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Abstract

Background: The key to mass-spectrometry-based proteomics is peptide identification. A major
challenge in peptide identification is to obtain realistic E-values when assigning statistical significance
to candidate peptides.

Results: Using a simple scoring scheme, we propose a database search method with theoretically
characterized statistics. Taking into account possible skewness in the random variable distribution
and the effect of finite sampling, we provide a theoretical derivation for the tail of the score
distribution. For every experimental spectrum examined, we collect the scores of peptides in the
database, and find good agreement between the collected score statistics and our theoretical
distribution. Using Student's t-tests, we quantify the degree of agreement between the theoretical
distribution and the score statistics collected. The T-tests may be used to measure the reliability
of reported statistics. When combined with reported P-value for a peptide hit using a score
distribution model, this new measure prevents exaggerated statistics. Another feature of
RAId_DbS is its capability of detecting multiple co-eluted peptides. The peptide identification
performance and statistical accuracy of RAId_DbS are assessed and compared with several other
search tools. The executables and data related to RAId_DDbS are freely available upon request.
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For the full reviews, please go to the Reviewers' comments
section.

Introduction

Protein identification is the key to proteomics. As an
indispensable component in mass spectrometry (MS)
based protein identification, peptide identification
through tandem MS (MS?) is usually aided by automated
data analysis. Among available data analysis tools, meth-

ods based on database searches are most frequently used.
Methods using database searches may be roughly classi-
fied into two categories, depending on whether or not
they provide E-values (or P-values) for candidate peptides.
Methods - using either correlation, posterior probabili-
ties, score, or Z-score - include, but are not limited to,
SEQUEST [1], MS-Tag [2], Scope [3], CIDentify [4], Popi-
tam [5], ProbID [6], and PepSearch [7]. Examples of data-
base search methods directly reporting P- or E-values
include, but are not limited to, Mascot [8], Sonar [9],
InsPecT [10], OMSSA [11], and X!Tandem [12]. A com-
prehensive survey may be found in [13] and a perform-
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ance evaluation of several of the methods mentioned can
be found in [14].

For a given quality score cutoff S, E-value is defined as the
expected number of hits, in a random database, with qual-
ity score being the same as or higher than the cutoff. (Sim-
ilarly, P-value refers to the probability of finding a
random hit with quality score being the same as or higher
than the cutoff.) A realistic E-value assignment thus pro-
vides the user with the number of false positives to antic-
ipate. Our goal in developing RAId_DbS (Robust Accurate
Identification of Peptides in Database Search) is to pro-
vide a database search method with realistic E-value
assignments. Among methods that report E-values, we
find the approach employed by [15] is closest to what we
have developed. Basically, both methods use the real score
histogram from scoring database peptides against a query
spectrum to form the basis of score statistics. The differ-
ence, however, lies in the fact RAId_DDbS has its score sta-
tistics founded on a theoretical distribution, while the
method of [15] assumes an exponential distribution
pdf(S) = exp(-AS) for large score S.

To illustrate an important aspect of peptide score statis-
tics, let us note that the noise in an MS?2 spectrum is spec-
trum-specific. That is, it is not yet possible to predict
spectral noise, which nonetheless influences the scoring
of candidate peptides for a given spectrum. One of our
goals in developing RAId_DbS is to take into account the
fact that noise is spectrum-specific. This goal is achieved
by using a scoring scheme whose statistics can be theoret-
ically characterized. Our scoring scheme is largely similar
to that proposed by [16]. However, in addition to the
introduction of weight factors to encourage mass accu-
racy, we have taken into account the effect of finite sam-
pling and finite skewness and have derived a new score
distribution function replacing the Gaussian distribution
assumed by [16].

Typical database search methods usually ask the user to
set a maximum number of allowed enzymatic miscleav-
ages. Not only do we lift this constraint, we even allow for
non-canonical N-terminal cleavages (NNTC), also
referred to as "incorrect N-terminal cleavages" by [17].
These are handled efficiently by first scoring exhaustively
all the four-letter C- and N-terminal tags to produce two
high-scoring tag lists, one for each terminal. A candidate
peptide with NNTC will be scored only when one of its
two terminal tags ranks high enough in its respective list.

Unless otherwise mentioned, we limit our discussions to
methods that directly report E-values (or P-values). This is
because converting scores, correlation coefficients, etc.
into E-values is non-trivial and is method-dependent. In
fact, even converting E-values reported by one method to
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E-values reported by other method is already non-trivial.
This important task of standardizing E-values, although
beyond the scope of the current paper, will be addressed
in a forthcoming publication [18].

To better highlight the main points of this paper, we have
relegated to the appendix details such as m/z peak filter-
ing, tag scoring, and a detailed description of implemen-
tation. Throughout the paper, we use the dalton (Da) as
the unit for molecular weight. In the following, we first
provide a brief description of the two different types of
data (centroid and profile) used, and the experimental
protocol used to obtain the profile spectra. We will then
describe RAId_DbS's scoring scheme, followed by a
detailed description of the mathematical underpinning of
the score statistics. The E-value test and the performance
test will then be described followed by a section discuss-
ing the importance of quantifying the goodness of score
distribution modeling in statistical inference. We con-
clude in the last section with some relevant remarks.

Experiment

Two data sets were used in this study. The centroid mode
data set developed by the Institute for Systems Biology
[19] was used only for performance comparison, while
the profile mode data set was used for both statistical
assessment and performance comparison. Because
RAId_DBbS is designed to take profile mode data and most
of the published data are collected in centroid mode, it
was necessary to generate profile data for this study. The
profile mode data we used was provided by Dr. R.-F. Shen,
the director of the mass spectrometry core facility at the
National Heart, Lung, and Blood Institute (NHLBI). The
acquisition of those profile mode spectra is described
below.

A mixture of 7 proteins (Sigma) containing equimolar lev-
els of a-lactalbumin (LALBA_BOVIN, P00711), lysozyme
(LYSC_CHICK, P00698), Slactoglobulin B
(LACB_BOVIN, P02754), hemoglobin (HBA_HUMAN
and HBB_HUMAN, P69905 and P68871), bovine serum
albumin  (ALBU_BOVIN, P02769), apotransferrin
(TRFE_HUMAN,  P02787), and  p-galactosidase
(BGAL_ECOLI, P00722) was used for all experiments.
Note that both the « chain and the £ chain of hemoglobin
are included. The protein mixture in 50 mM ammonium
bicarbonate buffer was reduced with 10 mM DTT at 60°C
for 1 hr, alkylated with 55 mM iodoacetamide at room
temperature in the dark for 30 min, and digested with
trypsin (Promega) at 50:1 mass ratio at 37 °C overnight, as
described in [20]. Three different levels of protein mixture
(50 fmols, 500 fmols, and 5 pmols of each protein) were
then injected into LC/MS/MS. Two different kinds of mass
spectrometers were utilized in this study, nanospray
(NSI)/LTQ FT (Thermo Finnigan) and matrix assisted
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laser desorption ionization (MALDI)/TOF/TOF (Applied
Biosystems). For NSI/LTQ FT, following [21], peptides
were first loaded onto a trap cartridge (Agilent) at a flow
rate of 2 xl/min. Trapped peptides were then eluted onto
a reversed-phase PicoFrit column (New Objective) using a
linear gradient of acetonitrile (0-60%) containing 0.1%
FA. The duration of the gradient was 20 min at a flow rate
of 0.25 ul/min, which was followed by 80% acetonitrile
washing for 5 minutes. The eluted peptides from the
PicoFrit column were nano-sprayed into an LTQ FT mass
spectrometer. The data-dependent acquisition mode was
enabled, and each survey MS scan was followed by five
MS/MS scans with the dynamic exclusion option on. The
spray voltage and ion transfer tube temperature were set at
1.8 kV and 160°C, respectively. The normalized collision
energy was set at 35%. Three different combinations of
mass analyzers (LTQ LTQ, LTQ FT, and FT FT) were used
to acquire protein mixtures at each level. For MALDI/TOF/
TOF, following [22], peptide separation was performed
on a Famos/Switchos/Ultimate chromatography system
(Dionex/LC Packings) equipped with a Probot (MALDI-
plate spotting device). Peptides were injected and cap-
tured onto a trap column (PepMap C18, 5 ym, 100 A, 300
um id. x 5 mm) at 10 gl/min. Peptide separation was
achieved on an analytical nano-column (PepMap C18, 3
um, 100 A, 75 pym i.d. x 15 cm) using a gradient of 5 to
60% solvent B in A over 90 min (solvent A: 100% water,
0.1% TFA; solvent B: 80% acetonitrile/20% water, 0.1%
TFA), 60 to 95% solvent B in A for 1 min, and then 95%
solvent B for 19 min at a flow rate of 0.16 xl/min. The
HPLC eluant was supplemented with 5 mg/ml a-cyano-4-
hydroxycinnamic acid (in 50/50 acetonitrile/water con-
taining 0.1% TFA) from a syringe pump at a flow rate of 1
4l/min, and spotted directly onto the ABI 4700 576-well
target plates using the Probot. MALDI/TOF/TOF data were
acquired in batch mode.

Scoring scheme

Like many other peptide analysis methods, RAId_DbS
uses primarily b- and y-series peaks to score a candidate
peptide or a tag. As will be seen, it is simple to include
more evidence peaks, and it is also straightforward to
switch to a different peak series for scoring. For example,
in place of b- and y-series, one may use ¢- and z-series for
scoring. This will be useful for analyzing spectra generated
by the electron transfer dissociation (ETD) method [23].

