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Abstract
Background: Peroxisomes are ubiquitous eukaryotic organelles involved in various oxidative
reactions. Their enzymatic content varies between species, but the presence of common protein
import and organelle biogenesis systems support a single evolutionary origin. The precise scenario
for this origin remains however to be established. The ability of peroxisomes to divide and import
proteins post-translationally, just like mitochondria and chloroplasts, supports an endosymbiotic
origin. However, this view has been challenged by recent discoveries that mutant, peroxisome-less
cells restore peroxisomes upon introduction of the wild-type gene, and that peroxisomes are
formed from the Endoplasmic Reticulum. The lack of a peroxisomal genome precludes the use of
classical analyses, as those performed with mitochondria or chloroplasts, to settle the debate. We
therefore conducted large-scale phylogenetic analyses of the yeast and rat peroxisomal proteomes.

Results: Our results show that most peroxisomal proteins (39–58%) are of eukaryotic origin,
comprising all proteins involved in organelle biogenesis or maintenance. A significant fraction (13–
18%), consisting mainly of enzymes, has an alpha-proteobacterial origin and appears to be the result
of the recruitment of proteins originally targeted to mitochondria. Consistent with the findings that
peroxisomes are formed in the Endoplasmic Reticulum, we find that the most universally conserved
Peroxisome biogenesis and maintenance proteins are homologous to proteins from the
Endoplasmic Reticulum Assisted Decay pathway.

Conclusion: Altogether our results indicate that the peroxisome does not have an endosymbiotic
origin and that its proteins were recruited from pools existing within the primitive eukaryote.
Moreover the reconstruction of primitive peroxisomal proteomes suggests that ontogenetically as
well as phylogenetically, peroxisomes stem from the Endoplasmic Reticulum.
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Background
Peroxisomes were first isolated from liver and biochemi-
cally characterized by the group of de Duve [1]. Later it
became clear that these organelles can differ substantially
between species with respect to their enzyme content. The
conversion of fatty acids into carbohydrates through the
glyoxylate cycle is the hallmark of glyoxysomes present in
plants, protozoa and yeasts. Part of the glycolysis is com-
partmentalized in the glycosomes of Trypanosomatids.
Photorespiration is typical for plant peroxisomes while
peroxisomes of various yeasts can oxidize alkanes or
methanol. Despite this diversity all these organelles
belong to the same microbody family. This became clear
with the discovery that they share targeting codes (PTS1
and PTS2) for the import of proteins and with the identi-
fication of similar sets of proteins responsible for their
biogenesis and maintenance [2]. Although the unity
within the microbody family has thus firmly been estab-
lished, their evolutionary origin remains a matter of
debate [3]. Strong arguments support the view of peroxi-
somes as autonomous organelles with an endosymbiotic
origin: i) matrix enzymes are synthesized on free polyri-
bosomes and post-translationally imported into the
organelles, ii) peroxisomes have their own protein import
machinery, like mitochondria and chloroplasts, and iii)
peroxisomes have been shown to divide [4].

Recent discoveries, however, have challenged this view.
First, after several generations the lacking of peroxisomes
in some mutants is reversible upon the introduction of
the wild-type gene [5]. Second, it has been observed that
new peroxisomes originate from the ER [6]. These obser-
vations are at odds with the autonomy of peroxisomes
and therefore weaken the case for an endosymbiotic ori-
gin. Here we address the issue of peroxisomal evolution
by phylogenetic analysis of peroxisomal proteins. To this
end we collected an exhaustive set of proteins with an
experimentally determined peroxisomal location in the
yeast Saccharomyces cerevisiae and the rodent Rattus nor-
vegicus, and performed phylogenetic analyses to investi-
gate whether the peroxisomal proteome contains a
significant evolutionary signal just as has been shown for
mitochondria [7,8].

