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Abstract
Background: Current experimental techniques, especially those applying liquid chromatography
mass spectrometry, have made high-throughput proteomic studies possible. The increase in
throughput however also raises concerns on the accuracy of identification or quantification. Most
experimental procedures select in a given MS scan only a few relatively most intense parent ions,
each to be fragmented (MS2) separately, and most other minor co-eluted peptides that have similar
chromatographic retention times are ignored and their information lost.

Results: We have computationally investigated the possibility of enhancing the information
retrieval during a given LC/MS experiment by selecting the two or three most intense parent ions
for simultaneous fragmentation. A set of spectra is created via superimposing a number of MS2

spectra, each can be identified by all search methods tested with high confidence, to mimick the
spectra of co-eluted peptides. The generated convoluted spectra were used to evaluate the
capability of several database search methods – SEQUEST, Mascot, X!Tandem, OMSSA, and
RAId_DbS – in identifying true peptides from superimposed spectra of co-eluted peptides. We
show that using these simulated spectra, all the database search methods will gain eventually in the
number of true peptides identified by using the compound spectra of co-eluted peptides.

Open peer review: Reviewed by Vlad Petyuk (nominated by Arcady Mushegian), King Jordan and
Shamil Sunyaev. For the full reviews, please go to the Reviewers' comments section.

Introduction
Protein identification and sequencing started almost sixty
years ago. Some of the earliest techniques for protein
identification required the protein of interest to be puri-
fied, and then digested with endoproteases, followed by
sequencing of the resulting peptides. The protein was
finally assembled [1] by joining sequenced peptides that

have overlapping amino acids, as in the "shotgun-
sequencing" of DNA. Technological improvements in the
area of chromatography [2] and mass spectrometry (MS)
[3-6], in particular tandem mass spectrometry (MS2), have
revolutionized peptide sequencing and protein identifica-
tion. In 1953, Frederick Sanger successfully sequenced the
first protein, the bovine polypeptide hormone insulin. It
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took scientists over ten years to sequence insulin hormone
of 51 residues using more than 0.1 Kg of protein [7]. Now-
adays, laboratories using multidimensional protein iden-
tification technology (MudPIT) can partially sequence
thousands of proteins in about 6–24 hours using only
about 10–500 micrograms of sample [8]. It has also been
repeatedly shown possible to identify 1500–2000 pep-
tides within a digested complex protein mixture [9-12]
from experiments using MudPIT with enhanced chroma-
tography techniques.

Although this type of experiment is regularly used to iden-
tify proteins and to search for possible disease biomarkers
[13,14], it is important to note that several aspects need to
be improved upon in order to achieve optimal perform-
ance and maximal protein coverage. The challenging
issues that have been reported and investigated include
mass accuracy, precursor ion charge assignment, peptide
retention time overlap, non-specific cleavage sites,
number of missed cleavage sites, co-eluted peptides,
acquisition time for a complete MS2 scan, MS2 spectrum
signal to noise ratio, post-translational modifications,
genomic single-nucleotide polymorphisms, incomplete-
ness of protein databases, experimental reproducibility
within and across laboratories, lack of common statistical
standards for database search methods and others [15-
21].

In this study, we focus on the issue of co-eluted peptides.
This problem often arises when one tries to analyze com-
plex samples such as cell lysates, the focal point of shot-
gun proteomics aiming to quantify protein expressions in
a cell subjected to various perturbations. To illustrate the
intrinsic complexity of the problem, let us consider yeast
which has a genome size of around 12 million nucle-
otides encoding approximately 6000 proteins. Upon tak-
ing all the yeast proteins present in the non-redundant
database (nr) hosted by the National Center for Biotech-
nology Information (NCBI), digesting them theoretically
using trypsin, and allowing up to two miscleavages, we
obtain a large number of peptides whose molecular
weight histogram is shown in Figure 1A. To mimic the
effect of chromatographic separation on those peptides,
we computed their retention times in reversed-phase
HPLC [22,23] using the formula of Meek [24]. In Figure
1B, we show the spread and the density of retention times
within each mass grid in a two dimensional heat map. Fig-
ure 1C and 1D are obtained from zooming in on two sep-
arate small regions in Figure 1B. The plots given in Figure
1 clearly show the complexity of the mixture and the fre-
quent occurrences of co-eluted peptides in a given chro-
matography run. Although these plots are obtained
theoretically, similar plots have been obtained experi-
mentally [2,25].

Co-eluted peptides must have similar hydrophobicity and
may be classified into four different types: type I co-eluted
peptides are isobaric to each other and the mass spectrom-
eter cannot distinguish them by using their molecular
weights, type II co-eluted peptides are peptides that have
close molecular weights which cannot be distinguished
from one another due to limited machine resolutions,
type III co-eluted peptides are peptides of different charge
states that happen to have the same m/z and become
indistinguishable from each other because of limited
machine resolution, and type IV co-eluted peptides are
peptides which have distinct molecular weights but have
similar retention time. As suggested by the analysis in Fig-
ure 1, type I, II, and III co-eluted peptides must frequently
occur when analyzing complex protein mixtures [17,18].
However, most analysis software are not pursuing identi-
fication of multiple true peptides. As for type IV co-eluted
peptides, they are not commonly observed in MS2 data
due to the frequent use of data-dependent acquisition
mode, which selects at each time only one of the most
intense precursor ions of a previously acquired scan for
further fragmentation. Selecting only the most intense
precursor ion regardless of the presence of co-eluted pep-
tides implies that fewer ions will be used for protein iden-
tification and quantification. Also, the low abundance
proteins will be hard to identify and it becomes difficult
to draw significant conclusions regarding protein expres-
sion levels.

