Second scenario design: a random process on the graph.
In pioneer papers [2], the cost c0(G,S) is defined through

the mapping α(G, S) of a given tree G into S basically as a
sum of duplications (pairs <x, z>, where α(x)=α(z)) and
gaps (vertices y, where there is no x for which y=α(x)). For
the given G and S, the mapping α can be computed as a
global minimum of the functional c0(G,S,f) that depends
on the variable f running over a suitable set of mappings
f of G into S; such α can be obtained in linear time with
respect to the size of input data, and c0(G,S) becomes
equal to c0(G, S, α). Definitions of the cost and mapping
are closely related to the definition of the evolutionary
scenario, i.e., a pattern of elementary evolutionary events
that a gene undergoes along the branches of tree S. An
important part of this definition is the choice of allowed
elementary evolutionary events and their costs. In [2] the
list included only gene duplications and losses. We
consider the extended set of elementary evolutionary
events listed in the Methods, and the novel definition of
cost c(G,S) (see Computing the total cost of binary gene
trees against the species tree).
If horizontal gene transfers are allowed, any mapping

algorithm suffers from an intrinsic prohibition of gene
transfers across different levels of the species tree. If this
prohibition holds, the problem of building the globally
minimal (i.e., globally minimizing the cost functional)
mapping of G into S is NP-hard.
In order to circumvent the NP-hard nature of the

problem and develop a polynomial time algorithm to
solve it, the concept of time slices in species tree S was
introduced [3,15,16]. This concept is in some sense
related to an earlier approach to date tree vertices [17].
The concept is biologically justified, although its correct
definition is still to be developed.
More precisely, edges of S can be broken by inserting

additional vertices, thus formally producing another tree
S0, Figure 1; in the special case S=S0. It imposes time
slices in S such that any horizontal transfers are allowed
but only within one slice. The algorithm of building time
slices [3,15] constructs the tree S0 such that the k-th
slice contains all edges distant by the amount of k edges
from the root. Naturally, any two consecutive edges in
S0 belong to different slices.
Recall that edges in S0 and S are referred to as tubes to

contrast the difference with the edges in gene trees;
inserted vertices split a tube into a succession of new
tubes.
The generalization of mapping α is proposed for the

case of the extended set of elementary evolutionary
events listed in Description of the first algorithm. This

Lyubetsky et al. Biology Direct 2012, 7:48 Page 4 of 20
http://www.biology-direct.com/content/7/1/48
generalization denotes the mapping β. Its definition and
details of computing are provided under First scenario de-
sign: the event tree. Equivalently, β can be defined as the
global minimum of the cost c(f) over a set of mappings f
of G into S0 (this definition is not provided).
We developed an algorithm that reconciles any gene tree

G and tree S0, i.e., computes a rigorous (mathematically
proved) minimal mapping β of G into S0 in time
O(|G|×|S0|), which gives O(|S|3) for the time slices
building algorithm from [3,15]. Recall that | | is the
cardinality of a corresponding set; in terms of trees
it is the cardinality of the set of vertices. As above,
for simplicity we assume that the average number of
leaves in G is multiple of m. The “mathematically
proved” means that β is the true global minimum of
the cost c(f). The mathematical proof is given in
[3,13], and is reproduced with definitions from [3,13]
in the later paper [18].
Note that in [16] the biologically important case of the

loss of a horizontally transferred gene in the donor (in
that study, the case cannot be reduced to a composition
of events) is not considered, and the study claims a poly-
nomial runtime of the algorithm yet not specifying the
polynomial degree.

Objectives
One block of objectives is: (i) to formulate the problems
and hypotheses in building supertrees and evolutionary
scenarios, (ii) to describe the algorithm of solving the
non-standard problem of building a supertree (referred to
as the first algorithm) and to introduce the Super3GL pro-
gram that implements the algorithm [19] (See Description
of the first algorithm and Results), (iii) to compare the
program with known supertree inferring tools (Testing of
the algorithms).
We describe comparisons with two recognized com-

puter programs in Implementation of the second algo-
rithm, testing against other well-known software tools
produced similar results. A rigorous comparison using
artificial data implies having a sound algorithm to simu-
late gene trees on a known species tree topology. This
problem needs further research and justification, how-
ever a particular algorithm was proposed in [8].
The next block objectives is: (iv) to present the concept

of the evolutionary scenario based on either mapping β or a
random process of gene evolution (see First scenario de-
sign: the event tree - Stochastic characteristics of the
second scenario design), (v) to describe solutions to con-
comitant problems, viz. computing the originally intro-
duced cost c(G,S) (see Conclusion) and the transition from
a polytomous tree to the corresponding binary tree (the
“binarization” operation). For convenience, these algorithms
in complex are referred to as the second algorithm.
Implementation of the first algorithm and Implementation
of the second algorithm detail the implementations of the
first and second algorithms, accordingly [19,20].

Methods
Description of the first algorithm
The algorithm is applicable to both an arbitrary set of
evolutionary events and an arbitrary set P. In this gen-
eral case the algorithm is heuristic and is tested in Test-
ing of the algorithms (data partially shown). As noted in
the Background, the exact condition necessary and suffi-
cient for the algorithm to be mathematically proved is
unknown to the authors.
Given is a set of rooted gene trees Gj with allowed poly-

tomies. To pre-process unrooted trees, a simple php script
was developed to root trees. The script is available at the
Web page [19] and its description is given in Additional
file 1.
The first algorithm consists of two phases:

I. building the set {S(V)| V}, where the variable V runs
over all basic sets (ref. to the Background), and S(V)
is the corresponding (to a given V) basic tree (this
notion is explained below);

II. assembling the set of basic trees S(V) into the
sought-for supertree S*.

Phase I is rigorous (mathematically proved), at least
when only gene duplications and losses are considered,
and condition (*) is true. However, we operate with the
full set of elementary evolutionary events (see Table 1
below), in which case the algorithm is heuristic.
If V0 is a basic set then S(V0) can already be consid-

ered an outcome of the algorithm (omitting Phase II).
However, our experiments show that engaging Phase II
improves the result quality.

I) The first phase (Phase I) consists of five steps:

I.1)Optional tree pruning. An inextensible subtree of Gj

with all leaves belonging to a species s is called the
occurrence of species s (in Gj). For each species s
that occurs less than p times (a parameter of the
algorithm) in the given set {Gj} of gene trees, every
gene of this species is removed from all Gj. After
such trimming in each Gj “pendant” edges are
removed together with their origins. Next, all gene
trees that become empty or contain only one
species are also removed. Such a reduced set of
gene trees is still denoted by {Gj}. This step is trivial
but might be useful.

I.2) Composing the set P of species sets. The set P (refer
to its definition in the Background) is built and
ordered by ascending the cardinality of constituent
sets.

Table 1 Types of evolutionary events and their costs

i Condition Name Description Cost

0 cohered leaf edge e and leaf
tube d

fin evolution of gene e ends in species d c=0

1 non-cohered leaf edge e and
leaf tube d, d≠d*

tr_fin gene e evolves into a non-cohered species and
transfers without retention to a cohered species

c=с(tr_without)

2 same as #1 but d=d* ga_fin gene e emerges in a cohered terminal species c=с(gain)

3 tube d has the single child d1 pass gene e transfers to the next time slice, tube d1 c=c(e,d1)

4 edge e bifurcates into e1 and e2,
tube d bifurcates into d1 and d2

fork_lr d≠d0: gene e evolves with speciation into two
descendants: e1 transfers to d1, e2 – to d2; d=d0:
one of the two descendants of gene e is absent
in the root R

c=c(e1,d1)+c(e2,d2)

5 same as #4 fork_rl d≠d0: gene e evolves with speciation into two
descendants: e1 transfers to d2, e2 – to d1; d=d0:
same as #4

c=c(e2,d1)+c(e1,d2)

6 d≠d0, tube d bifurcates into d1
and d2

pass_l gene e transfers with speciation to d1 and is lost
in d2

c=c(e,d1)+c(loss)

7 same as #6 pass_r gene e transfers with speciation to d2 and is lost
in d1

c=c(e,d2)+c(loss)

8 d=d0, tube d bifurcates into
d1≠d*, d2=d*

nout_l gene e is present in the root R c=c(e,d1)

9 d=d0, tube d bifurcates into
d1=d*, d2≠d*

nout_r same as #8 c=c(e,d2)

10 d=d0, tube d bifurcates into
d1=d*, d2≠d*

out_l gene e is absent in the root R c=c(e,d1)

11 d=d0, tube d bifurcates into
d1≠d*, d2=d*

out_r same as #10 c=c(e,d2)

12 edge e bifurcates into e1 and e2,
d≠d* and genes e1 and e2 do
not undergo the events out_l or
out_r

dupl gene e in d duplicated c=c(e1,d)+c(e2,d)+c(dupl)

13 same as #12 but d=d0 and at
least one of the genes e1 or e2
undergoes the events out_l or
out_r

dup0 one of the descendants of e is absent in the root R c=c(e1,d)+c(e2,d)

14 edge e bifurcates into e1 and e2,
d=d*

outd gene e is duplicated in the outgroup c=c(e1,d)+c(e2,d)

15 edge e bifurcates into e1 and e2,
d≠d*, d≠d0

tr1 one copy e1 of e from d transfers to d' ~ d, d' ≠
d*, another copy e2 of e retains in d

с=c(e1,d')+c(e2,d)+c(tr_with) (minimization over
d', if uncertainty select one closest to d)

16 same as #15 tr2 one copy e2 of e from d transfers to d' ~ d, d' ≠
d*, another copy e1 of e retains in d

