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Abstract

Background: Across all sequenced bacterial genomes, the number of domains nc in different

functional categories c scales as a power-law in the total number of domains n, i.e. , with

exponents αc that vary across functional categories. Here we investigate the implications of these

scaling laws for the evolution of domain-content in bacterial genomes and derive the simplest
evolutionary model consistent with these scaling laws.

Results: We show that, using only an assumption of time invariance, the scaling laws uniquely
determine the relative rates of domain additions and deletions across all functional categories and
evolutionary lineages. In particular, the model predicts that the rate of additions and deletions of
domains of category c is proportional to the number of domains nc currently in the genome and we
discuss the implications of this observation for the role of horizontal transfer in genome evolution.
Second, in addition to being proportional to nc, the rate of additions and deletions of domains of
category c is proportional to a category-dependent constant ρc, which is the same for all
evolutionary lineages. This 'evolutionary potential' ρc represents the relative probability for
additions/deletions of domains of category c to be fixed in the population by selection and is
predicted to equal the scaling exponent αc. By comparing the domain content of 93 pairs of closely-
related genomes from all over the phylogenetic tree of bacteria, we demonstrate that the model's
predictions are supported by available genome-sequence data.

Conclusion: Our results establish a direct quantitative connection between the scaling of domain
numbers with genome size, and the rate of addition and deletions of domains during short
evolutionary time intervals.

Reviewers: This article was reviewed by Eugene V. Koonin, Martijn A. Huynen, and Sergei Maslov.

Background
When the first gene sequences became available in the
1960s some striking and unexpected patterns were
observed. For example, comparison of the fossil record
with the number of amino acid substitutions separating
orthologous proteins in mammals [1] suggested a con-

stant rate of amino acid substitutions. In addition, the
inferred rate of amino acid substitutions was so high that
it was hard to imagine how all of these substitutions could
have been fixed by the action of natural selection [2]. This
famously lead Kimura to propose the neutral theory of
molecular evolution [3]. Neutral evolution became the de
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facto null model of sequence evolution and the availabil-
ity of such a null model was crucial for the development
of rigorous methods for reconstructing evolutionary phy-
logenies (e.g. [4]) and methods for detecting selection act-
ing on gene sequences (e.g. [5,6]).

Evolution of course also takes place at higher levels of
organization than substitutions within protein-coding
genes. In particular, large genomic segments containing
one or more genes can be duplicated or deleted, and seg-
ments can be 'horizontally transfered', i.e. taken from one
organism's genome and inserted into another organism's
genome. Through such events organisms can vary the
gene content of their genomes, acquiring genes with new
functions, sub-functionalizing existing functions, or delet-
ing genes whose functions are no longer required. Now
that the sequences of several hundred of whole microbial
genomes have become available over the last decade it has
become possible to investigate variation in gene-content
across genomes in a quantitative manner.

Studies of gene content have uncovered several striking
quantitative 'laws'. First of all, it was noticed [7-9] that a
number of key genomic quantities show power-law distri-
butions. In particular, the distribution of gene family sizes
is a power-law in each genome, whose exponent appears
to depend mostly on the size of the genome. Several the-
oretical models have been put forward for explaining
these power-law distributions, which all include gene
duplications and deletions as key ingredients. Another
striking observation [10] is that the numbers of genes in
different functional categories scale as power-laws in the
total number of genes in the genome. For example,
whereas the numbers of genes involved in different types
of metabolism scale approximately linear with genome
size, the number of genes involved with regulatory proc-
esses such as transcription regulation and signal transduc-
tion scales roughly quadratically with genome size, and
the number of genes involved with basic processes such as
DNA replication or cell division scales with an exponent
less than 1. Such scaling laws are observed for the large
majority of high-level functional categories of genes and
appear to apply to all bacterial genomes.

As we have argued previously [10,11], these scaling laws
have important implications for the evolutionary dynam-
ics of gene duplications and deletions and we will here
investigate these implications in detail. The organization
of the paper is as follows. We study genome evolution at
the level of protein domains and we start by demonstrat-
ing that scaling laws are also observed at the level of the
number of protein-domains.

We re-estimate the scaling exponents αc using all 630 cur-
rently available genomes. Next, using the assumption that

the scaling laws are time invariant, we derive a 'null
model' for genome evolution that accounts for the
observed scaling laws. In this model the exponents of the
scaling laws are identified as universal constants of the
evolutionary process.

We collected 93 pairs of closely-related bacterial genomes
and tested the model's predictions by analyzing the pro-
tein-domain content of these genomes and estimating, for
each pair, the rates at which additions and deletions of
domains from different categories have occurred since
their common ancestor. We show that essentially all of the
model's predictions are supported by the available
genome data. Finally, we also discuss the important impli-
cations of our results for the role of horizontal gene trans-
fer in genome evolution.

Results and Discussion
Scaling laws in protein domain occurrences
Although genes are natural units in genome analysis there
are some disadvantages to using genes as the central units
in the analysis of the evolution of genome content. For
example, apart from being able to mutate, duplicate, and
be deleted, it is well-known that, not infrequently, two
genes can fuse into one, single genes can split into two
[12], and genes can evolve de novo from non-coding
sequence. Such events significantly complicate the analy-
sis of the evolution of gene content.

Protein domains form more natural units for the study of
the evolution of gene-content for several reasons. It can be
argued that protein domains act like 'evolutionary atoms'
to a certain extent [9]; Protein domains form functional
units [13] that cannot be split into smaller units, and a
single protein domain can, in general, not be constructed
by fusing multiple occurrences of other protein domains.
Therefore, we can safely assume that almost all changes in
the number of occurrences in the genome of a given pro-
tein domain are due to deletions, duplications, or the hor-
izontal transfer of a domain from another organism's
genome. We thus decided to study the evolution of func-
tional gene content in terms of the number of occurrences
of different protein domains. Among databases of protein
domains Pfam [14] is attractive because the Pfam domain
families are disjoint, i.e. at the default settings it is guaran-
teed that any given DNA sequence segment will be classi-
fied to belong to at most one domain family. We thus
used Pfam domains as our evolutionary 'atoms'.

We counted the number of occurrences of each Pfam
domain in each fully sequenced bacterial genome (Meth-
ods). Using a mapping from Pfam to Gene Ontology cat-
egories [15] we determined, for each genome g, the total
number of domains n(g) that can be associated with any
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GO category and, for each GO category c, the number of
domains nc(g) occurring in the genome.