The score of a peptide  is given as
T(z)

ie{b(r)wy(r)}

w;(m;) In[Z(i)], (1)

where b(7)(y(7)) represents the set of theoretical b (y)
peaks of peptide &, T(n) is the total number of peaks when
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one unites b(n) and y(n), 7 (i) = max{l; 1} with I; being
the intensity found in the processed query spectrum (see
appendix) for the peak labeled i with m/z value m; in the

set {b(n) Uy (n)}. The weight factor w; is introduced to
emphasize peaks with less mass error. The default is w;(m;)
= exp(-|dam;|) with Am; = m; - t; being the difference
between the observed m/z value m; and the theoretical
value t;.

In the absence of weighting, our scoring scheme is the
same as that of [16]. The difference between our method
and that proposed by [16] lies in the theoretical distribu-
tion being derived as opposed to assumed. When w; = 1,

one will pick the strongest intensity in range i ([t;- 1, t; +
1]) as I;. With weighting, RAId_DbS first multiplies the log
intensity of each candidate peak in the mass range i by
w;(m;) and then pick the maximum w;(m;) In [ 7 (i)] from

each of the mass ranges {[t; —1,¢t; +1] }sz(f) The same

scoring method is used for sequence tags.

When the number T(x) in Eq. (1) is fixed and large, one
would anticipate the central limit theorem to hold and the
score distribution be a Gaussian. However, for a typical
search T(=n) is not fixed and not necessarily large enough
to guarantee that the skewness is negligible. In the next
section, we will derive a new probability distribution
function, whose end results is given in Eq. (17), to accom-
modate the finite sampling and skewness. It turns out that
even with the weights included to encourage better m/z
matching, the score statistics of Eq. (1) still follow the gen-
eral form given by Eq. (17).

When the spectrum contains little information, it
becomes inappropriate to use Eq. (17). The P-value of a
candidate peptide of L amino acids and with weighted
T(r)

ie{b(r)uy(7)}
by the following heuristic formula

peak count 2 w;(m;) = c is then estimated

ALY -2y o
P= (l-2) pa-pyt T, (@)

HJeL=2-))

where [c] represents the integer part of ¢ > 0, p = (c)/(L.g)
with (c) representing c averaged over all peptides entering
the final scoring, and L 4= Molecular weight/110Da. For-
mula (2), heuristic in nature, is invoked if (c) < 2 to pro-
vide a conservative E-value. There is apparently room for
improvement in scoring spectrum with little information.
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Theory

In this section, we will provide a heuristic derivation to
solve a generic problem that may occur in various scien-
tific fields. Specifically, we will address how the Gaussian
distribution assured by the central limit theorem can be
modified in the presence of skewness and finite sampling.
To deal with skewness and finite sampling size is by no
means a new front of attack. There exist many well written
literatures [24,25] touching upon this subject. However,
the deviations (due to finite size and/or skewness) from
the Gaussian distribution are usually dealt with through
computing the difference between the pre-Gaussian and
the Gaussian using Hermite polynomials [24,25]. Adding
only a few or finite number of those correction terms
sometimes roughens the tail of the distribution function.
We provide a different way to derive the distribution func-
tion, incorporating the finite size effect and the skewness,
that has a smooth tail and has the correct asymptotics in a
closed form.

The random variable x corresponds to the logarithm of m/
z peak intensity whose distribution g(x) is governed by the
experimental spectrum under consideration. Because of
the use of a logarithm, a rescaling of peak intensity can
only result in a constant shift of the mean of the variable
distribution, but not the shape of the distribution. With
this understanding in mind, we now proceed with the the-
ory in a rather general setting.

Given a distribution function g(x) with [g(x)dx = 1, the kth
moment is given by (x*) = [xg(x)dx. The first moment is the
mean, and the difference between the second moment
and first moment squared, (x2) - (x2, is the variance. The
central limit theorem may be stated as follows [24]: If one
samples independently n numbers, say x;, x,, ..., X, from
a given distribution function g(x) with mean x and vari-

distribution of the quantity
Y = \/ﬁ[(z;@:lxi)/n —X], a random number itself, will

ance o2, the

approach a Gaussian as n approaches infinity with zero
mean and variance o? provided that x and o? are finite.
When dealing with finite n, one may simply consider

VE(EZ;’CI‘) /n—x, and anticipate the distribution

function of y to be close to Gaussian with zero mean and

variance o?/n.

The situation we wish to study is when n is not too large
and when ((x - X )3) ) = [(x - X )3)g(x)dx is not small, i.e.,
when the skewness of the distribution function is nonneg-
ligible in the sense that the condition |((x - ¥ )3)| << [ nl(x

- X )2)) is not true due to finite n. Inclusion of this term
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and other higher order odd moments introduces skewness
to the distribution function of the y variable. The simplest
choice, however, is to keep only the third moment. As for
the higher order even moments, they contribute symmetri-
cally to the probability distribution function of y, thus sup-
pressing the skewness observed in the score distribution.
We therefore choose to ignore all moments fourth or
higher. To provide an analytical expression for the proba-
bility distribution function for y with nonnegligible skew-
ness, we first show how the central limit theorem can be
derived heuristically and how such a heuristic approach
can be readily employed to give correct asymptotics that
one needs. For simplicity, we will proceed under the
assumption that X = (x) = [ xg(x)dx = 0. Extending the
results obtained here to the case of nonzero but finite x
is straightforward. Note that by definition, we have g(x) >
0 V x. Also, we further assume that g(x) > 0 over only a
finite range of x, and define X = max{abs(x) |g(x) > 0}.

By definition, we may write down the probability distri-
bution function for y as

pdf(y) = [--[TT(sCx)dx) 80— Yx), ()
i=1 i=1

where 6 (y - ¢) is the Dirac delta function that has zero
value everywhere except when y = ¢ and has normalization
[ 8(y - ¢)dy = 1. Upon introducing the integral representa-
tion of the Dirac delta function

1 o ik(y—
S(y—-c) =§j_melk(y ik,

we may rewrite pdf(y) as

kx "
pdf(y) = Lﬂ'[_o;eikydk J‘g(x)e_l;dx
= LJM expq iky + nln| f k dk
2x I n
(4)
where
k —ikx
f[ZJ = jg(x)e " odx
(5)

M3

| g(x){

(_l—l')l(%)l xl]dx.
5 U
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Since we assume that g(x) > 0 only over a finite range of x,
all moments (x') have their absolute values |(x/}]| bounded
by X!. This implies that we may exchange the order of the
sum and the integral in Eq. (5) and arrive at

EY_ oG (kY
CFET()e

In the limit of large n, one may keep only the first few
terms in Eq. (6). In particular, if one only keeps up to the
I = 2 term, we have

2
f(kj=l—l(kj (2 +0(n™3), (7)
n 2\ n

and consequently

nln[f(kﬂz—ﬁ(x2>+0(n_2). (8)
n 2n

Therefore

pdf(f)

1 [~ exp iky_ﬁocz) +O(n™2) Ydx

2 J—ee 2n

I U N G
,/2n<x2>/neXp[ 2(x2)/n]’

)

which is the celebrated Gaussian distribution of the cen-
tral limit theorem.

In this section, we investigate the consequence of non-
negligible skewness. Specifically, in the expansion of Eq.
(5), what happens if |k3(x3)/n3| << |k2(x2)/n?| is not true
while all other higher moments become negligible. In this

. . k
case, we will have to keep one more term in f (— than
n

is done in Eq. (7) and arrive at

f(k]:1—i<x2>+£<x3>+0(n‘4). (10)
n 2n? on>

This then leads to

nln{f(k]}z—ﬁ( 2)+l <x3)+0(7l )-
n 2n

(11)
Using the definition of pdf(y) in Eq. (4), we now have
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pdf(y) ~—J‘ exp{zky——(x2)+l (x3)}d

(12)
Employing the saddle-point approximation, we seek the
complex valued k* such that

d

- 2 3 =
aklzky (x >+16n (k >L=k* 0.

A quadratic equation for k&* is obtained
2 3

n 2n2

The two solutions are given by

=0. (13)

where = (x3/(x2)2. In general, it is possible for £ (or (x) 3)
to be positive or negative. For the purpose of scoring MS?2
spectra, however, we are dealing with the case where f >
0. The treatment when 1 + 2y < 0 is exactly parallel to
what will be done next, and is therefore omitted. Conse-
quently, we have

k ——lx—zﬁ[l_dl-l-zﬂ ] (14)
Note that in the limit of negligible skewness (f— 0), one
should recover the Gaussian case which corresponds to

k* = 1L2 .
(x%)
Therefore, we must take the solution that has the right
limit as §#— 0. This naturally leads to the choice

k*zi—ﬁ—%{J1+2ﬂy—1]. (15)

()
One should then expand the exponent of the integrand in
Eq. (12) in terms of (k — k*). After some algebra, one may
rewrite the exponent of interest as
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%) %3
ik*y—k—(x2)+ik—<x3)
6n 2

<x2>(k k) +<x>[3k(k kY + (k- k)]

= s LT 2B 1+ 4y - T2y ]

_{x >,/1+zﬁ (k- k") +1< >(k kY.

(16)
One then obtains
pdf(y) =
nﬁfz
Cexp o) [1-JT+2By |[1+4By - 1+ 2By |
(17)

where the constant C actually has weak y-dependence
and can be formally written as

«/1+2/3 (k—k") +l<x >(k k) +0(k* | n)
C=- j dk
T

In principle, one may choose to retain the Gaussian part
and expand the rest of the exponents in powers of (k - k*).
We did not pursue this route, however, since such expan-
sion will require information about higher cumulants of
g(x) and experimentally g(x) may already contain some
uncertainties. Instead, we simply treat C as an integration
constant.