To achieve better coverage of identified proteins and bet-
ter sensitivity in detecting low abundance proteins, one
may wish to consider selecting simultaneously multiple
precursor ions for fragmentation. By allowing co-eluted
peptides to be simultaneously fragmented, one increases
the information collected per spectrum, albeit at the
expense of introducing higher level of noise, and thus one
may improve protein identification rate as well as the con-
fidence in protein identification and quantification. In
terms of collecting experimental data, the integrated MS
multiplexed MS2 data acquisition approach [26-29] seems
only available for in-house machines but not for commer-
cial MS analyzers in general. Other adaptations such as by
changing the selecting window for the precursor ion [30]
or perhaps by modifying the machine software might be
other alternative route for pursuit.

The purpose of this study is to assess the readiness of soft-
ware for analyzing this type of spectrum, hoping to
encourage further hardware/software development to
address this important issue. Although there exists soft-
ware [31] specially designed to take into account co-elut-
ing peptides, we do not include it in the present study. The
scope of the current paper is to evaluate the likelihood for
other generic database search engines in their present
forms to gain in peptide identification rate from spectra of
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co-eluted peptides. Since the test spectra are superimposi-
tion of individual spectra that are commonly identified
with high confidence by all search engines, in a way each
search engine is tested under the best possible scenario.
Generally speaking, a generic spectrum from co-eluted
peptides may be noisier than those used in this study. To
provide a better flow for the presentation, we have rele-
gated information similar to what is presented in the main
text to supporting information [Additional file 1]. For the
remainder of the main text, we first describe in the mate-

rials section the starting data sets used, and we then
describe the construction of the compound spectra
needed for our study. The results and analyses are then
presented, and we end with the concluding summary and
outlook section.

Materials
The database search tools included in this study are
SEQUEST [32] (v27 rev12), Mascot [33] (v2.2), X!Tan-
dem [34] (v2007.07.01.2), OMSSA [35](v2.0), RAId_DbS

Theoretical consideration of peptide co-elutionFigure 1
Theoretical consideration of peptide co-elution. (A) Frequency count (with bin width equals to five Dalton (Da)) of 
tryptically-digested peptides, allowing up to two miscleavages per singly-charged peptide, of all the 9393 Saccharomyces Cere-
visiae proteins present in the NCBI's non-redundant protein database (04/23/2007). This results in a total of 771,753 unique 
peptides with molecular weights less than 6300 Da. (B) Theoretical retention times calculated for all of the 771,753 peptides 
[24]. The scale color code represents the number of peptides per grid but averaged over 25 grids (five mass bins × five reten-
tion time bins). Each grid has mass width of one Da and retention time width of 6 seconds. Since the retention time variation 
of a given peptide is typically much larger than 6 seconds, we may view the number encoded by color as the expected minimal 
number of co-eluted peptides whose mass differences are within one Da. This is due to the fact that a given peptide may 
appear in the mixture with charge states other than that is singly charged. Panels (C) and (D) result from zooming in on differ-
ent regions of panel (B) to illustrate the minimal number of co-eluted peptides occurring within a small time window and with 
very similar masses. It is important to note that the complexity of the pictures above will significantly increase if one were to 
take into account post-translational modifications, incorrect cleavage sites, and multiple charge states.
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[36]. OMSSA, RAId_DbS and X!Tandem were installed for
evaluation on the Biowulf cluster, a Linux parallel
processing system with ≈ 3700 processors, of the National
Institutes of Health (NIH). The runs using SEQUEST were
done using the SEQUEST cluster of 18 processors at the
Proteomics Core Facility of the National Heart, Lung, and
Blood Institute (NHLBI), and the Mascot runs were done
on the NIH's Helix system where eight processors are
licensed to run Mascot software. Respective default search
parameters were used for each of the database search
methods except that for each method the allowed number
of miscleavages was set to 3 and a minimum of 10
reported peptides per query was requested. A list of other
parameters used is provided in Table 1.

For our study, we used a data set produced by the Pro-
teomics Core Facility of the NHLBI of the NIH. This data
set contains spectral data collected in profile mode only,
and includes the following modes of instrument opera-
tion: LTQ/LTQ, FT/FT, TOF/TOF and LTQ/FT. This profile
mode data set, previously described in reference [37], and
henceforth referred to as the NHLBI data set, results from
tryptic digestion of a mixture of eight proteins at three dif-
ferent concentrations and with the side chain of cysteine
reduced with carbamidomethylation.

Bioworks (version 3.1) was used to extract peaks from the
raw files of the data with no threshold imposed on the
parent-ion ion count. For instrument modes such as LTQ/
LTQ and LTQ/FT, one anticipates a low resolution in par-
ent ion m/z and charge state determination. Therefore, we
expand the spectrum charge state into both +2 and +3
when the charge state reported in the spectrum file was
not +1. For the high resolution instruments such as FT/FT
and TOF/TOF the charge state and parent-ion ion molec-
ular weight obtained from the spectrum file were taken
directly without any further expansion of charge state. The
total number of spectra produced after extraction from the
NHLBI set was 26159 and a detailed breakdown of the
numbers of spectra by instrument type is given in Table 2.
In order to have a balanced sampling among different
instruments for the NHLBI data set, we created a new set
of 10000 MS2 spectra sampled as evenly as possible from

spectra produced by different instruments. The break-
down of the numbers of spectra from different instru-
ments is summarized in Table 3.