Results and discussion
From databases and experimental literature we collected
62 yeast and 51 rat proteins with a peroxisomal location
or function (Table 1). Since our lists include proteins from
various large-scale proteomics analyses [9-11], as well as
from individual studies under various conditions, we con-
sider them to be representative samples of peroxisomal
proteomes. Phylogenies (see materials and methods) of
peroxisomal proteins were reconstructed to determine
their origin. We consider a protein to be of eukaryotic ori-
gin when it has no homologs in prokaryotes, or when the

prokaryotic branches within the tree are mono-phyletic as
in Figure 1a. In the latter case the protein is classified as of
"ancient origin" in Table 1, even though one could argue
that in the case of PEX1 the protein resulted from a gene
duplication at the origin of the eukaryotes. Although in
the case of PEX1 the relatively short branch length of
CDC48 suggests that CDC48 is the "ancestral protein"
and PEX1 is derived, in general such a distinction is not
easy to make and in this analysis we did not distinguish
between genes that are, or are not duplicated at the origin
of the eukaryotes. A protein is considered of bacterial or
archaeal origin when it clusters "within" a prokaryotic
branch, implying horizontal transfer between the taxa
(Figure 1b). Unresolved cases imply the existence of
homology to prokaryotic sequences without a tree that
specifically supports a bacterial or archaeal origin. For the
families with resolved phylogenies we observed a clear
dichotomy in terms of evolutionary origin and functional
roles: all proteins with a specific bacterial origin have
enzymatic functions while most proteins (90%) with
eukaryotic origin are functioning in peroxisome organiza-
tion and biogenesis. Like in the proteins with bacterial
ancestry also among the proteins with bacterial homologs
for which we cannot establish bacterial ancestry (the unre-
solved cases) a clear preponderance (85%) of enzymes
can be observed (Table 1).

Peroxisomal proteins of eukaryotic origin and an 
evolutionary link with the E.R
The largest fraction of peroxisomal proteins is of eukaryo-
tic origin: 58.1% of the yeast proteome, 39.2% of the rat
proteome (Figure 1c). These include the so-called Pex pro-
teins that are involved in peroxisomal biogenesis and
maintenance that are most consistently present in all
microbodies, underlining their essential role. Interest-
ingly, five of the six most ancient Pex proteins (see below)
show homology with the ERAD (Endoplasmic Reticulum
Associated Decay) system, which pulls proteins from the
ER membrane and ubiquitinylates them in preparation
for degradation in the proteasome [12] (Figure 2). Pex1
and Pex6, AAA cassette containing proteins, have evolved
from Cdc48/p97 [13] (Figure 1a), a protein central to the
ERAD pathway which is also involved in Golgi vesicle
fusion and spindle body disassembly after mitosis; Pex2
and Pex10, ubiquitin ligase domain (RING domain) con-
taining proteins, contain homology to the ERAD ubiqui-
tin ligase Hrd1; the TPR repeats of Pex5 are homologous
to the SEL1 repeats of the Hrd1 interacting protein Hrd3;
Pex4 contains an E2 ubiquitin conjugating enzyme
domain and is homologous to the ERAD ubiquitin conju-
gating enzymes Ubc1, Ubc6 and Ubc7. In the cases of
PEX2/10, PEX5 and PEX4 the levels of sequence identity
between the shared domains and the short regions of
homology preclude the reconstruction of reliable phylog-
enies to argue that these proteins have descended from a
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A: Maximum likelihood phylogenetic tree of the CDC48 orthologous group and its paralogs, including PEX1 and PEX6Figure 1
A: Maximum likelihood phylogenetic tree of the CDC48 orthologous group and its paralogs, including PEX1 and PEX6. The 
crenarchaeon Pyrobaculum aerophilum and euryarchaeon Archaeoglobus fulgidus sequences cluster together, consistent with an 
ancient eukaryotic origin of this protein family rather than an origin from a horizontal transfer, and they are used as outgroup. 
PEX1/6, as well as SEC18 and RIX7 appear to have evolved from CDC48, the central protein of the ERAD pathway B: Maxi-
mum likelihood phylogenetic tree of the Npy1p orthologous group and its mitochondrial paralogs. This protein family has a sin-
gle origin in the alpha-proteobacteria. Bootstrap support over 100 replicates of the maximum likelihood tree is shown in all 
partitions. C: Pie chart showing the relative distribution of peroxisomal proteins according to their phylogenetic origin in yeast 
(left) and rat (right). Proteins that do have prokaryotic homologs but for which no reliable tree can de constructed, e.g. due to 
short stretches of homology, are considered "unresolved". For a complete list of the proteins and their origins, see the supple-
mental material, for their phylogenies see [44].
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Table 1: Proteins localized in the peroxisome in S. cerevisiae and R. norvegicus. Gene names are from SGD, Swissprot or GeneBank. 
Proteins in the same row are orthologous to each other, whenever there is a "one to many" orthology relationship this is indicated by 
boxes containing several rows. Absence of the gene or absence of evidence of a peroxisomal localization of the encoded protein is 
indicated by a dash. Proteins that show homology with components of the ERAD pathways are indicated with names in bold and a 
comment indicating that homology. For each orthologous group, the annotated function and the phylogenetic origin is indicated (euk: 
eukaryotic no bacterial homologs; euk (a.o.): presence of bacterial homologs but the phylogenetic reconsructions indicates an ancient 
origin derived from the common ancestor of eukaryotes and archaea; alpha: alpha-proteobacterial origin; actinomyc.: derived from 
the actinomycetales; cyanobac.: cyanobacterial origin; u, unresolved phylogenetic origin.