Note that in our asymptotic expansion, 1 + 2fy > 0 is
required, and therefore the derived expression loses its
validity when 1 + 2y — 0+. Nonetheless, the result is valid
for the y > 1 tail that one will be particularly interested in
while assigning statistical significance. As for the determi-
nation of C, one may plot both the theoretical pdf (from
Eq. (17) without C ) and the experimentally obtained pdf
on a linear-log plot. The amount of vertical displacement
should giveusIn C and can be used to obtain C . Finally,
one may notice that when #— 0 the exponent of Eq. (17)

n 2
- Y
2(x?)

approaches as expected from central limit theorem.
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In the case where the first moment X = [xg(x)dx # 0, one
may simply replace y by (y - x ) in Eq. (17).

Brief description of implementation

The operation of RAId_DbS consists of three stages. The
first step includes centroidizing m/z peaks followed by
peak filtering. After this crucial step, RAId_DbS exhaus-
tively scores all possible C- and N-tags of four amino acids.
This helps RAId_DbS in filtering peptide candidates with
NNTC before full scoring. More details for those parts can
be found in the appendix. In the third stage, RAId_DbS
uses primarily the b- and y-series peaks for scoring. For
each query spectrum, the collection of scores from all can-
didate peptides constitutes a score histogram, that is then
used to determine the constant C (and other parameters)
of theoretical distribution, see Eq. (17). Once all parame-
ters are determined, one then integrates the pdf from infi-
nitely large score back to a finite score S to obtain the
spectrum-specific P-value for score S. The goodness of the
theoretical distribution is then assessed. These informa-
tion are then used in conjunction with the effective data-
base size to provide the E-value.

Results

Eq. (17) is derived for fixed n (the number of peaks used
to score). Using a random database, if one were to score
only peptides with the same number of theoretical peaks,
one should be able to obtain the distribution with the
overall constant C as the only fitting parameter. This is
tested by using w; = 1 in Eq. (1). In Fig 1(A), we show the
score histogram from scoring a query spectrum against
peptides within the NCBI's nr database. Only scores from
peptides with 44 theoretical peaks are included. Once the
score histogram is normalized, we first find S, the highest
point of the histogram. The number of unit intensity
peaks in the processed/filtered spectrum is then deter-
mined by S through S, = (In I). All the cumulants are then
calculated using the processed/filtered spectrum and the
only free parameter left is C . By plotting on a linear-log
scale the normalized histogram and the expression in Eq.
(17) without including C, one may determine the overall
shift log( C ) needed through regression. The solid curve
in Fig 1(A) is theoretical distribution from Eq. (17) with
C fitted through a least squares procedure.

When scoring peptides against a query spectrum, peptides
within the given mass range will not have an identical
number of b (or y) peaks. Separating the candidate peaks
into different groups, each with a fixed number of b (or y)
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pdf(score)

—— Score Histogram -+
—— Theoretical Distribution
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score

Figure |
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pdf(score)
IS

—— Score Histogram

10 —— Theoretical Distribution
107 |
10'6 . 1 1 . 1 "
0 0.5 1 1:5 2
score

Comparison of score histogram versus theoretical distribution. Comparison of score histogram versus theoretical
distribution. A randomly picked query spectrum is used to score peptides in NCBI's nr database. For this query spectrum, nine
hundred unit intensity peaks were added to the processed spectrum to match S .. In panel (A), the red staircase represents the

histogram of scores computed using Eq. (1) with w;= |, while the blue line represents the theoretical distribution predicted

from peptides with n = 44 theoretical peaks. In panel (B), scores computed using Eq. (1) with w,(m;) = exp(-A m,) for peptides

with different numbers of theoretical peaks are collected, resulting in the overall score histogram represented by the red stair-
case. The solid curve plots our fitting of the histogram using Eq. (17) where the fitting variables are S, y= n/(6(x2) /) and C.

peaks is not practical. Further, we also wish to encourage
mass accuracy and thus score candidate peptides using Eq.
(1) with weights w; turned on. We still need characteriza-
ble statistics even with all of those additional complica-
tions. Fortunately, in this case all we need to do is
consider and y=n/(6(x2)2) as two additional variables
to be determined from fitting the score histogram. In Fig.
1(B), using a typical query spectrum, the red staircase is
the score histogram with scores from database peptides
with allowed molecular weights; each peptide was scored
using Eq. (1) with weights w;(m;) = exp(-| A m;|). The solid
curve is obtained from fitting the histogram with 5, y and
log C as variables using a least squares procedure. As one
may see, the statistics provided using Eq. (17) seems to
capture the nature of score distribution reasonably well.
The goodness of the fitting to the theoretical distribution
may be quantified by a Student's t-test. The importance of
such a test and its implication will be discussed in detail
in the next section.

To further test the statistical accuracy of RAId_DbS and a
few other search methods reporting E-values, we compare
the reported E-values versus cumulative false positives.
The results of the statistical accuracy test are summarized
in Fig. 2 and its caption. Two databases are used: the

NCBI's nr protein database and nr after cluster removal
(CR). CR is done as follows. Each of the eight protein
chains is used as a query to search against the NCBI's nr
protein database. Proteins hits in nr that align with any of
the eight query chains with E-values less than 10-15 are
removed from the database. This procedure removes
1,848 proteins out of nr which originally contains
1,486,014 proteins.

For a given search method and database, a list of candi-
date peptides is obtained for every spectrum analyzed. A
peptide in the reported list will be classified as a false pos-
itive if it is not a subsequence of any of the seven standard
proteins used to generate the spectra. For a given E-value
cutoff, we count cumulatively the total number of false
positive peptides assigned with E-values less than or equal
to that cutoff. Dividing by the total number of spectra, we
obtain the average cumulative count of false positives for
that E-value cutoff. There are in total 6,734 spectra
obtained through LTQ/LTQ, LTQ/FT, TOF/TOF, and FT/
FT. Therefore, the usable region of this E-value accuracy
test is limited to E>1/6734 = 1.5 x 104 Fig. 2 shows that
RAId_DDbS has better statistical accuracy than other meth-
ods. In particular, the results for nr after cluster removal
seem to reflect well the behavior expected from a random
protein database. That is, the resulting curve from
RAId_DDbS tracks well with the theoretical curve.

Page 7 of 20

(page number not for citation purposes)



Biology Direct 2007, 2:25

10 —_— ‘Theoreti‘cal Curvé
—— RAId_DbS CR
10' £ -—- RAId_DbS .
X! Tandem CR
3 0 X! Tandem
g 10" £ oMSSACR 3
= ——- OMSSA
810" L Mascot CR 2
o Mascot -
g —
5 i
\
—4 | Lol Ll Ll Lol Ll
10 10*  10° 10?107 10° 10’ 10
E-value
Figure 2

Average cumulative number of false positives versus
E-values. Average cumulative number of false positives ver-
sus E-values. Theoretically speaking, average number of false
positives with E-values less than or equal to a cutoff E_should
be E, provided that the number of trials is large enough. The
accuracy of E-values assigned by RAId_DbS is tested along
with three other methods, X! Tandem(v1.0), Mascot(v2.1)
and OMSSA(v2.0). For X! Tandem, Mascot and OMSSA
searches, default parameters of each program are used
except the maximum number of miscleavages, which is set to
3 uniformly for this test. The diagonal solid lines in each panel
are the theoretical lines. There are two curves associated
with each method. The dashed line corresponds to the
results using regular nr. The solid line corresponds to the
results using nr with cluster removal, which we anticipate to
be a better representative of a random database. See text for
additional details.
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Another interesting features of RAId_DDbS is that occasion-
ally more than one true positive peptide can be found
from the candidate list of a single spectrum without
resorting to more elaborate methods such as those of [26].
We first provide an example of this phenomenon and the
output format of RAId_DbS. Table 1 displays the output
of RAId_DDbS using a query spectrum produced by LTQ/
LTQ. The output of this spectrum is closely examined
because it has multiple low E-value peptide hits. Note that
the amino acid preceding a peptide's N-terminal is
reported along with that peptide. Thus, the first letter in a
reported sequence is not to be considered as part of the
candidate peptide. The first two peptides reported, there-
fore, are identical. And the third to fifth peptides reported
are also identical if one does not distinguish Leucine from
Isoleucine. The significant peptide hits, MYLGYEYVTAIR
and LGEYGFQNAILVR, have E-values around 4.4 x 10-
and 1.5 x 10 respectively. On the other hand, the third
best unique peptide TTLALQFLMEGVR has E-value
around 1.5, indicating that it is probably a false hit. When
the N-terminal of a peptide is actually the N-terminal of a
protein, RAId_DbS insert an additional symbol "[" in
front of the peptide. An example of such is seen in the last
peptide shown in Table 1.