Compound spectrum construction and use
Lacking a spectral data set that was produced by allowing
more than one precursor ion per scan for further fragmen-
tation, we computationally constructed compound spec-
tra to mimic such a scenario. To produce a compound
spectral data set with minimal bias towards any of the
database search methods used, we proceeded as follows.
The 10000 MS2 spectra from the NHLBI set was first ana-
lyzed using all five database search methods mentioned
earlier. The parameters in Table 1 were used for each
method while searching, for each spectrum, in the nr pro-
tein database (480 Million residues) of the NCBI. For
every spectrum, the reported results from each database
search method were compared against a list of the theoret-
ical peptides generated from the known proteins to deter-
mine whether a true peptide hit exists in those results. A
query spectrum is classified as a member of the co-identi-
fiable set provided that each search method is able to
report, within a given E-value cutoff, at least one true pep-
tide hit. To be more specific, the first criterion for a spec-
trum to be a member of the co-identifiable set is that all
the five database search methods considered had to have
a true positive identification for that spectrum, although
not necessarily identifying the same peptide. The second
criterion is that for each database search method the true
positive peptide identified should have an E-value below
1. Because different database search methods report dif-
ferent confidence measures associated with the reported
peptides, we have transformed the measure of each data-
base search method to the proper E-value using a method
reported earlier [37]. Table 4 summarizes the number of
spectra contained in the co-identifiable set for the five
database search methods considered. An Excel file [addi-
tional file 2] listing the spectra in the co-identifiable set is
also provided. Each spectrum there is listed with the true

Table 1: Database search tools parameters.

Search Method PI m/z T DI m/z T NMCA

OMSSA ± 2.0 Da ± 0.8 Da 3
X!Tandem ± 2.0 Da ± 0.4 Da 3
SEQUEST ± 2.5 Da ± 1.0 Da 3
Mascot ± 2.0 Da ± 0.8 Da 3
RAId_DbS ± 3.0 Da ± 1.0 Da Unlimited

In the first row of the table, "PI m/z T" stands for "parent ion m/z 
tolerance", "DI m/z T" stands for "daughter ion m/z tolerance" and 
"NMCA" stands for "number of miscleavages allowed."

Table 2: Total number of MS2 spectra obtained from NHLBI.

Molar LTQ/LTQ LTQ/FT TOF/TOF FT/FT

1000 nM 9190 840 1654 207
100 nM 9207 966 351 240
10 nM 2602 522 211 169

Table 3: Total number of MS2 spectra used from NHLBI.

Molar LTQ/LTQ LTQ/FT TOF/TOF FT/FT

1000 nM 1624 840 1623 207
100 nM 1624 966 351 240
10 nM 1623 522 211 169
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peptide identified and the standardized E-values by turn-
ing the quality scores reported by the five search methods
into calibrated E-values [37].

We chose to include in the co-identifiable set only the
NHLBI data set in order to minimize the occurrence of
peptide co-elution so that each spectrum in the co-identi-
fiable set will most likely contain only one true peptide.
Because the NHLBI data set is generated by tryptically
digesting only eight proteins, the likelihood of peptide co-
elution has been greatly reduced compared to experi-
ments using a complex protein mixture. A compound
spectrum is constructed from combining spectra in the co-
identifiable set. For each spectrum, we discretize the frag-
ment ion masses by multiplying each mass by 1, 000 and
then taking the integer part. Two different ways to com-
bine spectra are investigated: sum (method 1) and max
(method 2). In the former case, the intensity associated
with a given mass index of the compound spectrum is
given by summing over the chosen spectra all fragment
ions with the same mass index. In the second method, for
a given mass index in the compound spectrum the associ-
ated intensity is given by the maximum intensity among
all fragment ions, within chosen spectra, with the same
mass index. While combining spectra, we only allow mix-
ing of spectra generated by the same instrument type.

Within each realization of compound spectrum construc-
tion, every spectrum in the co-identifiable set may be
selected at most once for mixing. That is, within each real-
ization we sample without replacement. As a concrete
example, the procedure for combining spectra of the LTQ/
LTQ instrument type is elaborated below. In the co-iden-
tifiable set, there are 487 spectra covering 73 unique pep-
tides. To sample three spectra without replacement, one
may obtain at most 487/3 ≈ 162 compound spectra per
realization. To have a fair comparison of information
retrieval when having different degrees of spectral mixing,
the number 162 is used as the target number of spectra per
realization for the LTQ/LTQ instrument type even when a
compound spectrum contains only a single spectrum or
two spectra. That is, we are simulating 162 MS2 spectra
when only the most intense, the two most intense, or the
three most intense m/z precursor ions are selected for the
second MS. Since it is impractical to evaluate all possible
pairwise and triplet combinations of spectra, we only

sample ten realizations of spectrum mixing. We also con-
sidered the case of mixing only spectra from distinct pep-
tides and called this case unique peptide mixing. In this
case, the selection of spectra deserves further explanation.
For a given search method, a unique peptide π may be
reported by search results from many different spectra.
The representative spectrum of π for the given search
method is chosen to be the one that reports π with lowest
normalized E-value [37]. Basically, for each unique peptide
π, a search method M is selecting for π the representative
spectrum that is easiest for M to identify π. With this rule,
different methods may end up selecting different sets of
73 spectra. Once the 73 spectra are selected for a given
search method, one may then proceed to sample ten real-
izations of 24 ≈ 73/3 compound spectra, each made of
either a single spectrum, two spectra, or three spectra as
described earlier. Following the same logic, spectra mixing
for other instruments are also done similarly and the cor-
responding numbers of spectra within each realization of
sampling are summarized in Table 5.