Figure 1 shows, for 3 example categories, the number of
domains in that category as a function of the total number
of domains in the genome (that can be mapped to a GO
category). As the figure shows, for all three categories the
number of genes in the category nc scales as a power-law
in the total number of domains in the genome n, i.e.

with both the pre-factors βc and the exponents αc varying
between categories. These power-laws are observed for the
large majority of high-level functional categories. For each
GO category we fitted a power-law of the form (1) using a
Bayesian procedure which in particular provides a poste-
rior probability distribution for the exponent αc (Meth-
ods). We selected 156 GO categories that occur in at least
95% of all genomes and that show good power-law fits

(Methods). The inferred exponents match what we found
previously based on the gene-number analysis of a much
smaller number of genomes [10,11], i.e. for basic proc-
esses such as translation and DNA repair exponents are
low, whereas exponents for regulatory functions such a
regulation of transcription and signal transduction are
largest. The inferred exponents for all 156 selected catego-
ries are listed in Additional file 1.

Evolutionary Model
We want to investigate the implications of the scaling laws
(1) for evolutionary dynamics. That is, we want to infer
what the scaling laws imply for the behavior of the
domain number counts nc(t) as a function of time t. It is
important to define precisely what we mean by nc(t). A
sequenced genome g represents a particular bacterial
strain and can idealistically be thought of as representing
the genome of a single bacterial organism living today
with domain counts nc(g). Since bacteria reproduce clon-
ally we can imagine tracing this individual back through

n e nc
c c= b a , (1)

Scaling lawsFigure 1
Scaling laws. The number of protein-domains associated with functional categories 'translation' (green), metabolic process' 
(blue), and 'regulation of transcription' (red) as a function of the total number of domains in the genome for which a functional 
annotation is available. Each dot corresponds to a fully-sequenced microbial genome, with the total number of domains on the 
horizontal axis and the number of domains in a particular functional category on the vertical axis. Both axes are shown on a 
logarithmic scale. The straight lines show power-law fits.
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time, back to its mother cell, its grandmother, and eventu-
ally all the way back until the common ancestor of all cur-
rently sequenced genomes. We denote by nc(g, t) the
number of domains of category c that were present in the
ancestor organism of genome g that was living at time t.

Let tnow denote today and let xc(g, t) denote the logarithm
of the domain-number, i.e. xc(g, t) = log[nc(g, t)], and sim-
ilarly x(g, t) = log[n(g, t)]. In these variables the scaling
laws are just straight lines, i.e all genomes g (approxi-
mately) obey the linear relation

xc(g, ttoday) = αcx(g, ttoday) + βc ∀g. (2)

We will now derive how these scaling laws constrain the
changes in domain-numbers that have occurred through-
out time. Let t = 0 denote the time at which the last com-
mon ancestor of all sequenced bacterial genomes was
alive. Note that, since the GO categories that we consider
occur in almost all genomes, it is reasonable to assume
that they all had nonzero count in the last common ances-
tor. We let xc(0) denote the log-domain counts in this
common ancestor and x(0) the logarithm of the total
domain count. Further, we denote by dxc(g, t) the change
in the log domain-count for category c, that occurred in a
small interval of time centered around time t in the evolu-
tionary history of genome g. The log domain-counts xc(g,
t) and x(g, t) are then by definition given by the integrals

and

Comparing equations (3) and (4) with equation (2) the
scaling laws thus imply that we have

Since (5) must hold for all genomes g, this equation first
of all implies a relation between the offsets βc and the
domain counts in the last common ancestor:

βc = xc(0) - αcx(0). (6)

More importantly, we find that all genomes must obey

For short time intervals in which the changes in nc are
small relative to nc itself, the changes in xc are related to the
changes in nc through

and similarly

Substituting these in (7) we obtain

Equation (10) summarizes the implications for domain-
count dynamics implied by the scaling laws. It states that,
independent of which evolutionary history we take, the
ratio of the integrals of dnc/nc and dn/n over all evolution-
ary time must match the scaling exponent αc. This is illus-
trated on the left-hand side of figure 2, i.e. equation (10)
implies that the ratio of integrals is the same for each of
the evolutionary histories indicated as colored lines.

Time Invariance
The equations (10) reflect the constraints on domain-
count dynamics implied by the scaling laws but they don't
uniquely determine an evolutionary model. To derive a
unique evolutionary null model we will assume time invar-
iance of the scaling laws. We assume that, if we had col-
lected genomes of bacteria living several tens or even
hundreds of million years ago, as opposed to the bacteria
living today, we would have observed the same scaling
laws as we observe today. That is, we assume that there is
nothing particularly special about our current time, and
that the same scaling laws have held since the last com-
mon ancestor, or at least since the origin of the clades
from which our current genome sequences derive. We feel
that this is by far the simplest assumption that can be
made about the evolutionary dynamics and will here ana-
lyze its implications.

Given that the scaling laws are invariant in time, we
immediately obtain that (10) should hold for each short
time interval, i.e. we have that

or
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That is, the assumption of time invariance implies that,
for each genome g, and for each short time interval in its
evolution, the ratio between the change dnc(g, t) in the
domain-count of category c and the total change dn(g, t)
in domain-count is given by the product of the exponent
αc and the fraction nc(g, t)/n(g, t) of all domains that are of
category c. In particular, equation (12) will apply to the
domain-count changes that occurred since the common
ancestors of pairs of closely-related species, as illustrated
on the right-hand side of Fig. 2. Therefore, we can test the
validity of the null model by comparing the domain-
counts in the genomes of closely-related bacteria.

Implications for closely-related pairs of genomes
We now discuss how the prediction (12) can be tested
with data from closely-related genomes. Note that, strictly
speaking, (12) holds only in the limit of infinitesimally
small dn(g, t) and that we have so far implicitly assumed
that the nc(g, t) are continuous variables, whereas in real-
ity the smallest possible change is dn(g, t) = 1. For the inte-
ger-valued quantities nc(g, t) equation (12) can be
interpreted as follows: whenever a single domain is added
to the genome, i.e. dn = 1, then the probability that this
domain is of category c is given by αcnc/n. Similarly, when-
ever a single domain is removed, i.e. dn = -1, then the
probability that this domain is of category c is also given
by αcnc/n.

Since this interpretation is of key conceptual importance
we briefly expand on its meaning.