с=c(e2,d')+c(e1,d)+c(tr_with) (minimization over
d', if uncertainty select one closest to d)

17 edge e bifurcates into e1 and e2,
d=d*

ga1 gene e1 emerges in the species d' ~ d с=c(e1,d')+c(e2,d)+c(gain) (minimization over d')

18 same as #17 ga2 gene e2 emerges in the species d' ~ d с=c(e2,d')+c(e1,d)+c(gain) (minimization over d')

19 e≠e0, d≠d*, d≠d0, d is not
terminal

sl gene e stops functioning c=c(e,d*)+c(sleep)

20 e=e0, d=d* ga_big gene e0 emerges in d' ~ d as a common
ancestor of all Gi

с=c(e0,d')+c(gain_big) (minimization over d')

21 d≠d*, d≠d0 tr_pass gene e transfers without retention to d' ~ d, d' ≠
d*, that produces the single descendant d'1, and
then transfers to d'1

c=c(e,d'1)+c(tr_without) (minimization over d', if
uncertainty select one closest to d)

22 e≠e0, d=d* ga_pass gene e emerges in d' ~ d that produces the
single descendant d'1, and then transfers to d'1

c=c(e,d'1)+c(gain) (minimization over d')

23 edge e bifurcates into e1 and e2,
d≠d*, d≠d0

tr_lr gene e transfers without retention to d' ~ d, d' ≠
d*, that bifurcates into d'1 and d'2, then e1
transfers to d'1, and e2 – to d'2

с=c(e1,d'1)+c(e2,d'2)+ c(tr_without)
(minimization over d', if uncertainty select one
closest to d)

Lyubetsky et al. Biology Direct 2012, 7:48 Page 5 of 20
http://www.biology-direct.com/content/7/1/48

Table 1 Types of evolutionary events and their costs (Continued)

24 same as #23 tr_rl gene e transfers without retention to d' ~ d,
d' ≠ d*, that bifurcates into d'1 and d'2, then e1
transfers to d'2, and e2 – to d'1

с=c(e1,d'2)+c(e2,d'1)+ c(tr_without)
(minimization over d', if uncertainty select one
closest to d)

25 e≠e0, edge e bifurcates into e1
and e2, d≠d*

ga_lr gene e emerges in species d' ~ d that bifurcates
into d'1 and d'2, then e1 transfers to d'1, and
e2 – to d'2

с=c(e1,d'1)+c(e2,d'2)+c(gain) (minimization over d')

26 same as #25 ga_rl gene e emerges in species d' ~ d that bifurcates
into d'1 and d'2, then e1 transfers to d'2, and
e2 – to d'1

с=c(e1,d'2)+c(e2,d'1)+c(gain) (minimization over d')

27 d≠d*, d≠d0 tr_l gene e transfers without retention to species
d' ~ d, d' ≠ d* that bifurcates into d'1 and d'2,
and then transfers to d'1 and is lost in d'2

с=c(e,d'1)+c(tr_without)+ c(loss) (minimization
over d', if uncertainty select one closest to d)

28 same as #27 tr_r gene e transfers without retention to species
d' ~ d, d' ≠ d* that bifurcates into d'1 and d'2,
and then transfers to d'2 and is lost in d'1

с=c(e,d'2)+c(tr_without)+ c(loss) (minimization
over d', if uncertainty select one closest to d)

29 e≠e0, d=d* ga_l gene e emerges in species d' ~ d that bifurcates
into d'1 and d'2, and then transfers to d'1 and is
lost in d'2

с=c(e,d'1)+c(gain)+c(loss) (minimization over d')

30 same as #29 ga_r gene e emerges in species d' ~ d that bifurcates
into d'1 and d'2, and then transfers to d'2 and is
lost in d'1

с=c(e,d'2)+c(gain)+c(loss) (minimization over d')

31 edge e bifurcates into e1 and e2,
d≠d*, d≠d0

tr_dupl gene e transfers without retention to species
d' ~ d, d' ≠ d*, and then duplicates

c=c(e1,d')+c(e2,d')+ c(tr_without)+c(dupl)
(minimization over d', if uncertainty select one
closest to d)

32 edge e bifurcates into e1 and e2,
e≠e0, d=d*

ga_dupl gene e emerges in species d' ~ d, and then
duplicates

c=c(e1,d')+c(e2,d')+c(gain)+ c(dupl)
(minimization over d')

33 edge e bifurcates into e1 and e2,
d≠d*, d≠d0

tr_double gene e transfers without retention to species
d' ~ d, d'≠d*, then its copy e2 transfers to d” ~ d,
d” ≠ d”, d” ≠ d*, and copy e1 – to d'; or vice
versa replacing d' with d" and e1 with e2

c=c(e1,d')+c(e2,d")+ c(tr_without)+c(tr_with)
(minimization over pair < d', d" >, if uncertainty
select a pair closest to d as per the sum of
distances)

34 e≠e0, edge e bifurcates into e1
and e2, d=d*

ga_double gene e emerges in species d' ~ d, then its copy
e2 transfers to d" ~ d, d" ≠ d', and copy e1 retains
in d'; or vice versa replacing d' with d" and e1
with e2

c=c(e1,d')+c(e2,d")+c(gain)+ c(tr_with)
(minimization over pair < d’, d" >)

Consider i as the number of the event (and the row number) in a fixed enumeration pattern; “Condition” defines the applicability of the event to current pair
< e, d >; “Name” is the event type; “Description” is the event synopsis; “Cost” contains formulas to compute the costs of scenarios initiated from an event in a
current row. A notation d ~ d' designates that “tubes d and d' differ and belong to the same time slice”. The constants c(dupl), c(loss), c(gain), c(gain_big),
c(tr_without), c(tr_with), c(sleep) define the costs of individual events and constitute parameters of the algorithm.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 6 of 20
http://www.biology-direct.com/content/7/1/48
I.3) Constructing the set of “good” vertices. Let Gj be
binary. Given a set V ∈ P, a non-root vertex v of tree
Gj is called good (with respect to V) if

cl vð Þ � V ; cl v0ð Þ⊈V ð4Þ
where v' is the parent vertex of v. The root of the
tree is considered good if the first condition in (4)
is true. Now let Gj be polytomous. We assume
that Gj contains an additional edge e0 located
upwards from the root as shown in Figure 2.
Given a set V ∈ P, a vertex v of tree Gj is called
good (with respect to V) if at least one of its
children obeys condition (4) or the first condition in
(4) if v is the super-root. For each set V ∈ P, the set
R(V) of good vertices in all source gene trees Gj is
composed. If a binary tree Gj is also considered
polytomous, these two definitions give, generally
defining, different sets of good vertices but of equal
cardinality. It is enough, as only the cardinality of
the set R(V) is considered further.

I.4) Finding basic sets and their partitions in the set P.
For each fixed non-singleton basic set V (in P), all
partitioning variants are considered, i.e., all
variants defined by the equality V = V1+V2, where
non-empty disjoint sets V1,V2 are themselves
basic.

I.5) Building basic trees S(V) and computing their costs.
For each basic set V, the basic tree S(V) along with
its cost c(V) is defined and computed by induction.
The tree S(V) for a singleton set V consists of one
root-leaf vertex assigned a species from V; the cost
c(V) of this S(V) is zero. The induction step for a
fixed V: for each partition variant V = V1+V2 the
value c(V1,V2) = c(V1) + c(V2) + Cd + Cl is

S(V)

S(V1) S(V2)

V1 V2

V

Figure 3 Tree S(V) for a fixed partition V = V1 + V2. Here V, V1, V2
designates both the corresponding vertex and the edge upwards
from this vertex. Trees S(V1) and S(V2), as well as their costs c(V1) and
c(V2), are already known from induction, and Cd + Cl corresponds to
evolutionary events in edges of V, V1, V2. Those are not known from
induction and should be computed separately, as defined below in
the text.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 7 of 20
http://www.biology-direct.com/content/7/1/48
computed, and the minimum (over all partitions
of V).

c Vð Þ ¼ min c V1;V2ð Þ V ¼ V1 þ V2j gf
is found, where Cd is the total cost of duplications on
edge V (we equally denote by V the set of leaf species,
the root edge and the root vertex of the corresponding
subtree), and Cl is the total cost of losses on edges V1

and V2, see Figure 3. Both Cd and Cl are defined below.
A partition <V1,V2> that minimizes the functional c(V)

over all partitions of V is called the minimal partition
(of V). Once the minimal partition is found, the tree S
(V) is obtained by joining trees S(V1) and S(V2) and root-
ing them at the joint vertex and edge, as shown in
Figure 3.
Thus, to calculate the total costs Cd and Cl, a set r(V1,

V2) of vertices v in all Gj is constructed such that one
child vertex of v belongs to R(V1), and the other – to R
(V2) (if v is binary). A polytomous vertex v is included in
r(V1,V2) if v possesses at least one child satisfying (4) for
V1 and one satisfying (4) for V2. The total cost of dupli-
cations on edge V is calculated as Cd = cd · (|R(V1)|+|R
(V2)|–|R(V)|–|r(V1,V2)|), where | | denotes the cardinal-
ity of a set, and cd is the cost of one duplication (the al-
gorithm parameter). The total cost of losses in edges V1
R'

R

Gi

e0

Figure 2 An additional “root” edge between the “super-root” R'
and the initial root R in tree Gj. This root is used to define the set
R(V), since the vertex R' can be good. The root edge e0 is analogous
to the root tube d0 in Figure 1.
and V2 is calculated as Cl = cl · (|R(V1)|+|R(V2)|–2|r(V1,
V2)|), where cl is the cost of one loss (the algorithm
parameter).
Additionally, the weight of the tree S(V) is calculated

with the formula

w Vð Þ ¼ 1þ ca
m

� � c V
0� �� c Vð Þ� �
c V 0ð Þ

where a is the number of leaves in S(V), m is the total
number of species, and c is the algorithm parameter (de-
fault is c=10). Here the partition V' is closest to the min-
imal partition in terms of the cost; if no other partition
exists, it is assumed that w(V) = 1. The weights are used
at Phase II of the algorithm.
Phase I (steps I.1-I.5) ends with removing all basic

trees containing less than 3 leaves. The obtained set of
weighted basic trees is the outcome of Phase I of the
first algorithm.
Operating time of Phase I for the standard P has the

order of O((n·m)3), and for any P – the order is O(|P|3 +
|P|2nm). A rigorous cubic complexity and mathematical
proof (in the special common case) are the advantages
of the Phase I algorithm comparing to known heuristic
methods.
II) The second phase of the first algorithm (Phase II).