Once the compound spectra are assembled, we use each as
a query spectrum to various search methods. For a doublet
compound spectrum, the two precursor ion m/z's associ-
ated with the two spectra in the co-identifiable set will
both be used for the search. That is, each program will
process the same compound spectrum twice, once for
each different m/z value for the precursor ion. The two
reported hit lists are then merged together and sorted by
E-value. Similarly, for a triplet compound spectrum, each
program will process it three times, each time using a dif-
ferent parent ion precursor m/z. The three associated hit
lists returned by a given search method are merged and
again sorted by each entry's E-value. Apparently, the size
of the final hit list for a compound spectrum is generally
larger than that of a single spectrum in the co-identifiable
set. For the proposed method to be useful, one first needs
to make sure that the hit list expansion does not introduce
an excessive number of false positives. A simple way to
assess this aspect is to use Receiver Operating Characteris-
tics (ROC) curves to describe the performance of a search

Table 4: Spectra co-identified by all database search tools 
considered with E-value less than 1.

Data LTQ/LTQ LTQ/FT TOF/TOF FT/FT

NHLBI 487/73 128/48 61/54 146/54

The first number represents the total number of peptides identified 
while the second number is the number of unique peptides identified.

Table 5: The number of spectra within each realization of 
sampling

Data LTQ/LTQ LTQ/FT FT/FT TOF/TOF

MAX1 (U) 162(24) 43(16) 49(18) 20(18)
MAX2/SUM2 (U) 324(48) 86(32) 98(36) 40(36)
MAX3/SUM3 (U) 486(73) 129(48) 147(54) 60(54)

The first number in the table is the number of compound spectra per 
realization of sampling when mixing spectra in the co-identifiable set. 
The number in parentheses is the number of compound spectra per 
realization of sampling when mixing only spectra of unique peptides 
(see text for more detail). The symbol "U" inside the parentheses 
stands for "unique peptide."
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method when using compound spectra. We will turn to
this type of analysis in the next section.

Analyses and results
Before analyzing the results, we briefly investigate the pos-
sibility of different peptides sharing multiple theoretical
peaks in our test data. Counting contributions from all
instrument types, the total number of unique peptides in
the co-identifiable set is 110. For each of those 110 pep-
tides, we calculate its corresponding theoretical b-type
and y-type fragment masses with +1 charge. This results in
110 arrays of masses. We then exhaustively enumerate -
between any two peptides and among any three peptides-
the number of overlapped theoretical fragments. For two
peptides, there are in total 110 × 109/2 = 5995 pairwise
comparisons. For three peptides, there are in total 110 ×
109 × 108/6 = 215820 comparisons. Any two (three) the-
oretical fragments from two (three) different peptides
with mass difference(s) less than or equal to one Dalton
(Da) contribute one count towards the number of shared
peaks. The histograms of shared peaks are normalized by
the total number of respective events to represent the
probability of occurrence. Only the b-type and y-type frag-
ments are used to compute the probability of fragment
mass overlap because they usually are the most frequently
observed in a spectrum with dominant intensities and are
also the major series used for peptide identification by
most database search methods.

As shown in Figure 2, the probability for two peptides to
share three or more peaks of the b-type and y-type is less
than 5% and the probability becomes less than 1% for
three randomly selected peptides to share three or more
theoretical peaks. These probabilities indicate that a gen-
erated compound spectrum in general does not contain
many peaks that may be used to identify several true pep-
tides. Consequently, the identification of multiple pep-
tides is not due to shared fragments between peptides.
Two experimental spectra containing type II co-eluted
peptides are shown in Figure 3. There are indeed very few
b and y fragment overlaps in either spectrum, consistent
with the statistics collected from our compound spectra.
This experimental data, in some way, justify our com-
pound spectra construction strategies. In both experimen-
tal spectra shown, the existence of more than one true
peptide hit is confirmed by more than one search method.

As a result, the compound spectra generated are very ran-
dom in terms of peaks used to identify the true peptides
and all other peaks present in a given compound spec-
trum may be regarded as noise peaks. Hence, the data set
generated is suitable for testing the ability of different
database search methods to identify true positive peptides
when given a complex spectrum where the signal to noise

ratio has been decreased due to the introduction of several
co-eluted precursor ions.

E-value distributions for the co-identifiable spectra
To ensure that the co-identifiable set used for generating
the compound spectra does not bias towards any given
database search method, we plotted the E-value distribu-
tion for those co-identifiable peptides. The E-value distri-
butions for the database search methods tested all have
average E-values less than 0.05 and all are distributed over
a wide range (see Figure 4), indicating minimal bias
towards any given method tested.