Mathematically, equation (10) makes a statement about
the total overall changes in domain counts that happen
over some finite time interval. In particular, the total
change dnc that occurs over some time interval is the differ-
ence between the number of additions and deletions that
occurred during that time interval. From a mathematical
point of view, equation (11) is a differential equation that
makes a statement about the relative rates at which
changes in domain-count number occur, i.e. including
both additions and deletions. To put it differently, the
assumption of time invariance allows us to make state-
ments about time intervals so short that at most one
'event' can occur during such intervals, so that there is
roughly speaking no room left for additions and deletions
to cancel each other out, i.e. the relation (11) must hold
for both of them. The clearest interpretation is in terms of
a model where the key quantities are the rates, i.e. proba-
bility of an event per unit time, at which domain-count
changes (either additions or deletions) take place. That is,
if r denotes the overall rate at which additions or deletions
occur, and rc the rate at which additions/deletions of
domains of category c occur, then the model predicts

For pairs of closely-related genomes the number of
domain-count changes that occurred since they diverged

dnc g t
dn g t

nc g t
n g t

g tc
( , )

( , )
( , )

( , )
, .= ∀a (12)

rc
r

nc
nc= a . (13)

Evolutionary histories and time invarianceFigure 2
Evolutionary histories and time invariance. Evolutionary histories of different organisms. The scaling laws constrain inte-
grals of domain-count changes over long evolutionary times, i.e. from the common ancestor up to the present (left panel). Our 
assumption of time invariance now implies relations between the domain-count changes during short time intervals which can 
be tested by comparing domain-counts in closely-related genomes (right panel).
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from a common ancestor is generally very small com-
pared to the total number of domains. Therefore, the frac-
tions nc/n have generally changed little during the time

since the two genomes diverged from their ancestor and
we will make the assumption that the fraction nc/n can be

considered constant. Under this approximation equation
(13) predicts that, if during the time interval since the

pair's common ancestor, a total of Δn domain-count
changes occurred, i.e. the sum of all additions and dele-
tions, then the expected number of domain-count

changes Δnc in category c (which is again the sum of all

additions and deletions in this category) should equal

We collected 93 pairs of fully-sequenced genomes that are
evolutionary relatively closely related, using the tree of life
that was inferred by Ciccarelli et al. [16] as a guide (Meth-
ods). For each pair of genomes i we counted the numbers
of domain occurrences for each Pfam family and used
these (Methods) to estimate the number of domain-count

changes  for each category c and the total number of

domain-count changes Δni. Again, we stress that the 

are the estimated total number of changes, adding addi-
tions and deletions together. For example, if we denote by

 the difference in the number of domains in category c

occurring in the two genomes of the pair, then we typi-

cally find that the estimated  is larger than  (see

Additional file 1). Apart from estimating  we esti-

mated, for each genome pair i, the fractions  by

averaging the domain counts over the two genomes in the
pair (Methods). Our model thus predicts that, for each

pair i, the ratio  should be proportional both to

the fraction  and to scaling law exponent αc.

The fraction of domain-count changes is proportional to 
the number of existing domains

Equation (13) puts very strong constraints on the dynam-
ics of domain-counts which we will check in three steps.
First, we check that, for each category c, the estimated frac-

tions Δnc/Δn of domain-count changes grow linearly with

the fractions nc/n. The left panel of figure 3 shows scatter

plots of  as a function of  for three

selected categories. The axes are shown on logarithmic

scales and the straight lines show least-squares linear fits

of the form .

The left panel of Fig. 3 demonstrates two points. First,
comparing the three categories with each other, we see
that most domain-count changes occur in the most abun-
dant category and least domain-count changes occur in
the least abundant category, with the fraction of domain-

count changes  indeed scaling roughly linearly

with  (compare with the dotted guide lines show-

ing linear scaling). Beyond that, if we compare the num-
bers of domain-count changes across the different
genomes within each category we see that, in those
genomes where the domains of the category are most
abundant domain-count changes in that category are also
most abundant. That is, although the data is quite noisy,
it is clear that all three clouds of points show a close to lin-

ear increase of  with .

The estimated slopes γc for all selected GO categories are
shown in the right panel of Fig. 3 (and listed in Additional
file 1). The estimated γc are very roughly symmetrically
distributed around 1 with a median γc of 1.16. For almost
75% of the categories a slope of γc = 1 is within the 99%
posterior probability interval.

This thus supports the prediction of our evolutionary null
model that the fraction of all domain-count changes that
involve domains of category c is proportional to the frac-
tion nc/n of all domains in the genome that belong to cat-
egory c.

For about 25% of the categories we infer slopes signifi-
cantly deviating from 1. It should be noted, however, that
the least-squares fitting assumes simple Gaussian noise in
log[Δnc/Δn], whereas in reality the size of the noise in
log[Δnc/Δn] increases as Δn decreases. Moreover, whereas
the fitting assumes that the numbers of domain-count
changes are given, in reality these are estimated (see Meth-
ods) and thus themselves subject to uncertainty. We there-
fore are significantly underestimating the uncertainty in
the fitted slope for many categories, and it is reasonable to
conclude that for most if not all categories the data is con-
sistent with the predicted linear dependence of Δnc/Δn on
nc/n.

Evolutionary Potentials

The results of the previous section support that the rate rc

of domain-count changes involving domains of category c
is proportional to the number of domains nc currently

a c
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n nΔ
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present in the genome. Let  denote the rate of addition/

deletion of domains of category c for genome pair i and let
ri denote the overall rate of addition/deletion of domains

for genome pair i. Assuming only that  is proportional

to  we can generally write for the relative rates

which is a generalization of equation (13). The propor-

tionality constants  defined by this equation quantify

the extent to which domain-count changes of category c
are more or less frequent in the lineages of pair i than

expected based on their frequency . For this reason

we will refer to these proportionality constants as evolu-

tionary potentials. That is, when  is high it indicates that,

apparently, domain additions and deletions involving
domains of category c are fixed in evolution at a higher
rate in the evolutionary lineages of pair i.

Our evolutionary null model predicts that the evolution-

ary potentials  are the same for all evolutionary line-

ages, and in addition that the evolutionary potentials 

are equal to the scaling law exponents αc. We will check

these two predictions in turn.