This phase is heuristic. For any species tree S with the
leaves-species set W and the basic tree S(V), define the
cost c(S(V),S) as the cost of mapping α or β of the tree
S'(V) into S (the cost of β is defined in see Computing the
total cost of binary gene trees against the species tree
below). Here, S'(V) is obtained from S(V) by pruning all

Lyubetsky et al. Biology Direct 2012, 7:48 Page 8 of 20
http://www.biology-direct.com/content/7/1/48
leaves containing species outside W together with their
edges.
The cost c(S) of any species tree S is defined as the

sum of costs c(S(V),S) over all basic trees S(V), or, op-
tionally, each cost is multiplied by w(V). Thus,

c Sð Þ ¼
X
S Vð Þ

w Vð Þ:c S Vð Þ; Sð Þ

where summation is done over all basic trees S(V) or,
equally, over all basic sets V with cardinality higher than
or equal to 3. As above, let V0 be the set of all species
contained in leaves of all Gj.
The initial step of Phase II. The algorithm enumerates

all triplet-leaved trees S with three leaves-species from
V0 and selects one with the minimal cost c(S). This S
constitutes the seed partial supertree in the below
procedure.
The inductive step of Phase II. In the current partial

supertree S with the set W of leaves-species (a subset of
V0), each edge is attempted for insertion of a new vertex
a connected to a species s from V0, and for placing a
new root a above the current root, Figure 4. Among
such possible extensions T of S, we choose the tree T
with the minimal cost с(T); it supersedes the current
partial supertree S. Extensions are attempted until all
species from V0 are added to the current tree S, and the
algorithm halts. The eventual S is the sought-for super-
tree S*. The end of Phase II.
Additional file 1 contains a more detailed description

of Phase II, including the assessment of vertex reliability
in the final supertree and overall supertree reliability. It
also presents a simplified version of Phase II.

The second algorithm: reconciliation of gene and species
trees and building evolutionary scenarios
Given are a set {Gj} of rooted polytomous gene trees
(paralogs are allowed), a rooted binary species tree S and
S

a

a

s s

T

R'

R

Figure 4 Two possibilities of inserting a new vertex a
connected by an edge with a new species s.
a tree S0 obtained from S by inserting one or several ver-
tices into tubes to delimit time slices, Figure 1. Each Gj

and the tree S0 are attributed the root edge e0 and the
root tube d0 as depicted in Figure 2. If the index j is ir-
relevant, Gj is equivalent to G.
The set of species is fixed, with one “accessory” out-

group leaf d* added to the tree root. For the species tree,
the notations of terminal tubes, leaves and species x (in-
cluding the outgroup) are unified to define identical
objects. For gene trees, the identical objects are terminal
edges, leaves and leaf notations x-y. The correspondence
between leaf notations x-y in G and x in S and S0 is fixed
as the gene-species correspondence (gene “y” exists in
species “x”).
The second algorithm refers to a complex of algo-

rithms to solve four separate problems as described
below in Computing the total cost of binary gene trees
against the species tree - Stochastic characteristics of the
second scenario design.

Ordering used in the algorithm
All gene trees Gj are enumerated (index j can be omit-
ted). Under a fixed j, triplets < e,d,i > are enumerated as
follows. Edges e in G are visited in the order of descend-
ing distance from the root (from deeper to shallower
levels), and from left to right within the same level.
Tubes d in S0 are visited in the order of descending the
level of the time slice (upwards to the root). Within a
slice, for each e ≠ e0 tubes are visited from left to right
starting from the outgroup d*, and for the root edge e0
the left-to-right visiting ends with the outgroup d*. Here
d* is a segment of the outgroup tube in tree S that falls
within the current time slice. Next, the 35 types of gene
evolution events i are visited in the order specified in
Table 1, with i running from 0 to 34.
All trees G considered (see Conclusion) are binary.

Encountered polytomous trees are binarized. The binari-
zation procedure is described in Additional file 2.

Computing the total cost of binary gene trees against the
species tree
In Table 1, each row provides the event name and de-
scription (third and fourth columns, respectively), and
the last column defines the cost of <e,d,i>.
Let j specify the tree G, e run over its edges, and d run

over tubes in S0. Define

cmin e; d; jð Þ ¼ cmin e; dð Þ ¼ minic e; d; ið Þ ð5Þ

where с(e,d,i) is the cost specified in the last column of
Table 1 if the current pair <e,d> satisfies the condition de-
fining the particular event type. In computing сmin(e,d) the
arguments <e,d> are enumerated according to the order-
ing specified in The second algorithm: reconciliation of

Lyubetsky et al. Biology Direct 2012, 7:48 Page 9 of 20
http://www.biology-direct.com/content/7/1/48
gene and species trees and building evolutionary scenar-
ios. Figure 5 exemplifies an induction step.
The minimum of (5) is attained at the “minimal” event

(the “minimal” row in Table 1) i. Certain events imply
the minimization over the variable tube d' or the pair of
tubes <d',d">; the minimal value of the variable is re-
ferred to as the “minimal parameter”.
The value сmin(e0, d0) is denoted as c(G, S), recall that

G = Gj. The value
X
j

cmin e0; d0; jð Þ is denoted as c({Gj},

S) and referred to as the total cost of the input set {Gj}
of binary gene trees against the tree S. The total cost of
the supertree S* is denoted as c({Gj}, S *).
The value сmin(e, d) can be interpreted as a “condi-

tional cost”, i.e. the cost of an optimal evolutionary sce-
nario if it initiates from edge e in tube d and evolves
into terminal leaves with cohered pairs of genes-species.
First scenario design: the event tree
Each tree G (or its binarization G') is associated with the
first scenario (the event tree) T of the evolution of gene
G along the species tree S0. The tree vertices correspond
to certain pairs <e,d>, the root – to the pair <e0,d0>, the
leaves – to pairs formed with a terminal edge and a ter-
minal tube obeying the “species-gene” relation. The tree
edges can be unary (ordinary) or binary, i.e., pairs of
unary edges originated from a single vertex. The algo-
rithm of constructing T over G is similar to the binariza-
tion procedure detailed in Additional file 2.
During the forward run (described in Computing the

total cost of binary gene trees against the species tree) each
pair <e,d> is assigned the minimal event i according to (5)
G

G1 G2

e1 e2

e

e

Figure 5 The inductive step in computing the cost c(G,S). On the left i
е1 is the root edge in G1, е2 – the root edge in G2 (the root edges belong
right illustrates an embedding of G into S. Costs c(G1,S) and c(G2,S) are com
+c(transfer)+c(dupl), and summands are parameters of the algorithm (elem
and its minimal parameters. The backward run starts from
the pair <e0,d0>. At each step either a binary edge is pro-
jected from vertex <e,d> into vertices denoted as <е1,d'1>
and <е2,d'2> (case 1), or a unary edge is projected into ver-
tex <e,d'> (case 2), where d'1, d'2, d' are the minimal para-
meters. The edge is tagged with the event name i. Case 1
implies a bifurcation resulted from the minimal event.
By definition, the cost of the first scenario T is the cost

of the input tree G against S0, i.e. c(T) = c(G, S0). It can
be detailed with the amounts of different event types in-
ferred in tubes of the species tree, the total amount of
events, the individual event costs, etc.
The mapping β is equivalent to T , and the cost of β is

equal to the cost of T as substantiated below. It is easy
to show that for each е in G there are vertices in T of
the form < e, d > with different tubes d. Each such tube
d1,. . ., dl is associated in T with the unique correspond-
ing event it that occurred on edge e inside tube dt (such
it tags the unique edge originated from vertex < e, dt >
in T). By definition, β(e)={d1, . . ., dt,. . ., dl}. The set β(e)
can be interpreted as a path. Consider first d1 that is
closest to the root in S0. If tubes dt and dt+1 are compar-
able then dt is closer to the root, otherwise dt+1 accepts
a transfer from dt (Figure 6) or dt+1 is a child of the
accepting tube. The set β(e) forms in S0 a connected
path defined by the scenario T and consisting of repeti-
tions of edge e and transfers without retention. This def-
inition of β(e) requires a clarification: events it are
determined by β(e) and S0, except for the last event il.
Therefore, β(e) can be expressed as β(e)={d1, . . ., dl; il}.
For mapping β let us define c(β) = c(T).
The event tree T can be easily recovered with a known

β, which is however not of interest because T is used as
G1 G2

e1 e2

e

c(G1,S) c(G2,S)

d d'

s an illustration of assembling the tree G from subtrees G1 and G2. Here
to their corresponding trees), and е – the root edge in G. Figure on the
puted with induction. Then c(G,S) = c(G1,S) + c(G2,S) + x, here х=с(loss)
entary event costs).

e

1 2

d1

d2

d 3

d4

d5

d6

d7

d8

d9

e

e

e

e

e

e

e

e

e e

Figure 6 An example of β(e) value. Edge e may cross different time slices (not shown), undergoes several speciation events with a loss, two
horizontal transfers without retention, and, importantly, terminates with a duplication event.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 10 of 20
http://www.biology-direct.com/content/7/1/48

Lyubetsky et al. Biology Direct 2012, 7:48 Page 11 of 20
http://www.biology-direct.com/content/7/1/48
the first scenario. Note that β is the global minimum of
the cost functional c(f), where f is any admissible distri-
bution of edges in G along tubes in S0; we omit exact
definitions here.