A closer examination shows that both reported significant
peptides, MYLGYEYVTAIR and LGEYGFQNAILVR, actu-
ally are partial sequences of two of the seven proteins in
the mixture. Therefore, it is likely that both peptides are
true positives co-eluted during the chromatography. On the
other hand, if two peptides happen to share a large
number of theoretical peaks, then it becomes possible
that evidence peaks supporting one peptide will also sup-
port the other peptide. In this case, the two peptides may
be reported together by accident instead of due to co-elu-
tion. To further investigate this possibility, we list in Table
2 the theoretical peaks of both peptides and look for the-
oretical peaks with similar m/z. It turns out that there is

Table I: Example output of RAld_DbS containing multiple significant peptide hits. The contents in the "DEFINITION" and "GI-LIST"
columns have been shortened to fit the page. The first two hits correspond to the same peptide MYLGYEYVTAIR, while the third to
the fifth hits correspond to the same peptide LGEYGFQNALLVR if we follow the mass spectrometry convention not to distinguish

Leucine from Isoleucine. After that, the next peptide has an E-value 1.5, indicating a false hit. One thing worth noticing is that there is
a clean separation between significant hits and the rest of peptide hits

E-VALUE PEPTIDE MASS DEFINITION GI-LIST

4.423375e-05 KMYLGYEYVTAIR 1478.720 ..|ref|[NP 001054.1| transferrin [Homo sapiens] [4557871,94717618,15021381,31415705.,......
4.423375e-05 RMYLGYEYVTAIR 1478.720 ..|emb|CAH91543.1| hypothetical protein [Pongo  [55729628]

1.488740e-04 KLGEYGFQNAILVR  1479.780 ..|ref|[NP 033784.1| albumin | [Mus musculus] [33859506,55391508,191765,19353306, .......
1.488740e-04 KLGEYGFQNALLVR 1479.780 ..|emb|CAA59279.1| albumin precursor [Felis [886485,57977283,633938,309621 1 1, ......
1.488740e-04 KLGEYGFQNALIVR  1479.780 ..|gb|AAT98610.1| albumin [Sus scrofa] [51235682,52353352,15808978,76445989,......
1.526504e+00 KTTLALQFLMEGVR  1478.800 ..|ref|[YP 466151.1| putative circadian [86159366]

3.710973e+00 1478.820

[MFKANMKQLIVR

..|dbj|BAD64473.1] cell wall lytic activ

[56909946]
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no significant overlap between the b U y peaks from the
two peptides. This further supports the possibility that
both peptides were co-eluted and good statistical assess-
ment may help us to retain both true positives. Upon ana-
lyzing the 6,734 spectra using RAId_DbS, there are 21
spectra each having two true positives with their E-values
smaller than 10-2. There are 93 spectra each having two
true positives with their E-values smaller than 1.

Finally, we test the effectiveness of RAId_DbS in database
retrieval along with several other search methods using
Receiver Operating Characteristic (ROC) analysis. The
results from spectra with profile (centrodized) format are
displayed in panel A (B) of Fig. 3. Although the results in
panel (A) seem to suggest that RAId_DbS perform better
than X! Tandem and significantly better than other meth-
ods, this may be largely due to the fact that RAId_DBbS is
designed to take the profile data while other methods may
not. This is supported by our other assessment using cen-
troidized data published by the Institute for Systems Biol-
ogy [19]. Data sets A1-A4 of [19] (consisting of 6, 592
spectra) were used for this test. As we may see in panel (B)
of Fig. 3, the overall performance gain of RAId_DbS rela-
tive to other methods decreases. Nevertheless, this result
indicates that by recording the spectrum in profile format,
one may have a better chance of uncovering the true pep-
tide(s). Although this may be because the profile data
contains more information than centroid data, it may also
be caused by spectral quality and sample concentration
variations.

Accuracy of score pdf modeling

To address the accuracy of score pdf modeling, we define
two spectrum-specific pdfs, data-derived pdf (Dpdf) and
model pdf (Mpdf). For a given query spectrum, the former,
Dpdf, is the normalized score histogram including contri-
butions from both the true positive peptides and the false
positive peptides; the latter, Mpdf, represents the pdf of
only the false positives in the limit of very large number of
qualified peptides. For example, we have derived the
model Mpdf (eq. (17)) in this paper for the scoring func-
tion we used. However, in most cases, the forms of the

http://www.biology-direct.com/content/2/1/25

Mpdf are assumed because analytical results for the Mpdf
are difficult to obtain in general.

Ideally, the Mpdf should resemble very much the re-nor-
malized score histogram after removing the true positives, at
least in the region where the fluctuations are negligible
compared to the corresponding Mpdf value. At the very
high scoring tail, one typically does not have enough data
to suppress the fluctuations and there may exist true pos-
itives that should not be counted towards Mpdf. Thus, one
cannot use the tail region of the Dpdf to assign the statisti-
cal significance for peptides, an Mpdf extrapolated from
high but not very high scoring region is needed for this
purpose. This underscores the importance of the accuracy
of the Mpdf as it heavily influences the statistical signifi-
cance assignment. Note that one may wish to have only
the large score part modeled faithfully as it is the region of
primary interest. However, good agreement between the
Dpdf and the Mpdf over a wider range of score does
increase the confidence in the validity of the Mpdf. Fur-
thermore, if one were to include a large range of score in
Dpdf when fitting to Mpdf, the fluctuations from high
scoring tail of Dpdf will not be sufficient to distort the
overall Mpdf fit and one may just fit over the entire
medium to large score region to obtain the Mpdf.

Because of its importance, for each search engine the accu-
racy of the Mpdf employed should be reported along with
the E- or P-values for peptide hits when reporting the
search results from a query spectrum. For a given query
spectrum, if the Mpdf agrees well with the Dpdf, the
reported statistics can be taken with confidence. On the
other hand, if the agreement between the Mpdf and the
Dpdf is poor, one may avoid taking the reported statistics
literally. A quantification of fitting quality between the
Dpdf and the Mpdf may therefore provide the users with
valuable information in data interpretation. In this sec-
tion, we will attempt to quantify the accuracy of the Mpdf
in terms of how well it reflects the Dpdf.

Although there exist standard methods for characterizing
the goodness/badness of fitting distribution function, not
all of them have similar sensitivity or intuitive appeal. For

Table 2: Theoretical peaks of two peptides MYLGYEYVTAIR and LGEYGFQNALLVR. Both peptides are found to be significant by
RAId_DbS for a given query spectrum and were found to be partial sequences of proteins originally put in for the experiment. The
right column lists the b U y peaks of both peptides in ascending m/z order. The two sets of theoretical peaks only have two pairs that
are within three daltons of each other. They are (175.12, 175.12) and (1019.45, 1017.58). This negligible overlap between theoretical
peaks reinforces the possibility of co-elution of the two peptides during the experiment

Peptide/Mass b Uy peaks (in ascending order)

MYLGYEYVTAIR 1478.72

132.04, 175.12, 288.2, 295.11, 359.24, 408.2, 460.29, 465.22, 559.36, 628.28, 722.42, 757.32, 851.46, 920.39, 1014.53,

1019.45, 1071.55, 1120.5, 1184.63, 1304.62, 1347.69

LGEYGFQNALLVR 1479.79

114.08, 171.11, 175.12, 274.19, 300.16, 387.27, 463.22, 500.36, 520.24, 571.39, 667.31, 685.44, 795.37, 813.38, 90

9.41, 960.56, 980.45, 1017.58, 1093.53, 1180.65, 1206.62, 1305.68, 1309.69, 1366.7|

Page 9 of 20

(page number not for citation purposes)



Biology Direct 2007, 2:25 http://www.biology-direct.com/content/2/1/25

2000 T " 400 T
—— RAId_DbS —— RAId_DbS
X! Tandem (A) —— X! Tandem
— Mascot —— Mascot
1500 — omssa 300 ' SEQUEST

o SEQUEST @ OMSSA

8 1000 g 200

o L o

E

= =

500 100
%0 10" 107 10° T e~
" 10 10 10
Falee Posifives False Positives
1.0 T T T T 1.0 T T T T T r
— RAId_DbS (0.97) —— RAId_DbS (0.95) /
—— OMSSA  (0.94) (C) —— Mascot (0.93) (D) 7
0.8 | — X! Tandem (0.92) ya 0.8 | X! Tandem (0.90) .
—— Mascot (0.90) —— SEQUEST (0.88)
—— SEQUEST (0.84 / — OMSSA (0.87) d

206 Vi . 206 | i

Z / '-; /'/

E! /" g /"/

204} // - @ 04 yd '
0.2 2 02 o i
00 = = = = =) = 0 0'90‘5 00 100 100 107 100 10°

10 10 10 10 10 10 10 1 - Specificity
1 - Specificity
Figure 3

Performance analysis of methods tested. Performance analysis of RAId_DbS, X! Tandem(v1.0), Mascot(v2.1), OMSSA(v2.0), and
SEQUEST(v3.2). Panels (A) and (C) display the results from 6, 734 spectra in profile format, while panels (B) and (D) display the results
from 6,592 centroidized spectra obtained from [19]. In panels (A) and (B), typical ROC curves are shown with the number of false posi-
tives (FP) plotted along the abscissa, and the number of true positives (TP) plotted along the ordinate. Thus, a curve that is more to the
upper-left corner implies better performance. To unveil the information in the region of small number of false positives, usually the region
of most interest, we have plotted the abscissa in log-scale. In panels (C) and (D), a different types of ROC curves are shown. Defining the
cumulative number of true negatives by TN and the cumulative number of false negative by FN, the ROC cuves in panels (C) and (D) plot
"l — specificity" (FP/(FP + TN)) along the abscissa (also in log-scale), and the sensitivity (TP/(TP + FN)) along the ordinate. For each method
tested, the area under curve (AUC) of this type of ROC curves, when both axes are plotted in linear scale, is also shown inside parenthe-
ses in the figure legend. All the AUC have an uncertainty about + 0.005. Note that ROC curves of this type do not reflect the total
number of correct hits and methods that report very few negatives may result in a lower specificity and superficially seems inferior. For
example, X! Tandem may be victimized when evaluated using this type of ROC curves. Also note that in panel (D) the trend of AUC for
Mascot, X! Tandem, and SEQUEST is consistent with previously reported results [14]. For X! Tandem, Mascot, OMSSA, and SEQUEST,
the default parameters for each method were used in every search. However, the maximum number of miscleavages is set to 3 uniformly.
It is observed that analysis using profile data giving rise to better ROC curves than those of centoidized data. Although this may be due to
the fact that the profile data contain more information, it may also be caused by spectral quality and sample concentration variations.