The evolutionary potentials  are constant across 

evolutionary lineages
Given the estimated numbers of domain-count changes

, and the total number of domain-count changes Δni

we can estimate the lineage-specific evolutionary poten-

tials  as follows. For every domain-count change that

occurs, the probability that it will involve a domain of cat-

egory c is simply given by the relative rate . There-

fore, if Δni domain-count changes occur in total, the

probability that  involve domains of category c is sim-

ply given by

rc
i

rc
i

nc
i

rc
i

r i
nc

i

nic
i= r , (14)

r c
i

n nc
i i/

r c
i

r c
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i
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i

Δnc
i
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i

r rc
i i/
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Linear dependence of domain-count changes on domain occurrenceFigure 3
Linear dependence of domain-count changes on domain occurrence. Linear dependency of the fraction of domain-

count changes on the domain-count itself. Left panel : For each genome pair i the fraction  of domain-count 

changes that involve domains of category c is shown (vertical axis) as a function of the fraction  of all domains in the 

genome that are associated with category c (horizontal axis) for the categories 'metabolic process' (blue), 'regulation of tran-
scription' (red), and 'protein kinase activity' (green). Each dot corresponds to the data for one pair i of closely-related genomes. 
Both axes are shown on a logarithmic scale. The straight-lines show least-squares fits of the form 

. The fitted slopes for the three categories are γprot.kin.activity = 0.56 ± 0.46, γreg.transcr. = 0.95 

± 0.20, and amet.proc. = 1.48 ± 0.31. For comparison the dotted lines show linear scaling. Right panel: A 99% posterior proba-

bility interval for the slope γc was estimated for all selected GO categories (Methods). The fitted slopes were ordered from 
high to low and are shown in the right panel from left to right with the vertical bars corresponding to the 99% posterior prob-
ability intervals for each slope γc. The slope γ = 1, corresponding to a linear dependency, is shown as a horizontal dotted line.
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where we used the definition (14). Using a uniform prior

over  we and for the posterior probability of  given

the estimated domain-count changes

Using (16) we determined posterior probability intervals

 defined by

and

for each category c and each genome pair i. Figure 4 shows
these posterior probability intervals, for all genome pairs
i, for the categories 'translation', 'metabolic process', and
'regulation of transcription'.

Since the total number of domain-count changes Δni is
often small, it is not surprising that the posterior probabil-
ity intervals are often rather wide. In spite of this, it can be

clearly seen that, consistent with the scaling exponents αc,

 is largest for the category 'regulation of transcription',

and smallest for the category 'translation'. Moreover, Fig.
4 shows that the data by and large support the prediction

that the potentials  are the same for all evolutionary lin-

eages. That is, for each of the three categories the posterior

probability intervals for  are consistent with a common

underlying potential ρc for the majority of genome pairs i.

This is a further piece of support for the evolutionary null
model.

Evolutionary potentials ρc correlate with scaling 
exponents αc

The previous section has shown that the data are mostly
consistent with constant evolutionary potentials across
the genome pairs. We will now assume that the evolution-

ary potentials  all equal a common potential ρc and

estimate it by combining data from all genome pairs. We

find for the probability of ρc given the observed domain-

count changes { } and {Δni}
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Evolutionary potentials across different lineagesFigure 4

Evolutionary potentials across different lineages. Distribution of inferred evolutionary potentials  for the categories 

'translation' (left panel), 'metabolic process' (middle panel), and 'regulation of transcription' (right panel) across all genome pairs 

i. Each panel shows the 99% posterior probability intervals  for the potentials  as vertical bars (sorted from left to 

right by their means). The dotted horizontal lines show the average , averaged over all pairs i.
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Using this equation we estimated ρc for each selected cat-
egory c. Equation (13) predicts that the evolutionary
potentials ρc equal the scaling exponents αc. Figure 5
shows a scatter plot of αc against the estimated ρc.

Note that, since the evolutionary potential ρc is a measure
of the relative frequency of domain-count changes
between closely-related species, and αc is a measure of the
scaling of the number of domains with genome size, there
is a priori no reason why these two quantities should be
strongly correlated. However, as predicted by our evolu-
tionary null model, there is clear evidence of a linear
dependency between the exponents αc and the evolution-
ary potentials ρc.

Rather than a simple relation ρc = αc we find that ρc varies
over a somewhat smaller range, i.e. the 99% posterior
probability interval for the slope of the correlation runs
from 0.65 to 0.79. One possible explanation is that,
because the estimation of the numbers of domain-count
changes Δnc is the same for all categories, we might under-

estimate the numbers of domain-count changes more for
categories with large ρc than for categories with low ρc.

Implications for the rates of horizontal transfer
In general, the rate at which additions/deletions occur is
the product of two independent factors. First, the rate at
which domain additions and deletions are introduced into
individuals of the population, and second the fraction of
the time that such mutations are being fixed into the pop-
ulation. There are likely three main mechanisms through
which domain additions or deletions are introduced:
duplications, deletions, and horizontal transfers. To a first
approximation, the rates at which duplications, deletions,
and horizontal transfers are being introduced into indi-
viduals will be determined by the biases inherent in the
mechanisms underlying these processes and not by selec-
tion. In contrast, the fraction of the time that such muta-
tions are fixed in evolution will strongly depend on
selection.

It is clear that, for duplications and deletions, the rate at
which such mutations are introduced is naturally propor-

Correlation between exponents αc and evolutionary potentials ρ cFigure 5
Correlation between exponents αc and evolutionary potentials ρ c. Correlation between the inferred evolutionary 
potentials ρc (vertical axis) and the exponents ρc (horizontal axis) of the scaling laws. Each dot corresponds to one of the 156 
selected GO categories. The line shows the linear fit ρc = 0.71αc + 0.1 with correlation coefficient r2 = 0.80.
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tional to the number of existing domains nc. That is, when
the number of domains nc doubles, the total rate at which
duplications and deletions are introduced within this cat-
egory also doubles. Moreover, since selection is not
involved, the rate of introduction of duplications and
deletions can be expected to be the same for all functional
categories c (except of course for transposable elements
which are duplicated through a separate mechanism).
Therefore, as the rate of introduction is proportional to nc,
with the same proportionality constant for each category,
and the total rate must be proportional to ρcnc, this
implies that the relative rate of fixation through selection
must be proportional to the evolutionary potential ρc.

Thus, the evolutionary potentials ρc (and the scaling expo-
nents αc) have a particularly simple interpretation: they
give the average relative rate with which additions and
deletions of domains in category c are fixed by selection.