Second scenario design: a random process on the graph
In First scenario design: the event tree, the scenario T is
constructed during consecutive selection of minimal
events in the tubes. However, the discarded alternatives
may represent events with just slightly higher costs. As
true event costs are unknown, it becomes an important
consideration. We describe a novel approach to construct
the scenario as a random process on the graph, which
allows us to take suboptimal scenarios into account.
Fix a natural number k (the “degree of ramification”,

the algorithm parameter).
For each G, construct a directed acyclic graph (DAG)

R with unary and binary edges, vertices corresponding to
pairs < e, d >, and the root < e0, d0 >. The edges are
tagged with event names i1, . . ., il (where l ≤ k) from
Table 1. During the forward run of the algorithm, unlike
with the first scenario (event tree) T, not one but k “best”
(in terms of the cost) unary or binary edges are pro-
jected from each vertex < e, d > and tagged with the
event i, i.e. i takes k or less values at each vertex. Each
edge is assigned conditional probability pi and uncondi-
tional probability p(e, d, i) of undergoing evolutionary
events i. Under k = 1 the evolution is deterministic,
i.e., the probabilities are either 0 or 1, and edges receiv-
ing the probability of 1 constitute the first scenario T.
Leaf pairs < e, d > cohered by the “species-gene” cor-

respondence constitute the leaves in DAG, with no out-
going edges. A non-cohered pair < e, d > projects an
edge into the cohered pair < e, х >, where x is the tube
that terminates with the species assigned to the leaf e.
This edge is tagged with the probability pi=1 and the
row number 1 (Table 1). A pair < e, d*> also projects an
edge into a cohered pair < e, х >; the edge is tagged with
pi=1 and the row number 2 (Table 1).
The above paragraph describes the start of induction

in the construction of DAG. The induction step is more
sophisticated and is described in Additional file 2.
Intuitively, DAG describes the evolutionary branching

of a gene described by the tree G along a species described
by the tree S. For each G, the value p(e, d, i) assigned to
the DAG edge < e, d, i > is a probability of inclusion of the
edge into the event tree. Starting from vertex < e0, d0 >
and arriving into < e, d >, choose its i-th outgoing edge
with the probability pi. If a unary edge is chosen, proceed
to its terminus; if a binary edge is chosen, the process
bifurcates into the termini of the edge.
Note that the lower the cost c(e, d, i), the higher the

probability pi. For the second scenario, the algorithm
computes not the cost but the expectation of the
number and total cost of various event types. The expec-
tations depend on parameter k, which default value is
10. Computer simulations show that higher k produce
similar expectations.
The first scenario is the best in terms of the cost, the

second scenario incorporates a number of good solu-
tions (the threshold set indirectly by k). Under k = 1 the
scenarios coincide, and cost expectations coincide with
the costs. Under k > 1 the second scenario is a refine-
ment of the first scenario. E.g., if duplications in the root
tube are absent in the best scenario but present in sub-
optimal solutions, the second scenario will show their
expectation already at k = 10.

Stochastic characteristics of the second scenario design
Denote an I-type a fixed set I of tags selected by the user.
The third column of Table 2 contains the following tags:
gene gain (gain), origin of the common ancestor of all
genes (gain_big), gene duplication (dupl), gene loss
(loss), gene transfer from a tube with retention (tr+o),
gene transfer from a tube without retention (tr–o), gene
transfer into a tube with retention (tr+i), gene transfer
into a tube without retention (tr–i), loss of the trans-
ferred copy in the donor (loss–). Other tags can be added
to define event types in terms of DAG.
Denote a T-type a set T of edges with all descendant

leaves marked with * in one or several trees Gj (a dis-
junctive union over j). An example is a set of ancestral
ribosomal or mitochondrial genes.
Let u be a fixed tube. The given set I and tube u define

the set X of edges in Rj: edge i in DAG is included in X
if one of the triplets at the intersection of the third col-
umn and the i-th row in Table 2 contains the first mem-
ber belonging to I and the third member being the tube
u. Denote this condition i ∈ I,u. Note that the second
and third members of any triplet are uniquely deter-
mined by the terminus/termini of edge i, ref. to Table 2.
Analogously, given sets I and T define the set X of

edges in Rj: edge i in DAG is included in X if one of the
triplets at the intersection of the third column and the
i-th row in Table 2 contains the first member belonging
to I and the second member being an edge from T.
Denote this condition i ∈ I, T.
Compute expectations of the parameters of the sto-

chastic process described in Second scenario design: a
random process on the graph, the “amount of events
from I in tube u” f(I, u) and the “amount of events from
I on edges from Т” g(I, Т):

f I; uð Þ ¼
X
j

X
e;d

X
<e;d>→i; i∈I;u

p e; d; j; ið Þ

where < e, d > → i signifies that edge i originates from ver-
tex < e, d >. If i is one of the last two rows in Table 2, then

Table 2 Definitions of events in the second scenario
design (in the DAG)

i Termini of the edge
projected from <e, d>

Triplets

0 Edge is not projected
(induction ends)

None

1 <e,х> (х is a leaf cohered
with e; induction ends)

<tr–o,e,d>, <tr–i,e,х>, <loss–,e,d>

2 same as #1 <gain,e,х>

3 <e,d1> None

4 <e1,d1>; <e2,d2> None

5 <e2,d1>; <e1,d2> None

6 <e,d1> <loss,e,d2>

7 <e,d2> <loss,e,d1>

8 <e,d1> None

9 <e,d2> None

10 <e,d1> None

11 <e,d2> None

12 <e1,d>; <e2,d> <dupl,e,d>

13 <e1,d>; <e2,d> None

14 <e1,d>; <e2,d> None

15 <e1,d'>; <e2,d> <tr+o,e1,d>, <tr
+i,e1,d'>

16 <e2,d'>; <e1,d> <tr+o,e2,d>, <tr
+i,e2,d'>

17 <e1,d'>; <e2,d> <gain,e1,d'>

18 <e2,d'>; <e1,d> <gain,e2,d'>

19 <e,d*> <sleep,e,d>

20 <e0,d'> <gain_big,e,d'>

21 <e,d'1> <tr–o,e,d>, <tr–i,e,d'>, <loss–,e,d>

22 <e,d'1> <gain,e,d'>

23 <e1,d'1>; <e2,d'2> <tr–o,e,d>, <tr–i,e,d'>, <loss–,e,d>

24 <e1,d'2>; <e2,d'1> <tr–o,e,d>, <tr–i,e,d'>, <loss–,e,d>

25 <e1,d'1>; <e2,d'2> <gain,e,d'>

26 <e1,d'2>; <e2,d'1> <gain,e,d'>

27 <e,d'1> <tr–o,e,d>, <tr–i,e,d'>, <loss–,e,d>, <loss,e,
d'2>

28 <e,d'2> <tr–o,e,d>, <tr–i,e,d'>, <loss–,e,d>, <loss,e,
d'1>

29 <e,d'1> <gain,e,d'>, <loss,e,d'2>

30 <e,d'2> <gain,e,d'>, <loss,e,d'1>

31 <e1,d'>; <e2,d'> <tr–o,e,d>, <tr–i,e,d'>, <loss–,e,d>, <dupl,
e,d'>

32 <e1,d'>; <e2,d'> <gain,e,d'>, <dupl,e,d'>

33 <e1,d'>; <e2,d"> <tr–o,e,d>, <loss–,e,d>, <tr–i,e,d'&d">, <tr
+o,e1&e2,d'&d">, <tr

+i,e1&e2,d'&d">

34 <e1,d'>; <e2,d"> <gain,e, d'&d">, <tr+o,e1&e2,d'&d">, <tr
+i,

e1&e2,d'&d">

Consider i the ordering of events specified in Table 1; the second column
specifies the termini of the edge projected from the pair <e, d>. The third
column specifies triplets to be associated with edges of Rj. A notation e1&e2
designates a multiplier of 0.5. In rows 1, 21, 23, 24, 27, 28, 31, 33 the triplets
<loss–,e,d> designate the loss of the donor copy of the gene after transfer.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 12 of 20
http://www.biology-direct.com/content/7/1/48
in the notation d'&d" the summands for u = d' or u = d"
are halved.
For the given I and Т the value of g(I, Т) is

g I;Tð Þ ¼
X
j

X
e;d

X
<e;d>→i; i∈I;T

p e; d; j; ið Þ

If i is one of the last two rows in Table 2, then in the no-
tation е1&е2 the summands for e1 ∈ T or e2 ∈ T are halved.
In some cases, one may be interested to know the

mathematical expectation of the total cost of events
rather than their amount. The expectations are obtained
using the formulas:

cf I; uð Þ ¼
X
j

X
e;d

X
<e;d>→i; i∈I;u

ci:p e; d; j; ið Þ

cg I;Tð Þ ¼
X
j

X
e;d

X
<e;d>→i; i∈I;T

ci:p e; d; j; ið Þ

Under k =1 all expectations equal the number of
events or the cost values.
More general characteristics can also be estimated,

such as the sum

X
u;i∈I

cf I; uð Þ ð6Þ

of expectations of the event costs over all tubes u and all
events i from I, where I includes the gene gain (gain),
origin of the common ancestor of all genes (gain_big),
gene duplication (dupl), loss (loss), transfer from a tube
(tr–o или tr+o), loss of the transferred copy in the donor
(loss–). Other sets I can be used in (6).
Denote the sum (6) as the cost of the second scenario.