example, as documented in the literature [27], 42 tests
often results in very small goodness numbers even for
good models and one often needs to set the rejection
threshold very low to avoid rejecting decent models. The
Dpdf, derived from the score histogram, is discrete in
nature and may be expressed as a list of pairs {S,
Dpdf(S;)}; To emphasize the region of medium score to

large score, it is better to work with the log-scale. That is,
we will transform the list into {S; In [Dpdf(S;)]}; . We
introduce a short hand notation here: LDpdf(S) repre-
sents In [Dpdf(S)] and similarly LMpdf(S) represents In
[Mpdf(S)]
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The Mpdf, when taking values at {S;} will also form a list
of pairs {S; LMpdf(S;)},. If the Mpdf reproduces exactly
Dpdf at those points, the pairs I' = {(LDpdf(S;),
LMpd£(S;)) }; when plotted on a plane will fall on the
straight line x = y exactly. It is thus natural to ask how well
the points in I" fall on the x = y line and how strongly are
the two sets {LDpdf(S;)}; and {LMpdf(S;)}; correlated.
Fortunately, there exist two Student's t-tests that may serve
these purposes [28]. We must emphasize that although
these two t-tests are useful, there is definitely room for
improvement in terms of quantification of the accuracy of
Mpdf.

The first t-test concerns how well the data points in I" fall
on the x = y line. In this case, we have

b_1 | (N-2)Y,[LDpdf(s;)~LDpdf |
2 \['3 [LMpdf(S;) - (a+b LDpdf(5))|*
(18)

with LDpdf representing the average of the set

tlz

{LDpdf(S;)}, a and b being respectively the intercept and
the slope obtained from least square linear regression of

I', N being the number paired points included in I". The
goodness of the assumption -points fall on x = y line- may
be expressed as 1 - A(t;|N - 2) with

(19)
where B(, V) is the Beta function. This measure of good-
ness is intuitive and will allow the user to set a cutoff to
prevent from using corrupted fitting results. We suggest to
accept the Mpdf only if the goodness number is larger
than 0.1. This should be contrasted with popular 42 test
where setting a goodness threshold at 10-3 or smaller is
common [27].

Once we accept the Mpdf, we also need to know to what
degree does our fitted Mpdf represent the true pdf com-
prised of a large number of false peptides. To quantify the
accuracy of the Mpdf, we first calculate the correlation
strength between {LDpdf(S;)}; and {LMpdf(S;)};. In gen-
eral, the correlation r between those two sets may be writ-
ten as

http://www.biology-direct.com/content/2/1/25

[ LDpdf(s;) - LDpdf |[ LMpdf(s;) ~ LMpdf |

[, (opa(s,) - iBpan)? | [ 3 (Lmpas(s,) - Ivapary? | /
(20)

Tr=

and the corresponding t variable may be expressed as

\%

(21)

tz =T
1-12
with vbeing the number of points in T less the number of
fitting parameters of the Mpdf. The probability to arrive at
correlation r, assuming that {Dpdf(S;)}; and {Mpdf(S;)};
are drawn from random, is given by

Py =1-A(t,]v). (22)
In a way, P,, may also be viewed as the probability that the
Mpdf to be wrong. This observation has a nontrivial con-
sequence in assigning statistical significance to peptide
hits. It sets a limit on the lowest P-value one can get for a
peptide hit, which we elaborate below.

If we have full confidence in a Mpdf, for a given peptide
with score S, one may infer from the Mpdf a P-value (and
consequently an E-value) for this hit. However, if our con-
fidence in the Mpdf is not 100 percent, the statistics
reported by the Mpdf may need adjustment. We propose
below a simple way to do so. Let the P-value reported by
the Mpdf for a peptide hit be P;, one may then view 1 - P,
as the probability of correct identification. We may also
view 1 - P,, as the probability for the Mpdf to be correct.
Thus, the probability of correct identification confidently
supported by the Mpdf becomes (1 - P,)(1 - P,,). And the
final P -value becomes

Pyy=1-(1-P)(1-Py) =P+ Py-PPy.  (23)
Apparently, when P,, approaches zero, that is, we have full
confidence in the Mpdf, the final P-value reduces to P}, As
an example of how this formulation may prevent exagger-
ated statistics, let us consider the case where P, = 10-50and
P,, = 10-8. Without eq. (23), one will infer a hit of very
small P-value (10-59). With eq. (23), we find that the final
P-value, 1050 + 108 - 1058 = 108 + 10-39(1 - 108), to be
greater than 10-8. That is, one will not get a smaller P-value
than P,,.

However, one has to pay attention to that 1 - Py, repre-
sents the probability of correct identification supported by
confident Mpdf. It is definitely possible that a method may
identify the true peptide as the top hit but the Mpdf used
may be very off. However, if this happens frequently for a
given search engine, then it becomes hard to pool its
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search results due to the lack of a common statistical
standard. That is, one can't set a priori an E-value cutoff
that should represent the expected number of false posi-
tives found per spectrum. If one were to take just the top
hit from each spectrum, depending on the spectral qual-
ity, one may ended up having many more true/false posi-
tives in one experiment than the others.

To provide an example of computing the goodness
number for Mpdf and P,,, we randomly pick a spectrum
with the corresponding data given in Table 3. In each of
the N = 28 numerical rows of Table 3, the first entry is the
score, the second entry records the LDpdf and the third
entry corresponds to the LMpdf. Using the LDpdf as the x-
coordinate and the Mpdf as the y-coordinate, we plot the
LDpdf versus the LMpdf on the x-y plane. A least square
linear regression give rise to an intercept value a = -
0.00421 and a slope b = 0.9992. With the constants a and
b identified, one may then use (18) to compute ¢, and find
the goodness number, 1 - A(t;|N - 2), through (19). We
find that t; = 0.0421 and the goodness number is 0.96674.
To test the strength of correlation between the second col-
umn and the third column of Table 3, we use (20) to com-
pute the r value and through (21) we find the t, value to
be 0.99567. Given r = 0.99567 and v = 25, through (22)
we find the P, value to be 2.58 x 10-27.

A global study of the Mpdf accuracy using 10, 000 spectra
(profile mode) is summarized in Fig. 4. Panel (A) shows
the histogram of the goodness number, panel (B) shows a
scattered plot of v versus r obtained from our spectra, and
panel (C) displays the histogram of log,,(P,,). Also dis-
played in panel (B) are curves with fixed P, values. As we
may see from these plots, the fitting quality of the LDpdf
to our theoretical distribution is generally very good. The
important message, however, is that each search method
should provide the goodness of fitting so that the users
can be informed and can decide whether to take the
reported statistics seriously or not. We have suggested a
goodness number cutoff 0.1 for accepting an Mpdf. The
user, however, may choose a slightly larger number as the
cutoff to reject Mpdfs that (s)he has less confidence in. As
for P,,, it is not necessary to employ a cutoff there. This is
because a poor(large) P,, will automatically make any hits
found insignificant through eq. (23).

Concluding summary and outlook

We have designed a peptide identification method
(RAId_DbS) using database searches. By taking into
account the skewness in the peak intensity distribution of
processed data, we have provided a theoretical derivation
for the tail of the score distribution in the context of
RAId_DbS's scoring scheme. The theoretical distribution
agrees well with score statistics collected from each exper-
imental spectrum. The E-value test performed indicates

http://www.biology-direct.com/content/2/1/25

Table 3: An example for computing fitting confidence. A
randomly chosen spectrum is used to demonstrate the
computation of the fitting confidence in detail. In each of the N =
28 numerical rows, the first entry is the score, the second entry
records the LDpdf and the third entry corresponds to the LMpdf.
Using the LDpdf as the x-coordinate and the Mpdf as the y-
coordinate, we perform least square linear regression and find:
an intercept value a = -0.00421 and a slope b = 0.9992. Eq. (18) is
then used to compute t, (t, = 0.0421) and the goodness number,
I - A(t,||N -2), is found to be 0.96674 through (19). To test the
strength of correlation between the second column and the third
column, we use (20) to compute r and through (21) we find the t,
value to be 0.99567. Given r = 0.99567 and = 25, through (22) we
find the Py, value to be 2.58 x 10-27-

S In [Dpdf(S)] In [Mpdf(S)]
0.028466 1 0.479518 0.438266
0.0691319 0.431753 0.407608
0.109798 0.369235 0.351511
0.150463 0.2708 0.270076
0.191129 0.163419 0.163403
0.231795 0.014358 0.031592
0.272461 -0.156812 -0.125259
0.313127 -0.340242 -0.307054
0.353792 -0.551264 -0.513698
0.394458 -0.79275 -0.745095
0.435124 -1.04746 -1.00115
0.47579 -1.34063 -1.28178
0.516456 -1.63587 -1.58688
0.557121 -1.96251 -1.91636
0.597787 -2.2322 -2.27015
0.638453 -2.72001 -2.64814
0.679119 -3.00809 -3.05025
0.719785 -3.52319 -3.4764
0.76045 -3.94211 -3.92649
0.801116 -4.31754 -4.40045
0.841782 -4.72005 -4.89819
0.882448 -5.27305 -5.41962
0.923114 -5.73387 -5.96467
0.963779 -7.04955 -6.53326
1.00445 -6.55707 -7.1253
1.04511 -7.368 -7.74071
1.08578 -9.44744 -8.37942
1.12644 -8.75429 -9.04134

that RAId_DbS indeed provides realistic statistics. Quanti-
tative tests on the agreement of our theoretical distribu-
tion and data-derived histogram have shown that
RAId_DDbS assigns accurate spectrum-specific statistical sig-
nificance to peptide hits. The P-value obtained through
(23) prevents exaggerated statistics in peptide identifica-
tion, and thus may reduce protein misidentification for
identification methods founded on peptide identifica-
tion.