Evidence has accumulated over recent years that horizon-
tal transfers occur in essentially all evolutionary lineages
and gene families, see e.g. [17-22] and the extensive dis-
cussion in the recent review [23]. There is less consensus
in the literature, however, regarding the precise amount
that horizontal transfer contributes to gene-content evolu-
tion. Discussion of the reasons for this lack of consensus
are beyond the scope of this article but it is clear that the
apparent disparity between the conclusions reached by
different authors is a combination of: the fact that differ-
ent authors ask different questions, i.e. asking what frac-
tion of gene families are affected by horizontal transfer at
least once in evolutionary history [24] is very different
from asking, for example, the relative rates of gene loss to
horizontal transfer [25,26]. The fact that very different
types of evidence are used, such as presence/absence of
members of a gene family across leafs of the species tree
[19,20,26], comparison of gene trees with species trees
[21,27], or the presence of genes without known
homologs [28]. And finally, the fact that there are techni-
cal issues (like the way gene families are build and tree
topologies are inferred) which may affect the results quan-
titatively if not qualitatively.

To the present authors the evidence currently in the liter-
ature does suggest that horizontal gene transfer accounts
for a non-negligible and maybe even a large fraction of
changes in gene content, at least among closely-related
genomes. For example, it was found in [20] that up to
20% of the gene-content of proteo-γ bacteria consists of
genes that have no homology with any of the other genes
among all currently sequenced proteo-γ bacteria, but that
do have homology with genes found outside of the pro-
teo-γ clade. It is hard to see how this statistic could result
from any process other than a high rate of horizontal
transfer. It is thus worthwhile to investigate the implica-

tions of our current findings under the assumption that
many of the domain additions are due to horizontal trans-
fer.

Although we have no direct evidence, it is attractive to
assume that the probability that a domain addition will
be fixed in the population does not depend on the mech-
anism by which it was introduced. That is, the relative rate
of fixation of domain additions in category c should be
proportional to ρc for both duplicated domains as well as
horizontally transfered domains. If this is indeed the case,
it follows immediately from the fact that the overall rate
should be proportional to ρcnc, that the rate at which hor-
izontal transfers are introduced must be proportional to
the number of domains nc present in the genome. How-
ever, whereas this is naturally the case for gene duplica-
tions, it is not clear at all why this should also hold for
horizontal transfers. Therefore, our results put rather
strong constraints on the rate of horizontal transfer.

One possibility is that horizontal transfer is negligible and
that domain additions are dominated by duplications.
However, as we have just discussed, this assumption,
which we have made in previous work [10,11], appears at
odds with recent work. It should be noted, however, that
some studies that investigate evolution of gene content
over long time scales find that horizontal transfer is only
responsible for a minor fraction of all events on a long
time scale, i.e. [21]. One hypothesis that might be worth-
while to entertain is that most horizontal transfers are
only transient. It is conceivable that horizontally trans-
fered genes consist mostly of 'accessory' genes that are
involved with adaptations to the local environment that
are easily taken up by genomes moving into a certain envi-
ronment, but which are also easily lost again when the
environment changes, so that the horizontal transfers of
these accessory genes contributes relatively little to the
gene-content dynamics on long time scales. However, at
least to these authors this hypothesis does not seem par-
ticularly plausible a priori.

Alternatively, there are several hypotheses that could
explain why the rate at which horizontal transfers of
domains of category c are introduced is proportional to
the number of domains nc already in the genome. First, it
is possible that horizontal transfer is highly biased to
occur predominantly between genomes that are closely-
related phylogenetically. One mechanism of horizontal
gene transfer, conjugation, does indeed occur preferen-
tially between related organisms. Since closely-related
species are likely to have highly correlated domain counts,
it is likely that the fraction nc/n of category c domains in
the donor genome is close to the fraction of domains of
category c in the receiver genome. However, many of the
Page 10 of 17
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horizontal transfers detected through sequence analysis
involve transfers between distally related species.

Another possible explanation is that bacterial habitats
naturally separate into different genome-size classes. That
is, it is conceivable that bacteria tend to be surrounded
mostly by other bacteria of roughly the same genome size.
Because the scaling laws apply to all genomes, the frac-
tions nc/n are similar for similarly sized genomes and one
would naturally have that the rate at which horizontal
transfers of domains of category c occur is proportional to
nc. As far as these authors are aware, currently there seems
to be no evidence suggesting that there is a characteristic
genome size for each bacterial habitat, but it appears that
this hypothesis should in principle be testable using
metagenomics data.

Finally, it is possible that, even though a given bacterium
would generally be surrounded by other bacteria of very
different sizes, that horizontal transfer is highly biased to
occur predominantly between organisms that have
genomes with similar sizes. In fact, there is some evidence
in the literature that bacteria can recognize and silence
horizontally transfered genes that have an AT-content
which is significantly higher than the AT-content of the
genome itself [29]. In addition, there is a good correlation
between genome size and GC-content [30]. It is therefore
conceivable that horizontal transfers between genomes of
similar size are much more common than horizontal
transfers between genomes of significantly different sizes.

In any case, whatever the underlying mechanism, if hori-
zontal transfers account for a significant fraction of
domain additions through evolution, then something
must ensure that the rate of introduction of such horizon-
tal transfers is proportional to the number of existing
domains nc in the receiving genome.

Conclusion
We have shown that, across all bacteria and for most high-
level GO categories c, the number of domain occurrences
nc scales as a power-law in the total number of domains n,
with scaling exponents αc varying from close to zero to a
bit larger than 2. We have derived what we believe is the
simplest evolutionary model that can account for the
observed scaling laws. This 'null model' assumes that,
across all evolutionary lineages and all evolutionary
times, the relative rate rc/r at which additions and dele-
tions of domains of category c are fixed in evolution is
proportional to the current fraction nc/n of domains in
category c and a characteristic evolutionary potential ρc
which equals the scaling exponent αc.

By comparing genome-wide domain-counts nf for each
Pfam family f across 93 pairs of closely-related species we

have estimated the rates at which domain additions and
deletions occur across GO categories and across different
evolutionary lineages. The results of this analysis support
the predictions made by the evolutionary null model.
First, we have shown that, for most categories c, the rela-
tive rate rc/r of domain additions and deletions is propor-
tional to the fraction of domains nc/n already occurring in
the genome.

Second, we estimated the relative rates  of domain

additions and deletions independently for different evo-
lutionary lineages i and used these to estimate lineage-

dependent evolutionary potentials . We found that,

whereas the evolutionary potentials  clearly vary

between categories c, the data support the null model's

prediction that for a given category c the potentials  are

the same across all evolutionary lineages i. Finally, by
combining data from all lineages we estimated average

evolutionary potentials ρc and found that, as predicted by

the model, there is a good correlation between these evo-

lutionary potentials and the scaling law exponents αc.