Results and discussion
The models and algorithms described in the Methods
are original developments of the authors and largely
comprise the results of the study. This section details
their implementation, testing on various data, and other
relevant results.

Implementation of the first algorithm
The Super3GL program accepts a set of rooted gene
trees Gj, which are allowed to contain polytomous verti-
ces (ref. also to Additional file 1).
The program produces a supertree that amalgamates

the set of input trees, allowing for duplications, gains,
losses and horizontal transfers as evolutionary events,
and imposes no condition on P (e.g. condition (*)); thus,
the program realizes the heuristic algorithm described in
Description of the first algorithm.
The input and resulting trees are in the Newick paren-

thesis format. If requested, the reliability of each super-
tree vertex is included in the tree notation as a length of

Lyubetsky et al. Biology Direct 2012, 7:48 Page 13 of 20
http://www.biology-direct.com/content/7/1/48
the incoming edge; the general reliability of the super-
tree can also be computed.
Super3GL is written in C++ as a command-line utility

and optionally accepts a configuration file to avoid re-
typing non-default arguments. As mentioned above, the
algorithm consists of two phases. Phase I, which builds
a set of basic trees, cannot be interrupted. Phase II,
which builds the final supertree from the set of basic
trees incrementally by induction, is independent from
the first phase and can be interrupted and resumed at
any time.
The program automatically detects the MPI environ-

ment of version 1.2 or above; in which case it runs the
parallel version of the algorithm. Detailed information
about the program performance and scalability is given
in the user’s manual.
Both 32-bit and 64-bit versions of Super3GL were

tested on MS Windows and Linux on a stand-alone
computer with 1–4 CPUs, as well as on the MVS-100K
cluster of the Joint Supercomputer Center of the Russian
Academy of Sciences [21] using up to 2048 CPUs.
The source code of Super3GL for Linux can be

obtained free of charge from the Web page [19] under
the GNU General Public License version 3.
Implementation of the second algorithm
Embed3GL implements all operations discussed in The
second algorithm: reconciliation of gene and species
trees and building evolutionary scenarios. The program
inputs a set of gene trees Gj that are allowed to contain
polytomous vertices and paralogs. All trees are rooted,
otherwise the algorithm from Additional file 1 is pre-
applied.
The original species tree S and its modified version S0

are provided as one tree: the name of each vertex in the
parenthesis notation of S is followed by an integer num-
ber, the “length” of the incoming tube. This value indi-
cates the number of “new” tubes in S0 that form in the
place of the “old” tube in S by inserting additional verti-
ces. The default length of 1 means that no new vertex is
inserted. A separate program, also available at the Web
page [20], can be applied for time-slicing of a given spe-
cies tree, which will be converted into the required tree
format.
Each new tube d is attributed to a certain old tube,

�d ¼ �d dð Þ. It allows to compute characteristics of the old
tube based on those of new tubes, which is frequently of

interest. For instance, one may need
X
d∈�d

f dð Þ , where

d∈�d means that the new tube d is a part of the old tube
�d ¼ �d dð Þ, and f is the desired characteristic.
The Embed3GL program is written in C/C++ as a

command-line utility and optionally accepts a configu-
ration file to avoid re-typing of non-default arguments.
The program automatically detects the MPI environ-
ment (version 1.2 or above), in which case it implements
an effectively parallelized version of the algorithm.
The input gene trees are provided in the Newick par-

enthesis format as one or several files; the species tree is
provided in the same notation in a separate file. All
operations mentioned in The second algorithm: recon-
ciliation of gene and species trees and building evolu-
tionary scenarios can be performed serially or in any
desired combination.
The Embed3GL program executables for 32/64-bit

Windows along with the user’s manual and usage exam-
ples are freely available at the Web page [20]. The source
code for Linux can be obtained free of charge from the
same page under the GNU General Public License ver-
sion 3.

Testing of the algorithms
The Super3GL performance and results were compared
against recognized supertree building programs on artifi-
cial and biological data. All comparisons were done in
the uniprocessing mode on an Intel Xeon 2.0 GHz plat-
form. Stochastic programs were run several times and
the best result of the series was used for comparison.
Super3GL was run once because its algorithm is deter-
ministic. Selected comparisons with RFsupertrees [5]
and Clann version 3.0.2 [22] are presented in Table 3.
All programs were run with default parameter settings.
The three programs used the same input files provided

in Additional file 3 (artificial data) and Additional file 4
(biological data).

Algorithms comparison with artificial data
Artificial trees were randomly generated from a known
species tree S*. An example S* with 40 leaves is given in
Figure 7. An example set {Gj} of 1000 generated gene
trees is given in Additional file 3. Trees contain 50,932
leaves in total. The method used to generate gene trees
on a given species tree is described in [8], p. 166. As
mentioned below, the procedure of trees simulation
along a topology needs further study and justification.
Super3GL reconstructed the known species tree in

95% cases, S = S*. The two other programs used the
same set of input trees but often constructed supertrees
essentially different from S*; ref. e.g. to Additional files 5
and 6. The total costs of mapping of {Gj} into S are as
well presented in Table 3.

On the Robinson-Foulds distance
A natural approach to compare species trees constructed
on the basis of an identical set of gene trees is to com-
pare values of the total cost functional. Indeed, the
supertree building problem is formulated (at least in this

Table 3 Comparison of Super3GL with RFsupertrees and CLANN version 3.0.2

Description Super3GL RFsupertrees CLANN

Artificial data (Additional file 3): 40 species, 1000 gene trees, 50932 leaves

Supertree S* Figure 7 Additional file 5 Additional file 6

Total cost of S* 97443 114028 158751

Cost of the second scenario 151630 173527 218958

Running time 21 m 10 m 847 m

Biological data (Additional file 4): 110 species, 3396 gene trees, 33470 leaves

Supertree S* Figure 8 Additional file 7 Additional file 8

Total cost of S* 210917 234880 234933

Cost of the second scenario 535524 660021 706826

Running time 14 m 107 m 2234 m

The total cost of the supertree and the cost of the second evolutionary scenario are defined with c({Gi}, S *) and formula (6), respectively. Individual event costs
are as follows: c(dupl) = 3, c(loss) = 2, c(gain) = 12, c(gain_big) = 10, c(sleep) = 20, c(tr_with) = 17.6, c(tr_without) = 19.6.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 14 of 20
http://www.biology-direct.com/content/7/1/48
study) in terms of minimizing this functional. In essence,
this functional is a measure of distance between the
given set {Gj} and the supertree S.
Different approaches to measure this distance are known.

Thus, the RF-functional RF Gj
� �

; S
� � ¼

X
j

RF Gj; S
� �

is a

sum of Robinson-Foulds distances [5,23] between Gj and S
over all Gj. A rigorous comparison between the functionals
RF({Gj}, S) over all Gj. A rigorous comparison between the

functionals RF({Gj}, S) and c Gj
� �

; S
� � ¼

X
j

c Gj; S
� �

requires a separate systematic study. Below are some pre-
liminary considerations.
Assume that tree S contains the set of leaves V0, and

consider only species notations in leaves of Gj. Typically,
each Gj contains less species than S, and computing a
RF-distance requires pruning of certain amount of spe-
cies from S for each current Gj. Properties of the RF-
functional need to be studied.
Under the absence of paralogs, the minimization of

the RF-functional is equivalent to maximization of clades
matching between the topologies of Gj and S. In terms
of mapping α, it is the maximization of cases when only
one edge of the gene tree enters a tube of the species
tree (i.e. the edge origin is mapped into the tube origin
or earlier, and the edge terminus – into the tube or
later). In biological terms, this speciation event is not
associated with acquisition of paralogs. The authors are
unaware of any research that interprets the RF-measure
in terms of gene evolution events.
As with the mapping cost, the problem of minimizing

the RF-functional is NP-hard, unless the tree S contains
only clades belonging to a pre-defined set P. When this
non-standard statement is assumed, the problem is
solved with our algorithm exactly as described in this
study for the cost functional. The proposed algorithm is
universally applicable to any functional defined in terms
of mapping edges. A natural example in case of paralogs
is the minimization of the total amount of edges that
enter tubes of the species tree. The described cost func-
tional performs better than RF-functional even in the
special case, where only gene duplications and losses are
considered.

Algorithms comparison with biological data
Biological data is a set of unrooted gene trees provided
by the courtesy of Prof. James McInerney (National Uni-
versity of Ireland, Maynooth). The trees were rooted
using the procedure described in Additional file 1 to ob-
tain the set of 3396 gene trees for 110 prokaryotic spe-
cies. The trees contain 33,470 leaves in total. The set is
provided in Additional file 4.
The supertree built by Super3GL is shown in Figure 8.

It coincides mainly with the species tree from [24], with
the same differences as between the tree of [24] and a
later genomic tree of [25], which suggests support for
our supertree building method. Supertrees built by the
two other programs (ref. to Additional files 7 and 8) es-
sentially differ from the mentioned trees [24,25].
Trees presented in Figure 8 and Additional files 7, 8

were not manually edited.
A comparative biological interpretation of our

obtained supertree and the topology of other two trees
also favors the Super3GL result. Consider four widely
accepted phylogenetic patterns:

1) Archaebacteria and Eubacteria form two separate
basal domains;

2) Spirochaetes are monophyletic within Eubacteria;
3) Bacilli, Clostridia, Lactobacilli, Mycoplasma and

other Mollicutes constitute a separate monophyletic
lineage within Eubacteria;

4) Proteobacteria are monophyletic within Eubacteria and
contain the monophyletic subclade of α-Proteobacteria.