S. cerevisiae R. norvegicus Origin Function (comment)

PEX1 PEX1 euk (a.o) Peroxisome organization and biogenesis (Homologous to ERAD protein Cdc48)
PEX2 PEX2 euk Peroxisome organization and biogenesis (Homologous to ERAD protein Hrd1)
PEX3 PEX3 euk Peroxisome organization and biogenesis
PEX4 PEX4 Euk Peroxisome organization and biogenesis (Homologous to ERAD protein Ubc1)
PEX5 PEX5 euk (a.o) Peroxisome organization and biogenesis (Homologous to ERAD protein Hrd3)
PEX6 PEX6 euk (a.o) Peroxisome organization and biogenesis
PEX7 PEX7 Euk Peroxisome organization and biogenesis
PEX8 - Euk Peroxisome organization and biogenesis

PEX10 PEX10 Euk Peroxisome organization and biogenesis (Homologous to ERAD protein Hrd1)
- PEX11 euk (a.o) Peroxisome organization and biogenesis

PEX12 PEX12 euk Peroxisome organization and biogenesis
PEX13 PEX13 euk Peroxisome organization and biogenesis
PEX14 PEX14 euk (a.o) Peroxisome organization and biogenesis
PEX15 - euk Peroxisome organization and biogenesis

- PEX16 euk Peroxisome organization and biogenesis
PEX17 - euk Peroxisome organization and biogenesis
PEX18 - euk Peroxisome organization and biogenesis
PEX19 PEX19 euk Peroxisome organization and biogenesis
PEX21 - euk Peroxisome organization and biogenesis
PEX22 - euk Peroxisome organization and biogenesis
PEX25 - euk Peroxisome organization and biogenesis

- PEX26 euk Peroxisome organization and biogenesis
PEX27 - euk Peroxisome organization and biogenesis
PEX28 - euk Peroxisome organization and biogenesis
PEX29 - euk Peroxisome organization and biogenesis
PEX30 - euk Peroxisome organization and biogenesis
PEX31 - euk Peroxisome organization and biogenesis
PEX32 - euk Peroxisome organization and biogenesis
ANT1 PMP34 euk Adenine nucleotide transporter

- PMP24 euk Peroxisomal membrane protein
- PMP22 euk Peroxisomal membrane protein
- PAHX U Phytanoyl-CoA dioxygenase
- gi-6912418 U 2-hydroxyphytanoyl-CoA lyase
- PTE2B alpha peroxisomal long chain acyl-CoA thioesterase Ib

TES1 PTE1_MOUSE alpha Peroxisomal acyl-coenzyme A thioester hydrolase 1
CTA1 CATALASE euk (a.o) Catalase A
FOX1 OXRTA2 U acyl-CoA oxidase

gi-1684747 U
CAO3_RAT U

FOX2 gi-13242303 alpha peroxisomal multifunctional beta-oxidation protein
gi-4105269 alpha putative peroxisomal 2,4-

dienoyl-CoA reductase
gi-5052204 alpha putative short-chain 

dehydrogenase/reductase
FOX3 gi-6978429 U peroxisomal 3-oxoacyl CoA thiolase

- ECHP_RAT U Peroxisomal bifunctional enzyme
- SCP2 U sterol carrier protein-2

IDP3 gi-13928690 U Peroxisomal NADP-dependent isocitrate dehydrogenase
ECI1 gi-6755026 alpha enoyl-CoA isomerase
DCI1 alpha