Performance assessment and analyses
We have used Receiver Operating Characteristics (ROC)
curves (Figures 5 and 6) to assess the performance of each
of the five search engines using the compound spectra
derived from the LTQ/LTQ data in the co-identifiable set.
Each ROC curve plotted is the average result over ten dif-
ferent realizations of sampling. The corresponding ROC
curves (for OMSSA, X!Tandem, and RAId_DbS) from ana-
lyzing compound spectra generated by TOF/TOF, LTQ/FT
and FT/FT instruments are shown in the supplementary
material. For a given search method, an individual panel

Histograms of mass fragments overlapFigure 2
Histograms of mass fragments overlap. P(N) is the nor-
malized histogram of the number of overlapping fragments of 
the b and y types between 2 or among 3 peptides from the 
110 unique peptides in the co-identifiable set. The peak at N 
= 1 for two peptides is due to that fact that the C-terminal 
amino acid is either K or R, resulting in a large probability for 
two peptides to have the same y-1 peaks and thus contribute 
significantly to the histogram at N = 1. This artifact dimin-
ishes as we look into the shared peaks among three peptides 
since the chance for peptides to share the same C-terminal 
amino acid decreases with the number of peptides.
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containing five ROC curves is used to summarize the
results. The five ROC curves in each panel correspond to
the performance of the search method when the com-
pound spectra contain one, two, or three co-identifiable
peptides. Since the compound spectra mimicking either
two or three co-eluted peptides are constructed in two
ways, we ended up having five ROC curves in total. To
show how much one may gain in terms of true positive
retrieval, we show the ROC curve from analyzing simu-
lated co-eluted spectra and compare it against the baseline
ROC curve, obtained from directly analyzing co-identifia-
ble spectra without mixing. Because each spectrum in the
co-identifiable set contains one true positive peptide iden-
tified by all search methods, all the baseline ROC curves
should reach a common maximum.

For each search method tested, using either the sum of
intensities (method 1) or the max intensity (method 2) to
generate the compound spectrum do not result in any
appreciable variance in the ROC curves. This indicates
that most current database search methods are robust in
retaining the information used to identify peptides. In
other words, the data pre-processing used by most data-
base search methods such as spectrum normalization,
peak selection and data centroidization do not lose the
information needed for the identification of true peptides.

For X!Tandem, RAId_DbS, SEQUEST and Mascot, as
shown in the ROC curves of Figure 5, there is a consistent
identification improvement when analyzing spectra mim-
icking more co-eluted peptides (up to three). OMSSA's
performance using spectra mimicking multiple co-eluted
peptides is comparable to its baseline, except at low

Example spectra of peptide co-elutionFigure 3
Example spectra of peptide co-elution. (A) and (B) are experimental spectra of two co-eluted peptides simultaneously 
identified by RAId_DbS, OMSSA, SEQUEST and Mascot.
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number of false positives region where the ROC curve for
two co-eluted peptides is worse than the baseline ROC
curve and the ROC curve of three co-eluted peptides is
worse than that of two co-eluted peptides. OMSSA's per-
formance trend may be related to its use of a Poisson
probabilistic background model where a random peak
being counted as one of the b or y peaks is assumed to be
a Poisson event. Since we are combining spectra acquired
in profile mode, which intrinsically report a lot more
peaks than data collected in centroid mode, any com-
pound spectrum may be very rich and complex with many
strong peaks. This might not agree with the probabilistic
model assumed by OMSSA and somehow compromise its
performance. We believe that OMSSA should also be able
to gain improvement in ROC analysis provided that one
uses centroid data, although we currently don't have anal-
ysis to support this conjecture.

The details of Mascot's probabilistic model are not pub-
licly available, making it hard to comment on what might
happen when a different data acquisition mode is used.
We only know that Mascot's probabilistic model is similar
to the model used in MOWSE [38]. In the case of

SEQUEST one would not expect significant dependence
on the data type used as it uses correlation as a measure
for peptide identification between theoretical fragments
and experimental fragments and in principle it will be
able to identify true peptides as long as the information
necessary for identification is present in the spectrum and
the spectrum is not over populated with strong peaks,
which is the case for the spectra used. X!Tandem and
RAId_DbS both fit the score distribution generated from
scoring experimental spectrum against peptides in a given
database. While X!Tandem uses an exponential [39] to
approximate the tail of the score distribution, RAId_DbS's
score distribution has a theoretical foundation and
accommodates skewness and finite sample effect [36].
Neither method is expected to have substantial change in
performance when using a different data type.

Upon inspection of the ROC curves for the five database
search methods tested, it seems that the ROC curves for
the compound spectra each resulting from 2 or 3 co-
eluted peptides always climb above the ROC curve for
spectra each resulting from only a single peptide. This
implies that there would be no loss in protein coverage by

E-value distributions of true peptides identifiedFigure 4
E-value distributions of true peptides identified. The E-value distributions of the true peptides identified from spectra in 
the co-identifiable set. The average E-values are: RAId_DbS (μ = 0.05), X!Tandem (μ = 0.025), Mascot (μ = 0.04), OMSSA (μ = 
0.03) and SEQUEST (μ = 0.05).
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ROC analyses of compound spectraFigure 5
ROC analyses of compound spectra. ROC curves constructed from analyzing the compound spectra of LTQ/LTQ type. In 
the figure legend, MAX-1 represents the ROC curve from analyzing single peptide spectra sampled directly from the co-identi-
fiable set, MAX-2 (SUM-2) and MAX-3 (SUM-3) are the ROC curves from analyzing compound spectra formed by combining 
respectively two and three single-peptide spectra in the co-identifiable set. The symbol "MAX" in the legend indicates that each 
compound spectrum is obtained by taking at every mass grid the maximum intensity among the peaks of the spectra combined, 
while "SUM" in the legend indicates the compound spectra are obtained through summing at every mass grid the intensities of 
peaks of the spectra to be combined. The Arabic numbers 2 and 3 in the legend indicate the number of spectra combined to 
form a compound spectrum.
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ROC analyses of compound spectra of distinct peptidesFigure 6
ROC analyses of compound spectra of distinct peptides. ROC curves constructed from analyzing the compound spec-
tra formed by combining a number of unique peptide spectra of the LTQ/LTQ type. In the figure legend, MAX-1 represents the 
ROC curve from analyzing single peptide spectra sampled directly from the co-identifiable set, MAX-2 (SUM-2) and MAX-3 
(SUM-3) are the ROC curves from analyzing compound spectra formed by combining respectively two and three single-pep-
tide spectra in the co-identifiable set. The symbol "MAX" in the legend indicates that each compound spectrum is obtained by 
taking at every mass grid the maximum intensity among the peaks of the spectra combined, while "SUM" in the legend indicates 
the compound spectra are obtained through summing at every mass grid the intensities of peaks of the spectra to be com-
bined. The Arabic numbers 2 and 3 in the legend indicate the number of spectra combined to form a compound spectrum.
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sending simultaneously the 2 or 3 most intense precursor
ions to the second MS to generate a convoluted spectrum.
Since the transformed E-value [37] now may serve as a
common statistical standard across different search meth-
ods, one may wish to understand how the statistical sig-
nificance assignment of the identified peptides is
impacted by using a convoluted spectrum. To this end, we
first define the cumulative identification ratio as the ratio of