It seems that using RAId_DbS allows for theoretically
characterized peptide score statistics without losing sensi-
tivity, see Fig. 3. In addition, the use of profile mode in
data acquisition seems to be valuable because of the
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higher probability of correct peptide identification. We
have also found evidence that during an experiment it is
possible for two charged peptides to be co-eluted and frag-
mented together, and their m/z peaks are logged in a
mixed spectrum. In this context, RAId_DbS seems to be
able to identify both peptides. This phenomenon actually
discourages the use of heuristics that boost the separation
between the best and the second best candidate peptides.
This is because any method attempting such heuristics
may be deprived of the possibility to capture two true pep-
tides in a single spectrum.

Finally, we would like to say that there is room for
improvement in RAId_DbS. For example, in the future, we
would like to improve on the scoring scheme to enhance
the sensitivity of RAId_DbS while keeping the characteriz-
able statistics. In addition to improving the detecting
power of RAId_DbS, we will also look at the possibility of
combining RAId_DbS with other search methods. How-
ever, to be able to appropriately combine results from dif-
ferent methods, it is essential to build a common ground
for score statistics. This important task will be performed
and will be described in a separate publication.

Appendix - RAld_DbS implementation detail

The operation of RAId_DbS consists of three stages. The
first step includes centroidizing m/z peaks followed by
peak filtering. After this crucial step, RAId_DDbS exhaus-
tively scores all possible C- and N-tags of four amino acids.
This helps RAId_DbS in filtering peptide candidates with
NNTC before full scoring. In the third stage, as in many
other MS? analysis methods (be they the de novo type or
database search type), RAId_DDbS uses primarily the b- and
y-series peaks for scoring. For each query spectrum, the
collection of scores from all candidate peptides consti-

tutes a score histogram, that is then used to determine the
constant C of theoretical distribution, see Eq. (17). Once
C is determined, one then integrates the pdf from infi-
nitely large score back to a finite score S to obtain the spec-
trum-specific P-value for score S. This information is then
used in conjunction with the effective database size to
provide the E-value. In the following subsections, we
describe each individual component, the sum of which
constitutes RAId_DDbS, followed by some details of imple-
mentation.

Peak processing

Peak processing can be roughly divided into three steps. In
first step, precursor ion peaks and their associated one-dal-
ton-cluster ions are removed from spectrum data. One-dal-
ton-cluster ions associated with a peptide fragment of
mass m' are members of a list of ions having masses given
by {m'+ Hyd, m' + 2Hyd, ...}, with Hyd being the mass of
hydrogen (1.007825035 Da). For a parent peptide with
mass m and charge g, the precursor and cluster ion peaks
to be removed from the spectrum are those having their
mass/charge peaks within 0.05 Da of [m + (¢;- 1 + k) x
Hyd]/q;forevery q;=1, .., q,and k=0, 1, ..., g;- 1.

Peak centroidizing is the second step of RAId_DbS's peak
processing. In the centroidizing procedure, RAId_DbS
first identifies what we term &-clusters, then distills from
each cluster either a single or multiple representative
peaks depending on the noise level that we shall define
shortly. An &-cluster consists of a list of peaks, ordered
according to their m/z values, for which any two neigh-
boring elements have m/z difference no more than ¢ Da.
The ¢value usually depends on the instrument type used.
The current default for value is 0.2 Da for low resolution
spectra such as those produced from Linear Quadrupole
Ion Trap (LTQ)/LQT experiment and is 0.05 Da for high
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resolution spectra such as those produced from Time of
Flight (TOF)/TOF or Fourier Transform (FT)/FT. The noise
level is currently defined heuristically. For each &-cluster of
p,peaks, RAId_DbS uses the least intense 2p,/3 peaks to
compute the average intensity as well as the standard devi-
ations. The noise level is then defined as the average inten-
sity plus three standard deviations. A separate subcluster
(a hill) is a subsequence of peaks whose intensities are
greater than the noise level. Each subcluster is trans-
formed to a separate peak: with m/z at the center of mass
of the subcluster, and with intensity being the intensity of
the strongest peak in the subcluster. The m/z peaks inside
an ecluster with intensities less than the noise level are
disregarded. When there are no hills present in an &clus-
ter, one treat that ecluster as a single hill. This step is
rather heuristic: we are still investigating possible avenues
to improve this.

The third step is peak filtering. The idea is to keep only a
finite number of informative peaks within a specified
mass range, say + x Da, regardless of where the center is.
To be specific, RAId_DbS orders all the peaks produced
from the centroidizing steps in two ways: in descending
order of intensities and in ascending order of m/z. Going
first to the strongest peak, RAId_DDbS first makes sure that
within 2& Da, only one peak is retained. After that,
depending on the charge state of the parent ion,
RAId_DDbS uses either x = 27 for single and doubly charged
precursor ions or x = 27/(q - 1) for precursor ion with
charge state ¢ > 3. RAId_DDbS further normalize the peak
intensity by a user-selected cutoff I.. Each peak intensity
will then be multiplied by 1/I. and m/z peaks with nor-
malized intensities less than one are removed. The current
defaultis I = 1. Thatis, no rescaling of the peak intensities.

De novo tag scoring

Besides allowing for any number of miscleavages, we also
designed RAId_DbS to accommodate NNTC [17]. Allow-
ing NNTC, however, introduces a huge excess number of
peptides to be scored when searching in a database. In
order to filter out peptides with higher chance to be the
correct peptide, we implement a full de novo tag scoring to
rank all possible de novo tags and only allow peptides with
a high-scoring tag to enter scoring routine provided that
the peptide considered has NNTC.

Using sequence tags to aid peptide identification is not a
new concept. There exist, for example, several known
methods [10,29] that use sequence tags to mine candidate
peptides in a database. Our use of sequence tags is distin-
guished from other methods by the following points.
First, our sequence tag is used for the purpose of filtering
out potential peptide candidates with NNTC [17], not
used as a criterion for pooling candidate peptides. Second,
for each spectrum we score all possible four amino acid

http://www.biology-direct.com/content/2/1/25

tags (204 for each terminal) and we keep many more tags,
of order several thousands for each terminal, when com-
pared with other tag-based method. Another reason for us
to score tags is to provide a different foundation for de
novo peptide sequencing using low resolution data. This
direction, however, will be addressed in a separate publi-
cation.

All possible four amino acid tags are generated on the fly
and scored (see scoring section of the paper for details)
using m/z peaks after peak processing. RAId_DbS then
ranks all the tags according to their score. However, it
should be noted that in some low resolution experiments,
the parent ion mass of a peptide reported by a mass ana-
lyzer can be as far off as two Da. To tolerate such a mass
uncertainty, RAId_DbS actually scores each tag seven
times, assuming the parent ion mass to be respectively -m
-3, mg-2,mg-1, mg, mg, + 1, mg + 2, my+ 3- with mpbeing
the parent ion mass provided by the mass analyzer from
experiment. High-scoring tags, from each of the seven par-
ent ion mass used, are pooled together to form two sepa-
rate tag lists: one for each terminal. Note that it is possible
that the highest scoring N-terminal tag is obtained by
assuming parent ion mass to be mj + 2 while the second
best N-terminal tag is obtained by assuming parent ion
mass to be my -3, etc. With care, RAId_DbS can achieve
this task in a few seconds.

Statistical assessment and implementation

For a given MS2? spectrum, RAId_DDbS first scores all the
possible de novo tags as described earlier. This step pro-
vides two high-scoring tag lists, one for C-terminal and
one for N-terminal. After the tag scoring is done,
RAId_DDbS scans either a user-chosen or the default pro-
tein database for peptides with correct C-terminal cleav-
age and with matching molecular weights within 3 Da.
When a qualified peptide appears multiple times while
scanning through the database, RAId_DbS will combine
them and only score the peptide once. A peptide with cor-
rect N-terminal cleavage will be automatically scored
regardless of how many miscleavages are present. On the
other hand, peptides with NNTC will be scored only if
they contain a high-scoring tag, either from C-terminal or
from N-terminal.