- BAAT alpha bile acid-Coenzyme A: amino acid N-acyltransferase
- gi-12002203 actinomyc. alkyl-dihydroxyacetonephosphate synthase
- DAPT_RAT actinomyc. Dihydroxyacetone phosphate acyltransferase
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protein involved in ERAD, as it is the case for Cdc48/p97-
PEX1/6. Here it is the number of homologous relations
between ERAD and the most ancient PEX proteins that
hint at an evolutionary relation. Although there are some
systems known that use a TPR repeat protein together with
a protein containing an E2 ubiquitin conjugating enzyme
and a protein with a RING domain, like the Anaphase
Promoting Complex/Cyclosome [14], to our knowledge
there is no system other than ERAD that uses those
domains together with an AAA+ ATPase. Nevertheless, we
cannot exclude that PEX1, PEX2/10, PEX5 and PEX4 do
not originate from a single molecular system like ERAD,
specifically because the TPR repeat in HRD3 is classified in

a different class of TPR repeats than the TPR repeat of
PEX5 (Figure 2).

The similarities in amino acid sequence between ERAD
and the most ancient PEX proteins extend into similarities
in function and sub-cellular location (Figure 2). Pex1 and
Pex6 (both AAA containing proteins) are needed to extract
the cycling PTS1 receptor Pex5 from the peroxisomal
membrane to facilitate a new cycle of Pex5-mediated pro-
tein import [15]. Ubiquitinylation of Pex5 is part of this
process. In both cases, the ERAD and the peroxisomal
AAA proteins operate in the cytoplasm and are recruited to
the membrane by organelle-specific anchor proteins:

- AGT cyanobac. alanine-glyoxylate aminotransferase
- gi-6679507 U pipecolic acid oxidase
- URIC_RAT U Urate oxidase

PXA1 PMP70 U fatty acid transport
ALDP U ATP-binding cassette

ALDPR U ATP-binding cassette
FAA1 - euk
FAA2 LCF2 U Long-chain-fatty-acid--CoA ligase
LACS U
FAT1 VLACS U Fatty acid transport

- gi-14091775 U Hydroxyacid oxidase 3 (medium-chain)
- gi-6754156 U Hydroxyacid oxidase 1
- GTK1_RAT U Glutathyhion-S transferase
- AMCR U 2-arylpropionyl-CoA epimerase
- FIS1 euk Peroxisome fission

FAT2 - alpha probable AMP-binding protein
CIT2 - U Citrate synthase
GPD1 - alpha glycerol-3-phosphate dehydrogenase
MDH3 - U malate dehydrogenase
LYS1 - euk Lysine biosynthesis, saccharopine dehydrogenase
LYS4 - U Lysine biosynthesis
PNC1 - U NAD(+) salvage pathway
NPY1 - alpha NADH diphosphatase (pyrophosphatase)
STR3 - U Sulfur Transfer

YGR154C - U
MLS1 - U Malate synthase 1
MLS2 - U Malate synthase 2

EMP24 - euk Vesicle organization and biogenesis
ERG1 - U Ergosterol biosynthesis
ERG6 - U Ergosterol biosynthesis
RHO1 - euk GTP-binding protein
SPS19 - U 2,4-dienoyl-CoA reductase

YOR084W - euk Peroxisome organization and biogenesis
YMR204C - euk

CAT2 - euk Carnitine acetyltransferase
PCD1 - alpha Nudix hydrolase
AAT2 - euk Aspartate aminotransferase
PXA2 - U Peroxisomal ATP-binding cassette, fatty acid transport
VPS1 - euk Dynamin 1