the cumulative number of true peptides identified from
compound spectra (each resulting from 2 or 3 co-eluted
peptides) to that from the co-identifiable spectra (each
resulting a single peptide). We then plotted the cumula-
tive identification ratio against the E-value cutoff (Figure
7). As shown in Figure 7, all search method eventually go
above the horizontal line y = 1, indicating an increase in
peptide coverage. One also observes that the ratio at low

Cumulative identification ratio versus E-value cutoff for compound spectraFigure 7
Cumulative identification ratio versus E-value cutoff for compound spectra. Panel A/B and C/D displays the cumula-
tive identification ratio as a function of E-value cutoff for the five database search tools when analyzing compound spectra con-
structed by the SUM2/SUM3 method while combining the LTQ/LTQ single-peptide spectra (A/B) and unique-peptide spectra 
(C/D) in the co-identifiable set. The symbols CTP1, CTP2 and CTP3 correspond respectively to the cumulative number of true 
positives (TP) identified with E-value equal to or smaller than the specified cutoff when analyzing single-peptide spectra, com-
pound spectra of two peptides, and compound spectra of three peptides.
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E-value is smaller than one. Such a result is expected since
each compound spectrum becomes quite complex due to
spectrum mixing and the higher noise level makes it
harder for a true positive peptide's score to be significantly
higher than the background. As a consequence, a true pep-
tide hit here may be assigned a higher E-value.

Discussion
It is worth pointing out that RAId_DbS and X!Tandem
both climb above the line y = 1 at a lower E-value and they
also reach a greater number of true positive identified
when compared to the other three methods. As an exam-
ple, for E-value ≤ 0.01, RAId_DbS and X!Tandem attain an
increase of around 30% in the number of true positives
identified and an increase up to 50% or better in the
number of true positives identified when E-value ≤ 0.1 is
used as the criterion. Table 6 provides the percentage
increase in the number of true peptides identified over the
baseline y = 1.

In the ideal scenario, if one were to analyze 1, 000 exper-
imental spectra using RAId_DbS or X!Tandem, by select-
ing the two most intense ions for second MS instead of
just the most intense ion, with E-value ≤ 0.01 one antici-
pates increasing number of identified peptide by 30%
with the number false positives increasing by approxi-
mately 10. And this identification increase may rise to
50% if one is willing to use E-value ≤ 0.1 as a cutoff result-
ing in approximately 100 more false positives in this case.
The increase of 100 false positives may seem more than
one is willing to accept. However, in the ideal situation
where each of the 1, 000 spectra was identified with a true
positive, there would be 500 more true peptides identified

and the increase of 100 false positives may become accept-
able. Therefore, where to set the E-value cutoff to gain
more true positives without introducing an unacceptable
number of false positives crucially depends on the identi-
fication rate for single-peptide spectra. Consequently, pro-
tein identification and quantification might benefit from
analyzing spectra of co-eluted peptides when proper E-
value cutoff is used. However, it is also true that not all
database search methods have a significant increase in the
number of true positives identified at low E-values. Never-
theless, the number always exceeds the baseline when a
larger E-value cutoff is considered. Therefore the problem
in analyzing convoluted spectra is not that the true posi-
tives can't be found, but rather, their assigned E-values
might be higher than one wishes due to the high noise
level introduced by spectral mixing.

A possible way to reduce the effect of noise is to construct
a revised spectrum by subtracting from the convoluted
spectrum of two or three co-eluted peptides the theoreti-
cal fragments of the lowest E-value peptide reported prior
to further processing. As an example, for a convoluted
spectrum made of two co-eluted peptides, one has two
precursor m/z's to search in the database. The peptide hit
with lowest E-value will correspond to an m/z, which we
call the first m/z. One may then generate this peptide's
theoretical fragments and subtract them from the convo-
luted spectrum to form a revised spectrum. The revised
spectrum is then used as query to search for candidate
peptides corresponding to the second m/z. It was not the
goal of this study to provide a method to improve the
reported E-value of co-eluted peptides. Instead, we evalu-
ate the readiness of software to handle such spectra, hop-
ing to encourage developers of database search methods
to enhance their software capabilities in handling co-
eluted spectra.

Concluding summary and outlook
In our study we computationally investigated the possibil-
ity of using current database search methods to identify
peptides from the superimposed MS2 spectra of 2 and 3
peptides. Based on our theoretical analysis (see Figure 1),
peptides will be co-eluted all the time during a large scale
HPLC/MS proteomics experiment. Even if one is able to
identify from each spectrum a correct peptide, informa-
tion retrieval needed for protein coverage and protein
expression level assessment may still be improved by tak-
ing into account the possibility of peptide co-elutions.