The statistics of the peptide scores are collected while scor-
ing each peptide. Ideally, one would like to construct a
score histogram for all unique database peptides whose
molecular weights fall in the correct mass range, deter-
mined by the experimental value and user-defined mass
error tolerance. In reality, it could be too time-consuming
if we were to do this for all peptides including those with
NNTC. Consequently, for peptides with NNTC we only
include their scores in the histogram if they have at least
one good tag score. While scoring candidate peptides for
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a query spectrum, RAId_DDbS advances counters U, (k) and
U, (k) in the fashion that will be explained below. When a
unique peptide with correct N-terminal cleavage and with
k miscleavages is scored, we advance the counter U, (k) by
one. Similarly, we advance the counter U, (k) by one when
a unique peptide with k miscleavages and with NNTC is
scored. The counter U, (k), however, does not include
those with poor tag scores. Since to compute the number
of miscleavages for all peptides with NNTC would be too
time consuming, we keep an additional global counter G,
for the total number of database peptides (with either
good or bad tag scores) with NNTC and whose molecular
weights fall within the right range. To better estimate the
total number of unique peptides with k miscleavages and
with NNTC, we also introduce temporary counter L, (k).
Basically, every unique peptide contribute one count to
U, (k) will contribute to L, (k) the number of occurrence of
that peptide in the database. That is, L, (k) contains all the
redundancy of U, (k). Given a molecular weight range, the
total number of peptides with NNTC and with k miscleav-
ages is then estimated by

u,(k) (24)

_u®[ _ne | .
Ln(k)[Zk,Ln(k’)]X "

However, including only peptides with NNTC and good
tag score tends to induce more occurrences of high-scor-
ing hits with NNTC than would normally have occurred if
one were to score all the peptides with NNTC. This may
assign high-scoring peptides with NNTC P-values that are
too small. Consequently, it is possible that peptides with
NNTC may be assigned E-values that are too small. Using

~ v | Un(k)
| 2t

has the advantage of over estimating the effective database
size for peptides with NNTC to compensate for the exces-
sively small P-values. This may provide more accurate E-
values for peptides with NNTC and good tag score. We
leave the use of Eq. (25) as an option while keeping Eq.
(24) as the default of RAId_DbS.

(25)

When fitting the score histogram by Eq. (17), one needs
to replace the variable y by [S - (In T )]. However, the quan-
tity (In 7 ) may not match (In I) in our processed data. Nev-
ertheless, the exponent in Eq. (17) is a decreasing function

for y > 0 as is evident from
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%{[1_m][1+4ﬁy—m]}
=6B[1-1+2Py | <0

provided that f> 0 and y > 0, the situation we encounter
here. Consequently, Eq. (17) dictates that the maximum

of the histogram occurs at y = 0, corresponding to S, = (In

I > Therefore, RAId_DbS will leave the number of peaks
of intensity one in the processed data as a parameter deter-
mined by the S, = (In I. Note that in addition to its
dependence on the spectrum considered, S, may also
depend on the database used. Thus the statistics provided
by Eq. (17) will be spectrum-specific and may also be
database-specific. Once the number of intensity one peaks
is fixed, one may continue to compute the second and
third cumulants of the In I distribution from the proc-
essed spectrum. The constants £ and (x?) in Eq. (17) are
thus fixed. Note that this procedure is applied regardless
of whether the peak accuracy weight w; is turned on or off.
However, when the number of theoretical peaks are vari-
able, such as in the case of limiting only the molecular
weights to be in a certain range, RAId_DDbS treats both g
and y= n/(6(x2) ) as two additional variables to be deter-
mined from fitting the score histogram.

RAId_DbS integrates the theoretical pdf, obtained from
fitting score histogram with Eq. (17), from the high-scor-
ing end down in order to obtain the P-value P(S) for score
S. The E-value for a peptide with score S is then obtained
by multiplying the P(S) by the effective database size.
RAId_DDbS uses the following method to estimate effective
database size. Define

k

N (k) = u.(k) and
k'=0
k

Nu() = Y [Uc()+T, (k) ]
k'=0

A peptide with correct N-terminal cleavage and with k
miscleavages will be assigned an effective database N (k).
Similarly, a peptide with NNTC and with k miscleavages
will be assigned an effective database size N, (k).

Reviewers' comments

Reviewer's report |, first review comments

sent to the reviewers on July 26, 2007. Review received on
September 11th, 2007.
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Review by Wong Wing Cheong and Frank Eisenhaber,
Bioinformatics Institute, Agency for Science, Technology
and Research (A*STAR)

Matching of measured MS/MS spectra with theoretically
calculated spectra for database peptides is the standard
procedure for interpreting mass spectrometric data from
protein samples. Alves et al. propose an alternative proce-
dure for calculating E-values for peptide matches based on
the expansion of the central limit theorem up to the third
moment (skewness; not new though but with an elegant
analytical derivation) to better fit the score distribution of
a query spectrum.

General comments:

1) It should be noted that all methods that calculate scores
and e-values with the actual intensities (here: I; in equa-
tion 1) suffer from the inaccuracies in the intensity meas-
urements. The fragmentation and ionization efficiency for
each peptide species given the same concentration can be
very different from one another in terms of abundance in
fragment ions. So it is difficult to decide whether the
actual skewness in match scores' distribution is due to its
natural form or due to insufficient sampling. To attempt
to model skewness can be a double-edged sword in the
sense that true hits for weaker spectra (for example, very
incomplete b-y ion series) might be given higher p-values
and marked as insignificant. As a result, one might lose
true hits as false negatives though more noise spectra will
also be thrown out. This effect should be examined more
closely.

2) The existing methods are generally well performing for
the identification of peptide hits in the case of spectra with
sufficient clear signals. New methods can gain recognition
in the field only for their ability to find significant hits
even in more noisy or scarce spectra, not just for analytical
elegance. For example, it was shown by Mujezinovic et al.
(2006 Proteomics 6, 5117) show that the scores of hits
dramatically improve if the amount of noise is reduced.
The authors of this work attempt to demonstrate the per-
formance of RAId_DbS to be more superior to others in a
comparison but fall short of proving his point. Figures 2
and 3 do not provide the necessary arguments

3) In Fig. 2, the E-values of the various programs are
directly compared, although the authors have previously
declared that the E-values have to be transformed for this
purpose (page 3 second paragraph). Thus, the figure is
misleading. Curve clustering suggests that all the older
methods calculate one kind of E-value whereas RAId_DbS
belongs to another class of methods. Further, it would be
sensible to consider only the reasonable E-value range <<
1. Instead of using the nr-CR as described on page 11, it
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would be more appropriate to use nr with 90% or 80%
similarity thresholds since there are many different classes
of sequentially similar entries.

4) Figure 3 does not represent a true ROC curve. The abso-
lute numbers of true and false positives appear to be cal-
culated either with method-specific score or with method-
specific E-value thresholds (note that SEQUEST does not
provide E-values!!). One would expect the axes to show
sensitivity (= TP/(TP + FN)) and specificity (= TN/(TN +
FP)) instead. It should be possible to calculate and com-
pare the area below the curves. For example at first glance,
X!Tandem seems much inferior to RAId_DbS but when
we look at Figure 3, their sensitivity and specificity per-
formance appears quite similar. Especially in the practi-
cally important region of small false-positive assignments,
the curves essentially overlay.

Minor

a) Will the newly derived pdf works better than other
existing distributions (for example, the gamma distribu-
tion that can accommodate skewness)? With only a few
measurements available, it is not clear how to decide what
the naturally underlying distribution is in the far tail
region. Understandably, the increase of the number of fit-
ting parameters will improve the match with real score
distributions.

b) The authors say that Fig. 1 was generated from a ran-
domly picked spectrum. It appears rather that this spec-
trum is especially clean with large, almost complete b- and
y-ion rows. To obtain an almost ideal fit of the score his-
togram and the fitted pdf is not a great surprise.

¢) Summary: It would be advisable to provide a WWW-site
for download of data and programs.

d) page 3, last paragraph: Please provide accession num-
bers instead of identifiers since only the latter are stable in
time.

e) page 5, second paragraph: The weighting factors are
purely heuristic without any fundamental justification.

f) page 5, penultimate paragraph: It is not good practice to
refer to equation 17 after equation 1. This equation
should be number 2.

g) page 6, 1st paragraph, equation (2) : This equation
appears derived from a binomial distribution. Its informa-
tion value at this point is unclear?!
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h) page 14, reference list: It is not a good practice to refer
to yet unpublished work; here, the authors have done it
even twice.

Author's response to first review comments
Response and revised manuscript sent back to reviewers
on September 17, 2007.

1) We believe there might be some misunderstanding
here. First, we don't model the skewness as the skewness
in the final score distribution is not determined based on
the intensity profile of a given MS/MS spectrum. Note that
the number of unit intensity peaks is used as a fitting
parameter allowing for dynamic adjustment of the size of
the skewness. We extended the central limit theorem to
accommodate the case of small sample size. If the score
distribution turned out to be symmetric, in our protocol,
the skewness parameter £ will have zero value as the best
fit. That is, the statistics used in our method is intrinsically
spectrum-specific, designed to take into account those
effects mentioned by the reviewers. Regarding spectra of
weak signals, it has been the major challenge of the field
to extract the true hits from them. Our current method
does not guarantee a better extraction, however, it will
provide us with faithful E-values for each peptide hit given
the main information content (b- and y-peaks) present in
those spectra.

2) The fundamental reason to develop RAId_DbS is not
just to develop another MS/MS database search tool.
Rather, we want to provide a method capable of assigning
correct E-values. The other existing methods might be well
performing, but may not have accurate enough or even do
not have E-value assignments. Fig. 2 demonstrates the E-
value deviations of other search methods. Fig. 3 shows
that RAId_DbS does not perform worse than other meth-
ods on top of having accurate E-value assignment.