Table 1: Proteins localized in the peroxisome in S. cerevisiae and R. norvegicus. Gene names are from SGD, Swissprot or GeneBank. 
Proteins in the same row are orthologous to each other, whenever there is a "one to many" orthology relationship this is indicated by 
boxes containing several rows. Absence of the gene or absence of evidence of a peroxisomal localization of the encoded protein is 
indicated by a dash. Proteins that show homology with components of the ERAD pathways are indicated with names in bold and a 
comment indicating that homology. For each orthologous group, the annotated function and the phylogenetic origin is indicated (euk: 
eukaryotic no bacterial homologs; euk (a.o.): presence of bacterial homologs but the phylogenetic reconsructions indicates an ancient 
origin derived from the common ancestor of eukaryotes and archaea; alpha: alpha-proteobacterial origin; actinomyc.: derived from 
the actinomycetales; cyanobac.: cyanobacterial origin; u, unresolved phylogenetic origin. (Continued)
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Cdc48/p97 to the ER membrane by VIMP[16], Pex1 and
Pex6 to the peroxisomal membrane by Pex15 (in yeast)
and Pex26 (in mammals) [17]. This resemblance in
ancient proteins with similar functions and the link with
the universal endomembrane compartment of the eukary-
otic cell suggest that the peroxisome is an invention that
took place within the eukaryotic lineage itself. Also Erd-
mann and Schliebs [18] have recently linked the homol-
ogy between AAA+ domains of ERAD and PEX1, and the
presence of E2 and E3 domains involved in ubiquitinyla-
tion in the PEX proteins, to a mechanism of protein
import in the Peroxisomal matrix that would be similar to
ERAD, without proposing a direct evolutionary descent of
Peroxisomal import from ERAD however.

For the other PEX proteins we did not find indications
that they were also recruited from pre-existing cellular sys-
tems. Their distribution and phylogenies do suggest that

they originate from separate events post-dating the origin
of the five of the six core PEX proteins from ERAD.

We have visualized the retargeting during evolution of
peroxisomal proteins from various cellular locations in a
cartoon (Figure 3). The group of proteins of eukaryotic
origin also contains certain household proteins with dual
or plural functions with respect to organelles. The ER
located or associated proteins Erg1, Erg6, Emp24, Rho1
and the multipurpose dynamin Vps1 have also been
implicated in peroxisomal functions [19,20].

Recruitment to the peroxisome of proteins of alpha-
proteobacterial origin
Remarkably, the second largest fraction of proteins, 17–
18%, has an alpha-proteobacterial origin (Figure 1c). This
is similar to what has been found for mitochondria [7,8],
and, at first sight appears to be at odds with a eukaryotic

ERAD and peroxisomal protein import homologyFigure 2
ERAD and peroxisomal protein import homology. A) Schematic representation of the ERAD (top) and the Pex5 recycling (bot-
tom) pathways. Proteins involved are represented by ovals and rectangles, only those commented in the text are named. 
Homologous relationships between proteins from the pathways are indicated in color. B) Homology between proteins of the 
ERAD pathway and proteins involved in protein import to the Peroxisome. Domain organization of the proteins was predicted 
with SMART [45]. Independent from that, homology between the proteins was determined by profile-to-profile searches using 
hhsearch [46], based on alignments of orthologous groups of the various proteins. Note that the SEL1 repeat is homologous to 
the TPR repeat. The location of the two CDC48 N-terminal domains (CDC48_N and CDC48_2) in Pex1 is based on PSI-Blast 
[47] searches starting with CDC48 proteins and on the structure published for the N-terminal domains of PEX1 [48].
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origin of the peroxisome. There are strong indications that
these proteins have been retargeted from the mitochon-
dria (Figure 3, scenario I), rather than having evolved
directly from an independent endosymbiont, an observa-
tion that is consistent with the high degree of retargeting
observed for proteins derived from the proto-mitochon-
drion in general [8]. Six of the eight S. cerevisiae peroxiso-
mal proteins of alpha-proteobacterial origin are closely
related to mitochondrial proteins. Thioesterase (Tes1p) is
located in both the peroxisome and mitochondrion of S.
cerevisiae [21]. In other cases the orthologs or paralogs of
a peroxisomal protein are mitochondrial: i), the peroxiso-
mal glycerole-P dehydrogenase Gpd1p has a paralog in
yeast (Gpd2p) with a cytoplasmic and mitochondrial
localization [22]; ii) the peroxisomal Fat2p is paralogous
to the mitochondrial long-chain fatty acid CoA ligases iii),
the orthologous group consisting of Eci1p, Dci1p and 3,2-
transenoyl CoA isomerase is peroxisomal in yeast and
human, has a mitochondrial paralog in mammals [23];
and iv), the nudix phosphatase family (Npy1p) of which
the yeast, human and plant orthologs are peroxisomal has
a paralogous group in metazoa that is mitochondrial
according to GFP-fusion studies in mouse [24] and to
Mitoprot [25] (p = 0.97). The phylogenetic tree (Figure
1b) indicates a single origin from the alpha-proteobacte-