To mimic the spectra resulting from co-eluted peptides,
we mixed single peptide spectra. In our case, because we
use a data set generated by only eight proteins, the likeli-
hood of peptide co-elution has been greatly reduced, jus-
tifying our assumption that the co-identifiable set mainly
contains single peptide spectra. We have employed two

Table 6: The percentage of the total number of peptides 
identified, allowing multiple co-eluted peptides per spectrum, 
when compared to that of the single peptide identification at a 
fixed E-value.

CTP2/CTP1 CTP3/CTP1

E = 10-2 E = 10-1 E = 10-2 E = 10-1

RAId_DbS (U) 1.22(1.21) 1.40(1.31) 1.26(1.26) 1.53(1.55)
X!Tandem (U) 1.24(1.22) 1.34(1.31) 1.27(1.25) 1.44(1.41)

Mascot (U) 0.95(0.83) 1.15(1.05) 0.87 (0.64) 1.13(1.13)
SEQUEST (U) 0.95(1.10) 1.10(1.12) 0.92(1.01) 1.11(1.22)
OMSSA (U) 1.05(1.06) 1.02(1.06) 1.11(1.01) 1.08(1.12)

To the right of each search method, the first number in each grid is 
the ratio of number of identified peptides using the compound spectra 
to that using single peptide spectra at various E-value cutoff. The 
number in parentheses is the ratio obtained by using only compound 
spectra constructed from mixing the spectra of unique peptides. Here 
the symbol "U" stands for "unique peptide". The symbols CTP1, CTP2 
and CTP3 correspond respectively to the cumulative number of true 
positives (TP) identified with E-value equal to or smaller than the 
specified cutoff when analyzing single-peptide spectra, compound 
spectra of two peptides, and compound spectra of three peptides.
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different methods of spectrum mixing and their results are
very similar. The main finding in this paper is that it is
possible to increase the information retrieval in peptide
identification if one were to consider analyzing type IV co-
eluted peptides even with current database search meth-
ods. Clearly, there is still room for improvement for every
software package in terms of identifying type IV co-eluted
peptides.

However, it is worth remarking that type I to type III co-
eluted peptides are already abundant in the current exper-
imental set up. An increase in protein coverage may
already be attainable if software developers can look into
this aspect and enhance their softwares' detection capabil-
ities in this regard. Even before considering type IV co-
eluted peptides, it may already benefit the community if
the shackles of "one true peptide per spectrum" are
removed. Of course, any statistical assessment method
developed should also take into account the possibility of
having more than one correct peptide per spectrum. It is
our hope that this study will stir the interest of software
developers to include in their search methods features
that allow for better detection of co-eluted peptides.
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Reviewers' comments
Reviewer's report 1
Review by Vlad Petyuk, nominated by Arcady Mushegian,
Biological Separations and Mass Spectrometry Biological
Science Division, Pacific Northwest National Laboratory.

1) The authors address the problem of concurrent frag-
mentation of co-eluting peptides. I agree that this is a
problem; however its extent is not clear. The justification
provided in the manuscript, in particular on Figure 1, is
based on in silico tryptic digestion of yeast proteome. That
assumes that all the proteins are expressed in a given con-
dition and present in about equal amounts. Both of the
assumptions are likely to be false for real samples. First,
even for a simple organism such as E. coli, there is only a
subset of proteome which is expressed at a given moment.
Second, if peptides significantly differ in abundance the
low abundance peptide(s) will be masked by noise in
both MS and MS/MS spectra and high abundant peptide
will appear as single peptide per spectrum the database

search software. Thus, I would encourage estimating the
percentage of MS/MS spectra resulting from simultaneous
peptide fragmentation, and indeed containing fragment
ions of both peptides, on some real LC-MS/MS dataset of
complex sample analysis (for example MudPIT experi-
ment). Actual numbers should help to understand the sig-
nificance of the problem. However, certain not yet widely
used approaches (referenced as #27 and #30) utilize
broadband fragmentation instead of more common +/-
1.5 m/z tolerance window around the parent ion. In such
cases consideration of concurrent fragmentation can not
be ignored.

2) The other question would be regarding the construc-
tion of compound spectra. Has the parent ion mass to
charge ratio been accounted for realization of compound
spectra? If the MS/MS spectra were combined regardless
the parent ion information, then it does not reflect the
typical real situation of LC-MS/MS experiments, but it
rather imitate broadband fragmentation situation. The
compound spectra were searched 2 or 3 times, each time
assuming different parent ion mass. Again, in reality MS/
MS search engines search the spectra only once, as it is
only one parent mass associated with a spectrum. For the
case of broadband (aka data-independent) or wide parent
ion mass tolerance fragmentation there are also no set of
defined distinct set of parent ion masses associate with a
spectrum. What was studied is the scenario of not yet
widely used data-dependent multiplexed fragmentation
(ref #28) classified as type IV in the presented manuscript.

3) Authors, note that they use MS/MS spectra collected in
only profile mode for this study. However centroid mode
is common mode for collecting MS/MS data.

4) I strongly encourage using conventional instrument
names and modes of their operation. This is significant
source of confusion. There are no such instruments as
LTQ/LTQ and FT/FT. I believe what is described is acqui-
sition of MS and MS/MS spectra in the low resolution
mode in the ion trap and in high resolution mode in ICR
cell. For example authors describe instrument set up LTQ/
FT as low resolution in parent m/z and charge state deter-
mination. I believe this is an error resulting from mixing
unconventional names of instrument operating modes
with actual instrument names. It would be quite odd to
run LTQ FT Ultra hybrid mass spectrometer instruments
in low resolution ion trap mode for MS spectra acquisi-
tion.