R

Figure 7 The artificial species tree S* used to simulate sets {Gj} of gene trees (40 species). The tree root is denoted by R. One of the
simulated sets {Gj} is presented in Additional file 3. The Super3GL program applied to {Gj} reconstructed the known supertree S* in 95% cases. The
total mapping cost equals 97443. Leaf notations: Archaea: Archaeoglobus fulgidus (Afu), Halobacterium sp. NRC-1 (Hbs), Methanococcus jannaschii
(Mja), Methanobacterium thermoautotrophicum (Mth), Thermoplasma acidophilum (Tac), Thermoplasma volcanium (Tvo), Pyrococcus horikoshii (Pho),
Pyrococcus abyssi (Pab), Aeropyrum pernix (Ape), Sulfolobus solfataricus (Sso); Gram-positive bacteria: Streptococcus pyogenes (Spy), Bacillus subtilis
(Bsu), Bacillus halodurans (Bha), Lactococcus lastis (Lla), Staphylococcus aureus (Sau), Ureaplasma urealyticum (Uur), Mycoplasma pneumoniae (Mpn),
Mycoplasma genitalium (Mge); α-Proteobacteria: Mesorhizobium loti (Mlo), Caulobacter crescentus (Ccr), Rickettsia prowazekii (Rpr); β-Proteobacteria:
Neisseria meningitidis MC58 (Nme); γ-Proteobacteria: Escherichia coli K12 (Eco), Buchnera sp. APS (Buc), Pseudomonas aeruginosa (Pae), Vibrio cholerae
(Vch), Haemophilus influenzae (Hin), Pasteurella multocida (Pmu), Xylella fastidiosa (Xfa); ε-Proteobacteria: Helicobacter pylori (Hpy), Campylobacter
jejuni (Cje); Chlamydia: Chlamydia trachomatis (Ctr), Chlamydia pneumoniae (Cpn); Spirohetes: Treponema pallidum (Tpa), Borrelia burgdorferi (Bbu);
others: Deinococcus radiodurans (Dra), Mycobacterium tuberculosis (Mtu), Synechocystis (Syn), Aquifex aeolicus (Aae), Thermotoga maritime (Tma).

Lyubetsky et al. Biology Direct 2012, 7:48 Page 15 of 20
http://www.biology-direct.com/content/7/1/48
The tree in Figure 8 represents all four patterns. The
tree in Additional files 7 contains only pattern 4, but splits
Archaebacteria into a paraphyletic grade, separates spiro-
chaetes (Borrelia, Leptospira, Treponema) among three
distant lineages, places Clostridia+Mollicutes and Bacilli
+Lactobacilli into different clades, the latter also contain-
ing a spirochaete Treponema. The tree in Additional file 8
does not show any of the four patterns: Archaebacteria
are not basal, Spirochaetes largely intermix with other
bacteria, Phytoplasma and Clostridia enter the Archaebac-
teria clade, Bacilli and Lactobacilli are mixed with Bacter-
oidetes, Mycoplasma – with selected Chlamydiae, most α-
Proteobacteria are scattered between early diverging
lineages, Rickettsia and Ehrlichia are placed in two differ-
ent distant clades. All trees, however, show minor devia-
tions from the biologically expected topology at a more
shallow level. Thus, Leifsonia is always placed closer to
Bifidobacterium than to other actinomycetes; in Figure 8

Lyubetsky et al. Biology Direct 2012, 7:48 Page 16 of 20
http://www.biology-direct.com/content/7/1/48
Pasteurellaceae enter Enterobacteriaceae. Such artifacts
might indicate sampling errors of the data in Additional
file 4.
Compare the evolutionary scenario designs defined in

Methods. The two designs are compared in Table 4 on
the basis of the same set of input gene trees.
Table 3 (the “cost of second scenario” row) details the

comparison of the three programs. Note that comparing
programs against the first and second scenarios pro-
duces the same result. Example expectations of the total
Ρ

2

3

α

Figure 8 The supertree built by Super3GL for biological data from Ad
phylogenetic patterns mentioned in Testing of the algorithms.
(over all tubes) event costs for the two scenarios are
given in Table 4.
Analyses used the NCBI taxonomy [26]. Trees were

visualized with TreeView [27] and Dendroscope [28].
The rooting algorithm for unrooted trees is trivial and

explained in Additional file 1.

Conclusions
The problem of optimal amalgamation of a set of trees
has a long history. This problem can be generalized into
1

4

ditional file 4. The tree root is denoted by R. Numbers indicate the

Table 4 Example characteristics of the first and second scenario designs

Artificial data Biological data

Scenario characteristics 1st design 2nd design 1st design 2nd design

Total cost / expectation 97443.4 151629.7 210917.0 535524.0

Total cost / expectation of gains 60.0 358.4 53448.0 77040.5

Total cost / expectation of losses 38024.0 56660.0 98376.0 187600.5

Total cost / expectation of duplications 26796.0 34324.6 38286.0 44639.6

Total cost / expectation of transfers 32563.4 60168.3 17887.0 223854.8

Total cost / expectation of the gain_big events 0.0 118.4 2920.0 2388.6

Running time <1m 2m 15m 41m

Input tree data is the same as for Table 3. The tree S is obtained by the supertree building algorithm described in the paper. The degree of ramification k = 10.
Individual event costs are as follows: c(dupl)=3, c(loss)=2, c(gain)=12, c(gain_big)=10, c(sleep)=20, c(tr_with)= 17.6, c(tr_without)=19.6. The running time is
specified for parallel computations on a 16-CPUs platform. The cost in the second design and the expectation of the total event cost are defined in Table 3 and
by formula (6), respectively.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 17 of 20
http://www.biology-direct.com/content/7/1/48
searching for an “average” graph of a given set of graphs.
In the phylogenetic context, that will describe the
desired supertree. Such graph will globally minimize the
total sum of differences between each reconciled tree
and the supertree. Pioneer studies (ref. to [2] and further
references provided therein) defined the difference be-
tween the trees G and S in terms of the cost с(G, S) of
mapping α of one tree into another. Under this concept,
searching for a supertree was naturally viewed as search-
ing for the global minimum of the functionalX

j
c Gj; S
� �

referred to as the cost of the amalgamation

of trees Gj.
The set of admissible trees S was not always explicitly

specified for this functional. Its minimum was implied to
be found among all species trees that contain species
present in all amalgamated input trees. Under this state-
ment, the problem cannot be rigorously solved in poly-
nomial time.
We suggest a reformulation to search for the supertree

among species trees that contain clades present in the
set of input trees or, more generally, belonging to a pre-
defined set Р. We developed a deterministic algorithm
that finds the supertree for any given P in the time cubic
of |P|. Moreover, for a special common case the algo-
rithm was mathematically proved to find exactly the glo-
bal minimum of the total amalgamation cost.
The software implementation of the developed algo-

rithm performs faster and more accurately comparing to
known tools of inferring supertrees. Empirical testing
was done with artificial and biological data. However, for
its rigorous statistical verification a sound comparative
framework to cross-test supertree building algorithms is
still to be developed.
Of basic importance to approach the tree amalgam-

ation problem is to define evolutionary events that can
biologically explain a correct amalgamation. The authors
developed a detailed list of such events, which is far
more extensive than found in current literature. The ul-
timate definition of an evolutionary scenario will require
further research. We suggest two approaches to build
scenarios. Their corresponding algorithms are mathem-
atically proved and possess a cubic complexity to the in-
put data size.

Additional files

Additional file 1: Rooting algorithm for unrooted trees.
Computational complexity of the first algorithm and reliability of the
supertree. Alternative design of Phase II.

Additional file 2: Transition from a polytomous to binary tree.
Inductive step of constructing a directed acyclic graph.

Additional file 3: Input gene trees (artificial data). (viewable by e.g.
TreeViewX).

Additional file 4: Input gene trees (biological data). (viewable by e.g.
TreeViewX).

Additional file 5: Supertree built by RFsupertrees for artificial data
from Additional file 3. In the unrooted topology, the two outlined
subtrees swapped with respect to the correct tree in Figure 7. The total
mapping cost is 114028.

Additional file 6: Supertree built by CLANN version 3.0.2 for
artificial data from Additional file 3. In the unrooted topology, the
two set-off edges are misplaced with respect to the correct tree in
Figure 7. The total mapping cost is 158751.

Additional file 7: Supertree built by RFsupertrees for biological
data from Additional file 4. The tree root is denoted by R.

Additional file 8: Supertree built by CLANN version 3.0.2 for
biological data from Additional file 4. The tree root is denoted by R.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
VAL and KYG proposed the model, definitions and statements, chose source
data. VAL, KYG and LYR compared different tools. LIR wrote software and
performed the computations. All authors wrote and approved the final
manuscript.