ria of both mitochondrial and peroxisomal proteins of
this family. The two remaining cases of yeast peroxisomal
proteins of alpha-proteobacterial origin are Fox2p and
Pcd1p. For these no homologs with experimental evi-
dence of mitochondrial location were found, although
Pcd1p does have a bona-fide mitochondrial targeting sig-
nal (P = 0.97 in Mitoprot).

With respect to the rat peroxisome, there are two proteins
of alpha-proteobacterial descent that do not have
orthologs in the yeast peroxisome. One of these presents
cases of dual targeting: some isoforms of peroxisomal bile
acid thioestherase BAAT have been detected in mitochon-
dria and the cytoplasm in human liver [26].

Recruitment to the peroxisome of mitochondrial proteins 
of other origins
There are also peroxisomal proteins with homologs in the
mitochondrion that do not have a (detectable) alpha-pro-
teobacterial origin: Idp3p, Cta1p, Faa1p, Cit2p, Fis1p and
Faa2p [21,27,28] (Figure 3, Scenario II). In contrast to
proteins of alpha-proteobacterial origin, here one cannot
simply argue that the mitochondrial localization pre-
ceded the peroxisomal one. At least for one of these pro-
teins, Cit2p, a peroxisomal protein from the citrate
synthase family, a phylogenetic analysis reveals its ances-
tral location. The other two members of this family in S.
cerevisiae, Cit1p and Cit3p, are mitochondrial and so are
their homologs in Homo sapiens, Arabidopsis thaliana and
Caenorhabditis elegans. The phylogeny of this family in
fungi indicates that Cit1p and Cit2p originate from a
recent gene duplication, after which Cit2p lost its mito-
chondrial targeting signal (Figure 4), indicating that the
peroxisomal location is secondary. That the retargeting of
proteins between mitochondria and peroxisomes fre-
quently happens during evolution is also indicated by the
case of alanine:glyoxylate aminotransferase (AGT), whose
peroxisomal or mitochondrial location is species-depend-
ent and related to diet in mammals [29]. In humans,
where AGT is peroxisomal, a single point mutation miss-
localizes the protein to the mitochondrion, leading to the
hereditary kidney stone disease: primary hyperoxaluria
type 1 (PH1)[30].

There are peroxisomal rat proteins, like dihydroxyacetone
phosphate acyl transferase(DAPT) and alkyl-dihydroxyac-
etonephosphate synthase (gi-12002203) whose phyloge-
netic trees suggest an ancestry from within the
actinomycetales while the Alanine-Glyoxylate ami-
notransferase (AGT) appears derived from the cyanobac-
teria. We do not have an obvious evolutionary scenario
for the origin for such proteins with a bacterial but not
alpha-proteobacterial ancestry. In any case, the finding of
peroxisomal proteins with such diverse origins under-

The retargeting of proteins to the peroxisome during evolu-tionFigure 3
The retargeting of proteins to the peroxisome during evolu-
tion. The dashed lines indicate the ancestral cellular location 
of a peroxisomal protein, the continuous line their current 
(peroxisomal) location. Some proteins are derived from the 
alpha-proteobacterial ancestor of the mitochondria, their 
proteins have been retargeted to the peroxisome concomi-
tant with the transfer of their genes to the nucleus (red, sce-
nario I). Also proteins without a (detectable) alpha-
proteobacterial ancestry have been retargeted from the 
mitochondria (blue, scenario II). Finally, a class of proteins 
have been retargeted from other compartments of the cell 
like the Endoplasmic Reticulum (cyan, scenario III).
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scores the ease at which the peroxisomal proteome can
recruit new proteins.