5) It seems to me that the call for development of software
capable of handling convoluted MS/MS spectra has
already been at least partially addressed. Please provide
any comments on the manuscript entitled "ProbIDtree:
An automated software program capable of identifying
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multiple peptides from a single collision-induced dissoci-
ation spectrum collected by a tandem mass spectrometer"
published by Aebersold group in Proteomics 2005.

6) If possible I would encourage combining figures with
highly redundant legends for sake of comprehension. For
example legends of Figure 7 and Figure 8 differ only in
one word.

Overall it is a valuable study aimed at evaluation of com-
monly used MS/MS search engines. It is certainly good
news that most of the search engines do not fail in the
cases of convoluted spectra and moreover may identify
multiple peptides if multiple parent ion masses provided.
However it is achieved, as author notes, at the cost of sta-
tistical confidence. I believe exploring possibilities of both
data-dependent and data-independent multiplexed frag-
mentation approaches and tuning the scoring schemes
and statistics to deal with such spectra has a high chance
of generating a good return on investment.

Author's response
1) The example provided in Figure 1 is used to demon-
strate the complexity of a cell lysate sample. Figure 1 actu-
ally is a simplified picture of a cell lysate sample as it does
not account for: post translation modifications, single
nucleotide polymorphism and it only includes correct
trypic digested sites allowing up to two miscleavage sites.
We have included two references [2,26] that contain sim-
ilar plots for real biological sample similar to the one
shown in Figure 1.

Regarding the second reviewer comment, indeed for a syn-
chronized cell sample, only a subset of the proteome is
expressed at a given moment. In reality, most of the time
the cell sample used are not synchronized, and one is
looking at the time averaged distribution of the expressed
proteins. We agree with the reviewer regarding low abun-
dant peptides. If peptides are present in the sample at con-
centration levels that makes them indistinguishable from
noise those peptides probably will not be identified, and
if identifiable they will in general have a low confidence
score associated with their identification.

We are currently considering to conduct a global study of
co-eluted peptides of type I, II, III present in complex mix-
tures as suggested by the reviewer. We actually have the
result from a small data set composed of a mixture of 7
proteins containing 6,734 spectra analyzed using
RAId_DbS. In this data set we observed a total of 93 spec-
tra having two true positives [40], which was the motiva-
tion for the current study to evaluate how well different
database search methods perform given a convoluted MS/
MS spectrum.

2) Our protocol of compound spectral construction mim-
icks type IV (data-dependent multiplex) co-eluted pep-
tides the most, but it also include types I, II, and III. The
broad band approach, where spectrum were searched with
a wide range of m/z, is one way to capture co-eluted pep-
tides but is not what we intended to study here. The scope
of this study is to assess in general how well different data-
base search methods perform given a number of convo-
luted MS/MS spectra regardless of whether the convoluted
spectra is of the type I, II, III or IV, but not of the broad
band type. The compound spectra were searched multiple
times, based on the (m/z)s of the parent ions mixed sim-
ilar to the data-dependent multiplex method.

3) We did not used the data collect in centroid mode
because these are processed spectra using some denoise
(centroid) software package that comes with the instru-
ment, with little reference, if any, to how the centroid
spectra are produced. Also many peaks get removed dur-
ing the centroid process which can affect peptide identifi-
cations especially when one is trying to identify multiple
co-eluted peptides from a convoluted MS/MS spectrum.

4) We thank the reviewer for pointing out that LTQ/LTQ
(or FT/FT or LTQ/FT or FT/LTQ) refers to the mode of
instrument operation for spectra acquisition. The nota-
tion used XXX/YYY (LTQ/LTQ or FT/FT or LTQ/FT or FT/
LTQ) refers to the mode of data acquisition for MS and
MS/MS spectra. For example, FT/LTQ indicates survey MS
spectra were acquired by the FT-ICR detector and MS/MS
spectra were acquired in the LTQ linear ion trap. Also a
Finnigan LTQ FT hybrid mass spectrometer (Thermo Sci-
entific, San Jose, CA) was used to acquire spectra for the
following modes of operation: LTQ/FT, LTQ/LTQ, and FT/
FT. The TOF/TOF mode of spectra acquisition was per-
formed with an Applied Biosystems 4700 Proteome Ana-
lyzer MALDI TOF/TOF (Foster City, CA).

The purpose of using the LTQ/FT mode was to evaluate
the different database search methods retrieval using as
many instrument combinations as possible.

5)We thank the referee for pointing out this reference. We
have now included this reference in the introduction.

6) We have merged Figure 8 with Figure 7 as suggested.

Reviewer's report 2
Review by King Jordan, School of Biology, Georgia Insti-
tute of Technology.

I support publication of this manuscript in Biology Direct.

Reviewer's report 3
Review by Shamil Sunyaev, Harvard Medical School.
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This interesting manuscript challenges current strategy of
shotgun proteomics in selecting precursor ions. The
authors demonstrate that all current computational meth-
ods for peptide identification (possibly, with the excep-
tion of OMSSA) are capable of identifying co-eluted
peptides. This computational experiment suggests new
ways of the proteomic analysis which would not be lim-
ited to a few highest intensity parent ions and will include
multiple co-eluted peptides.

Additional material
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