Importantly, this result establishes that there is a direct
relation between the scaling of domain-counts with
genome size and the rates with which domains are added
and removed during short evolutionary time intervals.
This reinforces our proposal that the evolutionary poten-

tials ρc are fundamental constants of the evolutionary

process.

An interesting question is if our simple null model can
also explain the observed power-law distribution [7-9] of
genome-family sizes in each genome. In previous work [7]
one of us has suggested that the simplest explanation for
the power-law distribution of gene family sizes is a multi-
plicative noise process. Although we will defer a detailed
analysis of the gene-family size distributions implied by
our null model to future work, it is clear that the basic
ingredients for such a multiplicative noise process are
already present. Since the model only constrains the rela-
tive rates of domains in different functional categories, the
overall rate of genome growth/shrinkage can fluctuate
randomly, and the rates of different families within a
functional category can also fluctuate around a common
mean. It is interesting to note that our null model implies
that categories with large exponents, such as transcription
factors, should show larger fluctuations in gene family
sizes than categories with small exponents. Since the cate-
gories with large exponents are more abundant in larger
genomes this in turn implies that the exponent of the
gene-family size distribution should increase (i.e. be less

r rc
i i/

r c
i

r c
i

r c
i
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negative) for larger genomes. This is indeed what is
observed [7].

If, as recent work suggests, horizontal transfer is an impor-
tant force in shaping the gene-content of genomes, then
our results put strong constraints on the rates rc at which
horizontal transfers of domains of different functional
categories c can occur. In particular, we find that the rate
at which domains of category c are horizontally transfered
into a genome must be proportional to the number of
domains nc already existing in the receiving genome. An
important avenue for future research is to clarify the
underlying mechanism that is responsible for this surpris-
ing fact.

As our results have made plausible that the evolutionary
potentials ρc (and the corresponding scaling exponents
αc) are fundamental constants of the evolutionary process
that apply across all time and all evolutionary lineages,
the major challenge is now to elucidate what determines
these numbers. In this respect it is important to note that
the functional categories c that we consider are taken
directly from the human-defined Gene Ontology hierar-
chy and are thus rather subjective. A first challenge for
future work is therefore to identify a procedure that
divides domain families into functional groups in a more
objective manner. Although difficult with the current
amount of available data, one possible approach is to esti-
mate evolutionary potentials ρf for individual domain
families and to investigate if these fall into a small
number of natural classes. That is, it is conceivable that on
some more fundamental level there are only a small
number of distinct exponents, for example α = 0, α = 1,
and α = 2, and that the observed scaling laws with more
complex exponents are different mixtures of these more
fundamental scaling laws. Finally, we believe that the
exponents αc reflect fundamental design principles of bac-
terial life, maybe similar to the way geometry and archi-
tectural design principles demand that the number of
windows in a building scales as the 2/3 power of the
building's volume. Seen from this point of view the expo-
nents αc encode crucial information about the basic
design that is shared by all bacterial life.

Methods
Domain counts
We obtained all 630 currently available bacterial genomes
from the NCBI database [31]. To count the number of
occurrences of each Pfam domain in each fully sequenced
bacterial genome we ran HMMer [32] using all Pfam mod-
els on all proteins encoded in each genome, as annotated
in the NCBI reference file. We thus assume that there are
no significant fluctuations in the quality of gene predic-
tion across the genomes. A hit was considered a valid
domain if its score was equal or bigger than the so-called

gathering score of the model provided by the Pfam web
site, and it did not overlap with any other hit of lower E-
value. There were 4,732 Pfam domain families with at
least one occurrence across the 630 bacterial genomes. To
count the number of domain occurrences per functional
category we used a mapping from Pfam domains to Gene
Ontolology terms [15] which is available at http://
www.geneontology.org/. If a domain-family f maps to cat-
egory c it will be associated with c and all parent categories
of c in the Gene Ontology hierarchy.

Bayesian fitting of exponents

We used a Bayesian model to fit a power-law of the form

 for each category c. We discard all genomes

with zero counts, i.e. nc(g) = 0, for each category c and log-

transform the remaining domain-counts, i.e. (xg, yg) =

(log[nc(g)], log[n(g)]). We assume that the pairs (xg, yg)

derive from a line yg = αxg + β plus noise of unknown size

in both x- and y-direction. In addition we assume a rota-

tionally invariant prior for the slope α. Under these
assumptions the posterior probability density for the

slope α given the data D is given by

where G is the number of genomes, σxx is the variance of x
values, σyy the variance of y values, and σxy the covariance
of x and y values. Note that the optimal line in this proce-
dure corresponds roughly, i.e. up to the effects of the rota-
tionally-invariant prior, to the line that minimizes the
sum of the squared orthogonal distances of the data
points to the line. The latter also corresponds to the first
principal component of the data.

We selected all GO categories that have nonzero count in
at least 95% of the genomes (600 out of 630), where the
fraction of the variance explained by the fit is at least
0.9375 (this corresponds to the average distance to the
data-points from the fitted line being 0.25 or less of the
average distance of the data-points to the center of mass of
the scatter), and where the average number of domains
(averaged over all genomes) is at least 5. This led to 156
categories listed in Additional file 1.

To estimate the exponents γc we make use of the addi-
tional information that the noise in the fraction fc is
almost certainly much smaller than the noise in dnc/dn.
Therefore, to estimate γc we use a model in which all noise
is assumed to occur in the vertical component, i.e. as is

n e nc
c c= b a

P D d
G

yy xx xy
G

d( | )
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done in standard regression. Using again a rotationally
invariant prior the posterior density for the exponent γc as
a function of the data is given by

where P is the number of genome pairs, the x-values are

now given by the log-fractions, i.e. , and the y-

values are the log-fractions of changes, i.e.

.