Reconstruction of ancestral states of the peroxisomal 
proteome
To investigate the order of protein recruitment to the per-
oxisome we reconstructed the evolution of the peroxiso-
mal proteome based on the absence/presence of genes
among sequenced genomes and assuming a parsimoni-
ous scenario (Figure 5). First we reconstructed the mini-
mal peroxisome of the opisthokont, the common
ancestor of metazoa and fungi, by including proteins
present in both yeast and rat peroxisomal proteomes or
proteins that are present in only one of the two proteomes
but whose orthologs in plants have a (putative) peroxiso-
mal location in the Araperox database [31]. In addition,
we reconstructed the protein content of the common
ancestor of all known peroxisomes, glycosomes and gly-
oxysomes from proteins that, besides being present in the
opisthokont peroxisome, are present in genomes from
plants and kinetoplastida (Trypanosoma brucei and Leish-
mania major). This core-set comprises six PEX proteins
(Pex1p, Pex2p, Pex4p, Pex5p, Pex10p, Pex14p) and four
proteins involved in fatty acid metabolism and transport
(Pxa1p/Pxa2p, Fox2p, Faa2p). We also included the per-
oxisomal hallmark protein catalase (Cta1p), even though
it is absent from most glycosomes and kinetoplastidial
genomes because it is found in the glycosomes of the non-
pathogenic trypanosomatid Crithidia [32]. Similarly
Fox1p, which catalyzes the first step of long-chain fatty
acid beta-oxidation, was included despite its absence from
kinetoplastida, because the concomitant loss from perox-
isomes of Fox1 (the enzyme generating H2O2) and cata-
lase (the enzyme detoxifying H2O2) has been observed in
species such as Neurospora crassa [33].

Although the specific functional role of many PEX pro-
teins remains to be established, and it is therewith hard to
asses whether e.g. the reconstructed ancestral opisthokont
PEX proteins are functionally coherent and complete, at

least the sub-set present in the ancestral eukaryotic perox-
isome appears functionally coherent. All of the six univer-
sal PEX proteins are specifically involved in the PEX5
pathway for the import of proteins into the peroxisome.

The earliest tractable function of peroxisomes appears
herewith to be the beta-oxidation of fatty acids. This path-
way already contains at least one protein of alpha-proteo-
bacterial descent (Fox2p), indicating that the presence of
long-chain fatty acid beta-oxidation in the peroxisome
followed the endosymbiosis of mitochondria. The pro-
teins with detectable origin in the ancestral peroxisome
that are not involved in beta-oxidation are all of eukaryo-
tic origin. Most of the present-day species variability is
found in the enzymes housed in peroxisomes, a signifi-
cant fraction of which has an alpha-proteobacterial origin
and has entered the primitive eukaryote with the mito-
chondrial ancestor [8]. Note that the recruitment of pro-
teins with an endosymbiotic origin to peroxisomes is not
an exceptional event. Nine proteins in the glycosomes of
the kinetoplastida T. brucei and Leishmania mexicana are
derived from chloroplasts from which they can be traced
back to the cyanobacteria [34]. Somehow it seems rather
easy to (re)locate proteins to microbodies which may be
related to the simplicity of the PTS1 targeting code. This
'grab what you can get' principle may have contributed to
the observed versatility and species variability.

Conclusion
The phylogenetic analysis of the rat and yeast peroxisomal
proteomes reveals that the largest fraction of peroxisomal
proteins originated within the eukaryotic lineage and that
the significant fraction of peroxisomal proteins which
stems from the alpha-proteobacteria is likely the result of
a secondary retargeting from the mitochondrion. The
most widespread and ancient set of peroxisomal proteins
is mainly composed of eukaryotic proteins involved in
peroxisome biogenesis and organization. Most of these
core proteins are evolutionarily related to the Endoplas-
mic Reticulum Assisted Decay pathway, suggesting an

The N-terminal region of the multiple sequence alignment of several fungal members of the Cit1/2p orthologous groupFigure 4
The N-terminal region of the multiple sequence alignment of several fungal members of the Cit1/2p orthologous group. Amino 
acids around the signal-peptide cleavage-sites, as predicted by Mitoprot are marked with a rectangle (white arrow indicates the 
position in the alignment) they correspond to YS (YA in C. tropicalis) that is missing in Cit2p. No mitochondrial localization nor 
a cleavage-site is predicted for Cit2p consistent with its peroxisomal location.