Authors' information
VAL (alternative transcriptions of the last name: Lyubetskii, Liubetskii,
Liubetskiii, Liubetskii) graduated from Moscow State University, Faculty of

http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S1.doc
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S2.doc
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S3.txt
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S4.txt
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S5.pdf
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S6.pdf
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S7.pdf
http://www.biomedcentral.com/content/supplementary/1745-6150-7-48-S8.pdf

Lyubetsky et al. Biology Direct 2012, 7:48 Page 18 of 20
http://www.biology-direct.com/content/7/1/48
Mathematics and Mechanics, Ph.D. and D.Sc. in Math (theoretical computer
science, mathematical logic, algebra and number theory), full professor.
LIR graduated from Moscow Institute of Electronics and Mathematics, Faculty
of Applied Mathematics, Ph.D. in Tech (system analysis, information
management and processing).
LYR graduated from Moscow State University, Faculty of Biology, Ph.D. in Life
Sciences (molecular biology and evolution).
KYG graduated from Moscow State University, Faculty of Mathematics and
Mechanics, Ph.D. in Math (mathematical logic, algebra and number theory).
The authors are affiliated with the Laboratory for mathematical methods and
models in bioinformatics, Institute for Information Transmission Problems of
the Russian Academy of Sciences (Kharkevich Institute), and with Moscow
State University. Web: http://lab6.iitp.ru/en/

Reviewers’ comments

Reviewer’s report 1
Prof. Anthony Almudevar
University of Rochester, United States of America

I have reviewed the paper and support publication, and have no specific
comments.

Quality of written English: Acceptable

Reviewer’s report 2
Prof. Alexander Bolshoy (nominated by Prof. Peter Olofsson)
Institute of Evolution, University of Haifa, Israel

1) The authors propose a non-standard reformulation of the traditional NP-
hard supertree building problem. Choosing a particular definition of the cost
c(G, S) of mapping of a gene tree G into a species tree S the classical
problem is to find such S that globally minimizes . I believe that Lyubetsky
et al. propose natural reformulation of the classical problem. They propose
to consider only such species trees S that contain clades present in input
trees Gi. However, it took me time to get to the conclusion that such
reformulation is organic and follows from the evolutionary nature of the
problem. I think that the authors should include a wordy informal
explanation of the reformulation. This passage will help to non-
mathematicians easier accept the contents.

Response. The described algorithm of supertree construction performs equally
with any parameter P. Importantly, its runtime is cubic to the cardinality of P. If
the set P contains all subsets of V0 our formulation coincides with the classical
statement, and the supertree is not constrained in terms of its constituent
clades. In this case, alike other algorithms, our algorithm becomes exponential
to the size of input data. Its runtime can be set arbitrarily, in which case it will
use a heuristic search and may not find the mathematically proved minimum
of the functional.
The algorithm’s runtime becomes cubic if |P| is linear to the input data size,
which is the case when P contains only clades present in all input trees.
Biologically, this choice of P can be justified by constraining the supertree to
contain only relationships present in the input data, thus not inventing artificial
groupings of species. The correctness of the algorithm under this condition is
the major hypothesis of the study. Its formal proof is not straightforward (at
least to the authors), however it was empirically verified in this study on various
data.

2) The authors have developed an algorithm to solve the supertree
construction problem with time complexity O(n3). Description of the
algorithm is long and difficult for understanding. It is OK but I would
propose to add informal “popular-science” description in addition to the
rigorous proof.

Response. Intuitively, our algorithm of supertree construction resembles an
algorithm of finding the minimum of a function of one variable defined on a
segment. If solutions are known on two parts of the segment, the solution on
their union can also be obtained. Analogously, if correct supertrees S1 and S2
defined on two disjoint subsets V1 and V2 of the species set V0 are known, the
solution for the union V1[V2 is also known, it is the joining of trees S1 and S2
under the new root, Figure 3. If the set V1 is small (e.g., a triplet) then tree S1 is
found exhaustively. Remember that “tree S1 is defined on set V1” means that V1
is the set of species assigned to leaves of S1. Such reduction from V0 toward
subsets is not always possible as the subsets need to belong to a pre-defined set
P at each step of reduction.
Parameter P is introduced to avoid the exponential growth of the variants space
during the backward run of the algorithm from small subsets to total V0, which
makes the algorithm’s runtime cubic to the size of |P|.
During phase I the algorithm constructs the master set of supertrees on subsets
of the set V0, the basic trees on the basic subsets. During phase II (transition
from T to S) the basic trees are used to compute the cost (or quality in
Additional file 1) to choose the optimal extension of the current supertree T. The
two alternative versions of phase II define this cost differently but both utilize
the set of basic trees obtained during phase I.

3) A term “tube” appears on page 16 for the first time while the definition
appears on page 20.

Response. Corrected. The term “tube” refers to an edge in the species tree to
contrast the difference between edges in the species and gene trees. Edges of
gene trees are visualized within the species tree tubes (Figures 5–6), which
explains the etymology. Trees contain the root edge or the root tube
(Figures 1–2).

4) On page 20 starts “the second algorithm”. I would propose to add
informal “popular-science” description of the algorithm before introducing
the terms “tube”, “scenario”, “evolutionary event”, etc.

Response. The algorithm of constructing supertrees is referred to as the
“first algorithm”. “The second algorithm” is a collection of algorithms
described under The second algorithm: reconciliation of gene and species
trees and building evolutionary scenarios. It starts with the description of
computing the originally introduced cost c(G,S) of reconciling the gene
and species trees. This algorithm is utilized in phase II of the first
algorithm. The first algorithm can also be run with the classic cost c0(G,
S) defined [2], in which sense pre-applying “the second algorithm” is not
mandatory. However, modeling shows that using the cost c(G,S) produces
more accurate results (data not shown).

Thus, numbering of the algorithms is conventional but their usage is mutual.

Each elementary evolutionary event described in Table 1 is supplied with a
rule to compute the cost c(e,d,i) of the triplet <e,d,i>, where i is the initial
event of the optimal (first) scenario that originates at the vertex <e,d >.

The idea behind computing the cost c(G,S) is similar to the one
described in Response 2. If for G1 and G2 the costs c(G1,S), c(G2,S) are
known and G is a disjunctive sum of sets G1, G2, i.e. G1[G2, then the
algorithm infers that the cost c(G1[G2,S) equals c(G1,S)+c(G2,S)+х,
where х is the total cost of elementary evolutionary events that
occurred along the root edge e within tubes of S (Figure 5). Indeed,
the costs of elementary events that occurred on edges of G1 and G2

already contributed to c(G1,S) and c(G2,S), respectively, and the costs of
events that occurred on edge e are only accounted for by x. An
example of events on edge e is given in Figure 5.

In its general design, the first scenario of the evolution of G into S is the
mapping of edges of tree G inside the tubes of S such that the inferred
distribution of elementary evolutionary events produces the minimal total
cost.

The second scenario of the evolution of G into S is a probability-driven
random walk process of edges inside the tubes, ref. to Response 5.

Thus, the “second algorithm” is a collection of algorithms of binarization,
computing the cost c(G,S), computing the first scenario (the event tree T),
computing the second scenario (random process on graph R) and its
stochastic characteristics.

Lyubetsky et al. Biology Direct 2012, 7:48 Page 19 of 20
http://www.biology-direct.com/content/7/1/48
5) I’m afraid that subsection 4.4 is too important to be so short. However, it
is possible that a “popular-science” addition mentioned above would easier
reading of this subsection.

Response. Second scenario design: a random process on the graph contains a
description of the stochastic process that defines the second evolutionary
scenario. The process initiates at the root edge e0 inside the root tube d0
(i.e., in state <e0, d0>). Assume that edge e is located inside tube d, and the
state <e,d> is not a terminal pair, i.e., e and d are not leaves cohered by the
gene-species correspondence. Then, an event i that occurs on edge e inside tube
d is selected from Table 1 based on the distribution of probabilities pi over all
triples <e,d,i>. The probabilities are pre-calculated and are the higher the lower
are the costs c(e,d,i) of the first scenarios initiated with the event i in the state
<e,d>. If the selected event i does not contain a bifurcation (ref. to Table 1) then
the process proceeds from <e,d> into the state specified in the event. If the
event i contains a bifurcation, then the process bifurcates into the two states
specified in the event. The branching process ends by reaching all terminal pairs.
Mathematical expectations of the amounts and costs of various event types in
tubes in this stochastic process are estimated in Stochastic characteristics of the
second scenario design.

Quality of written English: Acceptable

Reviewer’s report 3
Prof. Marek Kimmel
Rice University, United States of America

1) This is an interesting paper on an important subject, containing
potentially important results. However, the style in which it is written makes
understanding its message very difficult. Definitions are mixed with results
and discussions and part of the results and arguments are concealed in non-
mainstream publications. I encourage the authors to reorganize the paper
thoroughly.

Response. The authors made all efforts to restructure the text to make it more
clear, and added three illustrations. This study indeed operates with many
concepts and definitions that, we hope, are clarified in responses to the reviews.
The “Background and Problems” section introduces novel definitions and
hypotheses not described in previous publications of the authors, and is
followed by the “Methods” and “Results”. Description of the first algorithm and
1,3 of the Results contain the description and thorough testing of the first
algorithm (constructing supertrees); reference [7] describes the class of
algorithms, for which we prove the theorem mentioned in Response 7; the
details and computer realization of one such algorithm provided in the paper
are novel. The second algorithm: reconciliation of gene and species trees and
building evolutionary scenarios introduces the second algorithm and detailed
rationale behind it (ref. to Response 4 to the Reviewer 2). In reference [3] this
algorithm was discussed in its perspective to solve a narrower scope of
biological problems, with no mathematical details or a computer
implementation. The mutual usage of the two algorithms is explained in
Response 4 to Reviewer 2.

Some specific points are listed below.

2) “we believe that NP ≠ P”; please clarify (I am not sure of this is a question
of beliefs).

Response. Corrected. We believe that the statement NP ≠ P is true. Even if NP =
P, known algorithms do not solve the supertree finding problem in polynomial
(particularly cubic) time.