Extracting closely-related pairs of bacteria
We extracted the phylogenetic tree of bacteria from the
tree of life that was produced by Ciccarelli et al. [16] based
on the concatenated protein sequences of 31 protein fam-
ilies. As shown previously [33], even strains that are so
close that they traditionally would be considered the same
species, i.e. more than 94% nucleotide identity between
orthologous genes, can have substantial differences in
their gene content. In selecting 'close' pairs of organisms
we want, on the one hand, to be able to estimate relative
rates, for which we need a large enough number of
domain additions and deletions to have taken place. On
the other hand, the further apart the organisms, the harder
it is to accurately estimate the total number of addition
and deletion events that have taken place (see below). We
decided to select all pairs of species for which the average
identity at the amino acid level of orthologous proteins
was at least 0.75, i.e. distance less than 0.25. With this def-
inition one of the most distant pairs considered was
Escherichia coli and Vibrio Cholerae. To avoid redundancy
and pairs with too few events, we clustered all genomes
whose distances were 0.01 or less and took a single repre-
sentative genome from each cluster. With these cutoffs we
obtained 93 pairs of bacterial genomes which are listed in
Additional file 1.

Estimating domain-count changes Δnc

We estimate the number of domain-count changes Δn and

Δnc by comparing domain counts for each Pfam family

separately. Let  and  denote the number of occur-

rences of domains from family f in the first and second
genome of the pair. We will assume that, during the time
from the common ancestor of the two genomes, the rates
at which domains were added and deleted for each family
f is an unknown constant. In principle there are 4

unknown rates for each domain family f: the rate  at

which domains of family f are added to genome 1, the rate

at  which domains of family f are added to genome 2,

the rate  at which domains of family f are removed

from genome 1, and the rate  at which domains of

family f are removed from genome 2. Since we cannot dis-
tinguish between additions to genome 1 and removals
from genome 2 (and similarly for removals from genome
1 and additions to genome 2) we define the following rate
sums

and

We denote by af the number of additions in genome 1 plus
deletions in genome 2, and by df the number of additions
in genome 2 plus deletions in genome 1. Since the rates of
additions and deletions are assumed constant during the
time interval since the common ancestor of the two
genomes, both af and df are Poisson distributed

The expected total number of additions is

and the expected total number of deletions is given by

Next, we assume that the relative rate of additions involv-
ing domains of family f is the same as the relative rate of
deletions involving domains of family f, and we denote
this relative rate by xf, i.e.

In terms of these variables the probability of obtaining the
set of additions and deletions {af, df} is

P D d
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P
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Assume that the number  of domains of family f in

genome 1 is bigger than the number  of domains of

family f in genome 2 and denote by δnf the difference, i.e.

. We know that the number of additions af

must be at least δnf. Let ef the number of "extra" additions.

Note that the number of deletions df is then necessarily

equal to ef . Similarly, if  >  we define,

 and we write df = δnf + ef, and af = ef. In

terms of the δnf and the extra moves ef the probability is

given by

where we have defined

and

To estimate the number of additions and deletions for
each family f we maximize the probability (29) with
respect to λ, μ, the fractions xf, and the number of extra
moves ef. To do this we use an iterative procedure. Note
that, given the numbers of extra moves ef, the optimal λ,
μ, and xf are given by

λ = A + E, (33)

μ = D + E, (34)

and

Similarly, when the xf are given, the probability of ef con-
ditioned on these variables is given by

and we can numerically solve for the ef that maximizes
this likelihood. We start by setting all ef = 0 and use the

above equations to, iteratively, solve for λ, μ and the xf

given the ef, and then the ef given the xf . This is repeated

until a fixed point is reached. Finally, the estimated total

number of events Δnf for family f equals δ nf + 2ef . In this

way we estimate the number of events  separately for

each of the genome pairs i we analyze.

We originally performed this procedure including all
Pfam domains. However, doing this we found that the
number of extra moves ef estimated for categories associ-
ated with transposons and bacteriophages was many
times larger than for all other families. This is of course to
be expected as both transposons and phages actively mul-
tiply their domains. However, in equations (33) and (34)
all domain families are treated equally, and therefore the
high rates of additions and deletions for transposon and
phage related categories significantly increase the esti-
mated total rates for all families. Therefore, recognizing
that the mechanisms of domain additions in transposon
and phage related families are different from all other
domain families, we excluded those Pfams associated
with transposons and bacteriophages. In particular, we
excluded all 22 Pfam families that map to the GO catego-
ries transposition (GO:0032196) or viral reproduction
(GO:0016032).

The estimated total number of changes in category c is

given by , where the sum is over all Pfam

domain families f associated with category c. The esti-
mated total number of changes is given by

, where the sum is over all Pfam domain

families. To calculate the fractions  for a given

closely-related pair i we calculate the average number of
domains associated with category c as
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 and the average total number of

domains .
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Reviewers' comments
Eugene V. Koonin

This is an important and welcome development of Van
Nimwegen's 2003 classic on the scaling laws for different
functional categories of genes in prokaryotic genomes.
That classic study established that different functional
classes of genes all scale according to power laws but with
different, function-specific exponents that are (at least,
approximately) the same in all prokaryotic lineages and,
supposedly, the same throughout the course of prokaryo-
tic evolution. This paper underpins the scaling laws with
the (apparently) simplest conceivable evolutionary
model. Under this model, the dynamics of protein
domains in each functional category depends on just two
variables, the number (fraction) of domains of the given
category that are already present in the genome and the
intrinsic evolutionary potential of the category. It is
shown that the observations on the actual counts of
domains in genomes are well explained if the evolution-
ary potentials are category-specific but invariant across
bacterial lineages. All of the above had to be done in order
to obtain a concrete evolutionary mechanism yielding the
observed scaling laws but the above results are not at all
unexpected. As I see it, the interesting things start coming
up when one starts considering mechanism of domain
gain in specific terms. For the model to work it is necessary
that the rate at which horizontally transferred genes are
acquired by a prokaryotes is proportional to the number
of domains of the given category that are already present
in the genome. Why that would be the case remains
unclear. I believe the possibility that horizontal gene
transfer is negligible compared to duplication as the
source of new genes (domains) can be dismissed with
confidence. In all, likelihood, in prokaryotes, horizontal
gene transfer is actually a more important source of new
genes than duplication. It is hard to think of a way for the
domain content in the recipient organism could directly
affect the rate of horizontal transfer. So the explanation
should be indirect, that is, should include a connection
between the domain composition of the donor genome
with that of the recipient. Molina and Van Nimwegen

consider three possibilities, and to me, the one that hori-
zontal gene transfer predominantly occurs between
genomes with similar AT-content (horizontally trans-
ferred genes coming from organisms with substantially
different AT-content being rapidly destroyed or silenced)
is highly attractive considering the strong correlation
between AT-content and genome size. These hypotheses
are testable by comparative-genomic methods although
the analysis will not be easy. Of course, in the face of the
rather counter-intuitive finding that the rate of horizontal
gene transfer should depend on the fraction of domains of
the given category already present, one has to consider the
possibility that the proposed evolutionary model is too
simple to be true. As far as I can see, more specifically, that
would imply that the evolutionary potentials are not
time-invariant and/or lineage-independent. The results of
the present paper do not seem to point in this direction
but I suspect that this is not the last word on the subject,
more detailed analyses are necessary. On the whole, this is
an enormously interesting subject, and the present paper
is a useful stepping stone toward understanding the scal-
ing laws. I am particularly intrigued by the final proposi-
tion that there could be only three fundamental
exponents, the intermediate values currently observed
depending on mixing of genes from the three classes in
different proportions. Philosophically, this seems to
smack of essentialism but... should there be a mechanistic
explanation(s) of the 0, 1, and 2 scaling (and I can think
of some), this would be a real step ahead in our under-
standing of how genomes evolve.