3) The main point of Figure two is not to decide whether
the E-values found among different methods are similar
or not, instead, we are asking whether the E-value found
by various methods are accurate or not. The standard def-
inition of E-value gives rise to the theoretical curve in the
figure. Agreement with the theoretical curve indicates
faithful E-value assignment. Disagreement with the theo-
retical curve indicates inaccurate E-values. Since the
number of spectra tested is only of order 10,000, one can't
assess the E-value accuracy in the range of E <10-4. How-
ever, it is still possible to test the E-value range with E > 10-
4and E <102. The large E-value portion is of course of low
practical interest for reporting results from a single spec-
trum, but it does show the level of consistency between
the reported E-values and the standard definition of E-
value. This becomes particularly important when one
needs to pool the results from various spectra together.
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Regarding the use of a database with similar entries
purged, it is indeed a good suggestion for it mimicks bet-
ter a random database. However, we find removing
entries similar to target proteins sufficient to support our
theoretical statistics, providing a larger range of usability
of our statistics in real applications.

4) To emphasize the small false-positive assignment
region, we replotted the ROC curves with the number of
false positives plotted in log-scale while the number of
true positives plotted in the linear-scale. Note that the
ROC curve is a parametric plot of false positives versus
true positives. The internal parameter used can be either
the E-value or any monotonic function of the E-value. For
methods not reporting E-values but scores, one assumes
the score to be a monotonic function of the E-value and
use the score as the internal parameter accordingly. Per the
request of the reviewers, we have added the specificity ver-
sus sensitivity plots in Figure 3. Contrary to what the
reviewers anticipated, we find that there is an even larger
difference in performance between RAId_DbS and X! Tan-
dem. In the figure legend, we also explain why this mag-
nified difference may be an artifact due to low number of
negatives reported by a specific method.

a) We anticipated Gaussian-type of distribution from our
scoring construction. Theoretically speaking, if the
number of theoretical peaks is large enough and the spec-
trum contains enough information, the score distribution
will be very close to a Gaussian. The gamma distribution,
although accommodates skewness, decaying with ¢S does
not have the right tail. Our pdf, on the other hand, natu-
rally interpolate (see our theory section) between the
Gaussian and the case of finite skewness.

b) We are afraid there might be some misunderstanding
here. Looking at the score S, corresponding to maximum
pdfin the plot, we find S ~ 1. This implies that the major-
ity of peptide entering the score histogram, if they are to
have a complete b- and y-peaks present in the spectrum,
will have peak intensity of only 2.718. Thus, it is highly
unlikely that the spectrum has a complete b- and y- series
for the candidate peptides. We had looked into a large
number of score histograms from scoring various spectra,
and all of them show excellent theoretical fits. Besides, if
what is shown in Fig. 1 is a single best example, we won't
be able to obtain E-value that traces theoretical curve so
well (see Fig. 2).

c) We are in the process of setting up the website for
RAId_DDbS that allows the users to test run a few data set

of their own and provide the options for code download.

d) We have added the accession numbers accordingly.
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e) That is correct. This heuristic is to encourage fragment
peaks with better m/z matching rather than just picking
the m/z peaks of the largest intensities within the mass
eIToTS.

f) We agree with the opinion. However, since eq. 17 is the
final results after going through eq.3 to eq. 16, it is rather
hard to make it eq. 2. We therefore choose to keep the text
as is and added a short text to remind the readers that it is
the final results in the theory section that we are referring
to.

g) Eq. (2) is another heuristic introduced to handle the
case when the information level is too low, say, when
there are too few peaks. When the weighted average
number of evidence peaks found in the candidate list is
below 2, there is simply not enough information to distin-
guish them well. In that situation, we switch to eq. (2) to
obtain conservative p-values

h) We have removed one reference to the future and
updated the other one.

Reviewer's report |, second review comments

sent to reviewers on July 26, 2007. first review received on
September 11th, 2007; first authors' response sent to the
reviewers on September 17th; second review comments
received on September 21st, 2007.

Please find attached the reply to your comments.
Although we still have some reservations, we think that
the MS has improved as a result of the revision, especially
with regard to Figure 3. Therefore, we think that the MS
might be published in Biology Direct given the comment
on the "major challenge in MS" being reduced to E-value
computation is removed. Other comments might be con-
sidered valuable by the authors, too.

1) There is no way around that any value calculated as a
function of intensities in the MS/MS spectrum depends on
the accuracy of the intensity measurements. Therefore, the
proposed method possibly results in more accurate expec-
tation values for sequence hits but the information in the
underlying spectrum might be not fully reliable.

2) The authors claim that accurate E-value calculation is
the major challenge in mass spectrometry. This is certainly
not the case (see Hernandez et al. 2006 Mass. Spectrome-
try Rev. v. 25, 235-254), especially in the practically not
relevant range of large E-values. At the same time, we
acknowledge that the authors have provided an analytical
method for calculating them. In our reply, we have dis-
cussed to which extent this specific finding might change
the practice of protein mass spectrometry and we are in
doubt.

http://www.biology-direct.com/content/2/1/25

3) It is obvious that E-values have been derived for many
methods with less fundamental considerations and they
were never thought to be more than a rough guide for
assessing false positive numbers; here, the authors have
made progress. Nevertheless, it remains to be seen to
which extent the type of MS data (profile versus centroid)
puts some of the methods into an inferior position. It
would also be of interest to analyze reasons for the non-
linearity of the RAId_DDbS curve in the range of E-values at
about 1 and below.

4) We appreciate that the authors have added true ROC
plots. Again, the usage of profile data instead of centroid
data might have put some algorithms into a difficult posi-
tion since some operate only with a limited number of
peaks for protein identification. Also, the great difference
between the two plots (3c and 3d, which differ only in the
data format and the size of the dataset) is not discussed.
In the range of small scores, OMSSA is superior to
RAId_DbS in 3d but much inferior in 3c.

f) Nevertheless, you force the reader to lookup the end of
the article when he just as started reading it.

Author's response to second review comments

1) The reliability of the information contained in the spec-
trum may still be judged from the correct E-value reported
for the best hit. If even the best hit has a poor E-value, it is
most likely that the information content in the spectrum
is hard to retrieve due to high noise level.

2) We thank the reviewer for acknowledging our progress
in producing more accurate E-values in peptide search.
The full power of having correct E-values indeed awaits to
be seen. In anticipation that the issue of having correct sta-
tistics will become more and more important, we have
added a section discussing the accuracy of fitting the score
pdf in general and have put RAId_DbS to test in this
regard.

3) From what we can see in this study, it seems that every
method's detecting power increases when using the pro-
file data. Perhaps the question one may ask is that how
much can each individual method gain by using profile
data. The developers of the search methods may wish to
investigate this problem for their own sake. Regarding the
minor horizontal leap in RAId_DbS's E-value near E = 1,
it is mainly due to that RAId_DDbS reports only the top 250
hits and this may cause a slight under representation of
high E-value hits.

4) As we said earlier, in general each method gains some
when using profile data. However, it is not guaranteed that
the gain will be of similar size. Consequently wishing to
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observe a consistent performance across different data
type may not be a correct anticipation.

f) We must apologize for the inconvenience that this may
have caused the readers.

Reviewer's report 2

sent to the editorial board member/reviewer on July 23rd,
2007. Review received on August 15th, 2007. Review by
Dongxiao Zhu (nominated by Arcady Mushegian) with
contribution from Arcady Mushegian, Stowers Institute
for Medical Research

1. While the aim of this paper is to derive score pdf for
finite-size samples, it appears that infinite-size samples
were assumed in eqs (7)-(9) and elsewhere. Please explain
why this is so.

2. Is the result that the method performs when y is slightly
more than 0, not only when y > 1, consistent with the
expectations?

3. Page 6, second paragraph from bottom, possible defini-
tion error: the variance of a random variable is its second
central moment, not the difference between first and sec-
ond moment. Ibid., should it not be y instead of y' to be
consistent to the rest of the article?

4. Authors may ve advised to keep closer to standard sta-
tistical representations in their derivation, for example, in
the second paragraph from bottom, E [X*] is preferable as
a definition of the kth moment of X, and # should be used

to represent population mean instead of X . (The latter is
usually used for representing sample mean NOT popula-
tion mean, and may be confusing).

5. There is no particular reason to have supplementary
materials for this paper: the article will be much easier to
read if they were incorporated into the main text.

Author's response

1. We only assume that n is large, not infinite. Note that if
n is infinite, the second moment (x2) will need to be infi-
nite as well in order for (7)-(9) to make sense. And we
apparently did not assume that.

2.Yes. As explained in the last paragraph of the theory sec-
tion, the validity of the derivation is lost when 1 + 24y
becomes near zero. The accuracy of the derived expres-
sion, however, becomes better when y becomes larger.
What is said there is that when y > 1, in the high scoring
tail, the statistical significance assigned through our
derived formula will work better.
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3. We are sure it is a misunderstanding. The variance of a
random variable is its second moment only if the random
variable has zero mean. In general, the variance is the dif-
ference between the second moment and the second
power of the first moment.

4. We thank the reviewer for the suggestion. However, we
decide to keep our original notation since both type of
notations are well accepted.

5. A very good suggestion indeed. We have moved the
supplementary materials into the appendix of the paper to
form a single article.

Reviewer's report 3
sent to the reviewer on August 2nd, 2007.

Review received on October 2nd, 2007. Review by Shamil
Sunyaev, Harvard Medical School

This manuscript introduces a new method for peptide
identification for mass spectrometry proteomics. There is
a growing need for more accurate computational methods
for shotgun proteomics and the presented method has a
high chance of becoming a popular tool in the field. The
manuscript presents a derivation of an accurate p-value
for the search using an asymptotic extension of the central
limit theorem for the case of non-negligible skewness.
Although the manuscript is technical in nature, due to the
potential importance for applications, it fits Biology
Direct. The manuscript is very well written and the presen-
tation is clear.
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