3) The definition of clade (and other definitions) is placed after clades are
mentioned.

Response. The definition of clade is introduced in the Background at its first
appearance. In the Abstract this term is used in the common biological sense as
a set of leaves-species descending from a tree vertex. The Abstract contains
several terms that are all defined in the main text.
4) “With the standard event set and condition (*), the algorithm was
mathematically proved [7]”; this statement leaves the reader in the dark
concerning the exact statement of the algorithm that has been
demonstrated. It should be stated clearly, as a mathematical theorem, with
an explicit list of hypotheses and assertions.

Response. Reference [7] contains a 15-pages proof of the theorem that asserts for a
class of algorithms (including the discussed algorithm of supertree construction):
if only duplications and losses are the allowed evolutionary events, and
condition (*) is true, then any algorithm of this class exactly finds the global
constrained minimum of functional (1). The constraint imposes the condition
that all clades in the supertree belong to a pre-defined set P.

5) In particular, the status of the present paper compared to material in
references [3] and [7] (which probably are not easy to obtain), is undefined.
If these references can be treated as preliminary publications, I am inclined
to advise that the an extract of the argument proving the algorithm be
reiterated in the present manuscript. As it is now, the manuscript is a mosaic
of references and it is not easy make sense of what is original and what is
not. Basic background definitions should be listed in one section and not
provided “on the go”.

Response. In the strict sense, absolutely original in this study is the description
of the two programs [19,20] and their testing. The second program is an
integral part of the first program (ref. to Response 4 to Reviewer 2), and
therefore they are tested in complex.
With full respect, we believe that accumulating all definitions in one place will
make the text less comprehensive: as for now, each of them appears exactly
before it is used in the relevant context.

6) “It is difficult however to mathematically prove the algorithm for the case
of the extended event set and/or a relaxation of condition (*). We believe
that including horizontal gene transfers still produces valid results [7], and
condition (*) can be relaxed.”; how does this relate to the exact version of
the algorithm which is contained in the manuscript? Is the case considered
here the one for which a mathematical proof is missing?

Response. For this algorithm it is yet unknown if the theorem discussed in
Response 4 is true under the relaxation of its condition (e.g., allowing certain
horizontal transfers). Therefore this algorithm remains heuristic, as stated in the
text.

7) Subsequent paragraphs are arranged in an order which does not help
understanding. For example, Algorithm 2 should be defined in a Methods
section at the beginning of the paper. Customary subdivision into
Introduction, Background, Methods and Data, Results and Discussion will in
my opinion help the reader to understand what the paper is about.

Response. With full respect, the authors ask to retain the order, in which the
algorithms are introduced. This point is justified in Response 4 to Reviewer 2.

Quality of written English: Not suitable for publication unless extensively
edited.

Response. The text was reviewed by a native speaker.
Acknowledgements
We are thankful to Prof. Alexander Kuleshov for help in and support of this
study. We thank Alexander Seliverstov for substantial contribution to
discussion and the manuscript preparation. We are also thankful to Oleg
Zverkov who implemented the script referred to in Additional file 1.
Funding
This work was supported by the International Science and Technology
Center (grant 3807) and the Ministry for Education and Science of the
Russian Federation (grants 8481, 8091, 14.740.11.0624, 14.740.11.1053).

Lyubetsky et al. Biology Direct 2012, 7:48 Page 20 of 20
http://www.biology-direct.com/content/7/1/48
Author details
1Institute for Information Transmission Problems, The Russian Academy of
Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Moscow 127994,
Russia. 2Faculty of Biology, Moscow State University, Vorob’evy Gory 1/12,
Moscow 119991, Russia.

Received: 7 September 2012 Accepted: 11 December 2012
Published: 22 December 2012
References
1. Page RDM: Maps between trees and cladistic analysis of historical

associations among genes, organisms and areas. Syst Biol 1994, 43:58–77.
2. Guigo R, Muchnik I, Smith TF: Reconstruction of ancient molecular

phylogeny. Mol Phylogenet Evol 1996, 6(2):189–213.
3. Gorbunov KY, Lyubetsky VA: Reconstructing the evolution of genes along

the species tree. Mol Biol (Mosk) 2009, 43(5):881–893.
4. Bininda-Emonds Olaf RP: Phylogenetic supertrees. Combining information to reveal

the tree of life. Dordrecht/Boston/London: Kluwer Academic Publishers; 2004.
5. Bansal MS, Burleigh JG, Eulenstein O, Fernandez-Baca D: Robinson-foulds

supertrees. Algorithms Mol Biol 2010, 5:18.
6. Nguyen N, Mirarab S, Warnow T: MRL and SuperFine+MRL: new supertree

methods. Algorithms Mol Biol 2012, 7:3.
7. Gorbunov KY, Lyubetsky VA: The tree nearest on average to a given set of

trees. Probl Inf Transm 2011, 47(3):274–288.
8. Gorbunov KY, Lyubetsky VA: Fast algorithm to reconstruct a species

supertree from a set of protein trees. Mol Biol (Mosk) 2012, 46(1):161–167.
9. Gorbunov KY, Lyubetsky VA: Identification of ancestral genes that

introduce incongruence between protein- and species trees. Mol Biol
(Mosk) 2005, 39(5):741–751.

10. Koonin EV: Orthologs, paralogs, and evolutionary genomics. Annu Rev
Genet 2005, 39:309–338.

11. Mi H, Dong Q, Muruganujan A, Gaudet P, Levis S, Thomas PD: Panther version
7: improved phylogenetic trees, orthologs and collaboration with the gene
ontology consortium. Nucleic Acids Res 2010, 38(Suppl. 1):D204–D210.

12. Sennblad B, Lagergren J: Probabilistic ortology analysis. Syst Biol 2009,
58:411–424.

13. Gorbunov KY, Lyubetsky VA: An algorithm of reconciliation of gene and
species trees and inferring gene duplications, losses and horizontal
transfers. Information Processes 2010, 10(2):140–144. in Russian.

14. Tofigh A: Using trees to capture reticulate evolution, lateral gene transfers and
cancer progression, PhD thesis. Sweden: KTH Royal Institute of Technology; 2009.

15. Gorbunov KY, Kanovei VG, Lyubetsky VA: Inferring optimal scenario of gene
evolution along a species tree, Abstracts of The sixth international conference
on bioinformatics of genome regulation and structure (BGRS’2008): 22–28 June
2008. Novosibirsk, Russia:; 2008:90.

16. Libeskind-Hadas R, Charleston M: On the computational complexity of the
reticulate cophylogeny reconstruction problem. J Comput Biol 2009,
16(1):105–117.

17. Merkle D, Middendorf M: Reconstruction of the cophylogenetic history of
related phylogenetic trees with divergence timing information. Theory
Biosci 2005, 123(4):277–279.

18. Doyon J-P, Scornavacca C, Gorbunov KY, Szeollosi GJ, Ranwez V, Berry V:
An efficient algorithm for gene/species trees parsimonious reconciliation
with losses, duplications and transfers. Lecture Notes in Bioinformatics
2010, 6398:93–108.

19. A program for supertree construction. http://lab6.iitp.ru/en/super3gl/.
20. Program for phylogenetic study of joint evolution of species and genes. http://

lab6.iitp.ru/en/embed3gl/.
21. Joint supercomputer center of RAS. http://www.jscc.ru/eng/index.shtml.
22. Creevey CJ, McInerney JO: CLANN: Investigating phylogenetic information

through supertree analysis. Bioinformatics 2005, 21(3):390–392.
23. Robinson DR, Foulds LR: Comparison of phylogenetic trees. Math Biosci

1981, 53:131–147.
24. Pisani D, Cotton JA, McInerney JO: Supertrees disentangle the chimerical

origin of eukaryotic genomes. Mol Biol Evol 2007, 24(8):1752–1760.
25. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V,

Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S,
Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M,
Copeland A, Han C, Chen F, Cheng J-F, Lucas S, Kerfeld C, Lang E, Gronow
S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H-P, Eisen JA: A
phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.
Nature 2009, 462(7276):1056–1060.

26. The NCBI taxonomy homepage. http://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html.

27. Page RDM: TREEVIEW: an application to display phylogenetic trees on
personal computers. Comput Appl Biosci 1996, 12:357–358.

28. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: an
interactive viewer for large phylogenetic trees. BMC Bioinforma 2007, 8(1):460.

doi:10.1186/1745-6150-7-48
Cite this article as: Lyubetsky et al.: Cubic time algorithms of
amalgamating gene trees and building evolutionary scenarios. Biology
Direct 2012 7:48.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://lab6.iitp.ru/en/super3gl/
http://lab6.iitp.ru/en/embed3gl/
http://lab6.iitp.ru/en/embed3gl/
http://www.jscc.ru/eng/index.shtml
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html

	Abstract
	Background
	Results
	Conclusions
	Reviewers

	Background
	Problems in supertree inference
	Problems in inferring evolutionary scenario
	Objectives

	Methods
	Description of the first algorithm
	The second algorithm: reconciliation of gene and species trees and building evolutionary scenarios
	Ordering used in the algorithm
	Computing the total cost of binary gene trees against the species tree
	First scenario design: the event tree
	Second scenario design: a random process on the graph
	Stochastic characteristics of the second scenario design

	Results and discussion
	Implementation of the first algorithm
	Implementation of the second algorithm
	Testing of the algorithms
	Algorithms comparison with artificial data
	On the Robinson-Foulds distance
	Algorithms comparison with biological data

	Conclusions
	Additional files
	Competing interests
	Authors' contributions
	Authors' information
	Reviewers’ comments
	Acknowledgements
	Author details
	References