Martijn A. Huynen

The manuscript by Molina and van Nimwegen is the cul-
mination of an observation that was originally made by
Erik van Nimwegen and on which there has been follow
op from several corners: that the variation in the number
of proteins in a specific functional class across species
scales as a power-law with the total number of proteins
encoded in the species, and that the exponent of that
power-law varies between the various classes.

Molina and van Nimwegen analyse their model further to
show that the number of additions and losses within each
category is proportional to the number of genes of that
category already in the genome. They show that this pre-
diction is borne out by comparing the number of genes in
closely related genomes. Questions: In work of this referee
and van Nimwegen we showed that the frequency distri-
bution of gene family sizes in complete genomes follows
a power-law, and we argued that this was only possible
under a model in which the variations in the number of
genes per gene family was proportional to the gene family
size. Do I understand correctly that the model and obser-
vations in the Molina and van Nimwegen manuscript are

n n nc
i

f ff c
= +∈∑ ( ) /1 2 2
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consistent with this model, and more importantly, that
these two observations about gene family size distribu-
tions 1) the size distribution of one family over genomes
and 2) the size distribution of all families within one
genome, can now be explained by one single model?

The authors argue for domains as the evolutionary unit.
This may well be, but such a lower resolution does run the
risk of mixing functional categories for domains that func-
tion in multiple categories. How many domains did map
to multiple categories? And how did that affect the results?

With respect to Horizontal gene transfer the authors do
not analyze this process per se, but rather argue that if it is
frequent it should also be proportional to gene family
size. I do not want to get into a whole HGT debate here,
but, although over the complete history of life, along all
evolutionary branches, few gene families appear to escape
HGT, or at least escape evidence for HGT, compared to
processes like gene duplication and gene loss, the quanti-
tative contribution from any generation to the next
appears to be small (Snel Bork and Huynen Genome Res
2002). There are other references (BG Mirkin, TI Fenner,
MY Galperin, EV Koonin 2004) that do give higher esti-
mates however. In any case it would be worthwhile to
mention that relative to gene duplication and gene loss
the amount of HGT that actually happens is not necessar-
ily as large as is sometimes implicitly suggested.

With respect to the HGT mainly occurring between closely
related species: there is evidence for that (e.g. by conjuga-
tion).

With respect to the closely related genomes: can the
authors check whether the protein prediction in a pair of
genomes was done with the same programs? or did they
run the HMMs directly against the DNA? This is a bit nit-
picking I know, but comparisons of closely related species
have been confounded by inconsistent genome annota-
tions in the past.

Sergei Maslov

The manuscript presents an interesting study of evolution-
ary implications of previously reported scaling laws in the
functional content of bacterial genomes. While it does not
answer the ultimate question of why this scaling exists in
the first place, it methodically explores all its logical con-
sequences reflected in genomes' evolutionary history.

An important result of this study is that the overall rate of
gene (or domain as used in this manuscript) additions
AND deletions scales linearly with the number of genes

(domains) in a given functional category. This statement
is in principle separate and independent from the scaling
law itself since it counts the SUM of the rates of domain
additions and deletions and not the DIFFERENCE
between them.

Unfortunately, when this quantity (Δnc proportional to
[rate of additions+rate of deletions]c) is first introduced
on page 7, readers could easily confuse it with just the net
change in nc (denoted dnc and proportional to [rate of
additions-rate of deletions]c). As a result they would miss
one of the central points of the manuscript. I recommend
that authors spend some extra time upfront explaining the
differences between Δnc and dnc and emphasizing that, a
priory, these two quantities are not at all close to each
other. To quantify this difference authors might quote the
average value of – [rate of additions-rate of deletions]c–/
[rate of additions+rate of deletions]c for their 93 pairs of
genomes.

My other comment concerns the proposed "superuniver-
sality" of evolutionary potentials (ρc) of a individual func-
tional categories. In general this study indicates that ρc
remains nearly the same for all species and at all times-
cales of evolution. I have previously observed (S. Maslov,
unpublished) that in a group of VERY CLOSELY related
genomes (28 fully sequences E. coli and Salmonella
strains) the number of transcription factors violates the N2

scaling in spite of a considerable range of genome sizes
(from 4300 to 5800 genes). The best fit to the scaling
exponent gives 0.3 instead of 2. This might indicate that
evolutionary dynamics might in fact be rather different on
very short timescale. This does not contradict the results of
this study since (as explained in the Methods) authors
have grouped together all very closely related species (AA
substitution rate below 1%). However, I believe this
observation deserves future scrutiny since it may shed an
additional light on elementary evolutionary steps shaping
functional contents of bacterial genomes.

Finally, I would like to offer another possibility of how the
results of this study could be reconciled with the evidence
of widespread Horizontal Gene Transfer (HGT) among
bacteria (see section 2.9). One way to explain the linear
correlation between the rate of fixed horizontal gene
transfers and the number of genes in host's genome, is to
assume that a SUCCESSFUL group of HGT-acquired genes
needs to be functionally integrated with the rest of the
genome. An example would be a HGT-transferred meta-
bolic pathway that in order to contribute to the biomass
production needs to be connected with the rest of the met-
abolic network of its host. Genomes with larger number
of genes n have more places where a HGT-transferred
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pathway could be successfully connected and hence
would be characterized by a proportionally larger ΔnHGT .
In fact, my collaborators and I (S. Maslov, S. Krishna, K.
Sneppen (2008) under review) have recently proposed a
model of such pathway-by-pathway evolution to explain
the quadratic scaling of the number of transcription fac-
tors with genome size.
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