**:*: *: * :
S.cerevisiae (Cit2p) ----------------------MTVPYLNSNRNVASYLQSNSSQEKTLKERFSEIYPIHA 38

---MSAILSTTSKSFLSRGSTRQCQNMQKALFALLNARHYSSASEQTLKERFAEIIPAKA 57
MSTTMLSTRNALARGLLRTSGGAAGASRNNLLLSLVASRYYSNGEKTLKQRFAEIFPEKA 60
----------------MSALRSFQRSSNVAKSTLKNSVRTYATAEPTLKQRLEEILPAKA 44
----------------MISAIRPAVRSSVRVAPMANTAFRAYSTQDGLKERFAELIPENV 44
----------MAPVMRLGSAALRSSIHLTSRQTAFTAARCYSSKTQTLKERFAELLPENI 50
------MTNTRLASTRRLASSLLSQASLRSRQLNPLFTSSYSTRSSSLKDRLAELIPEKQ 54

S.cerevisiae (Cit1p)
Kluyveromyces lactis

Candida tropicalis
Yarrowia lipolytica
Neurospora crassa

Schizosaccharomyces pombe
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Evolution of the peroxisomal proteomeFigure 5
Evolution of the peroxisomal proteome. Biochemical pathways reconstructed according to KEGG and annotations of peroxi-
somal proteins. For details on the reconstruction of ancestral states see supplemental material. Color code: yellow, eukaryotic 
origin; green, alpha-proteobacterial origin; red, actinomycetales origin; blue, cyanobacterial origin; white, origin unresolved. 
Note that the ancestral eukaryotic peroxisomal proteome reconstruction depends on the topology of the eukaryotic tree. If 
an alternative topology is considered, placing kinetoplastida and viridiplantae together [49], and the plant peroxisomal pro-
teome is taken from the Araperox database [31], then the reconstructed ancestral eukaryotic peroxisomal proteome would 
be much larger, including all proteins present in the opisthokont proteome except for ANT1, IDP3, FOX3, PEX13 and PEX19.
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evolutionary origin of the peroxisomes from the
endomembrane system. While this manuscript was under
review a common evolutionary origin of the Peroxisome
and the ER was also proposed by Schluter and coworkers
[35] based on the homologies in Figure 2 between ERAD
and Pex proteins (Figure 2) while this homology has also
been observed by Erdman and Schliebs [18]. In the former
analysis, full length homologs with Bacterial proteins
were not included and the authors could not exclude that
such proteins were indeed donated by an early symbiont.
The retargeting of enzymes documented in this paper
solves the paradox of a eukaryotic organelle with bacterial
enzymes. Recent experimental work indicates that some
peroxisomal proteins first enter the ER thereby capturing
part of the ER membrane for subsequent formation of the
organelle [6]. These observations are consistent with our
findings that the oldest PEX proteins are homologous to
proteins of the ERAD pathway, suggesting that evolution-
arily as well as ontogenetically peroxisomes are in fact off-
shoots from the ER.

Methods
Data retrieval
Manually curated sets of 62 S. cerevisiae and 50 R. norvegi-
cus proteins with experimental evidence of peroxisomal
location were compiled from the literature [9-11,19] and
from the Saccharomyces Genome [36] and Swiss-Prot
[37] databases. For the purpose of this paper we consider
a protein to be peroxisomal when it permanently resides
in the peroxisomal matrix or membrane, or when it is a
cytoplasmic protein but has a dedicated function in per-
oxisomal protein import and/or biogenesis.

Protein sequences encoded by 144 publicly available
complete genomes were obtained from Swissprot [37],
except for Plasmodium falciparum, Schizosaccharomyce
pombe, Candida albicans, Encephalitozoon cuniculi (Gen-
bank, [38]), Homo sapiens, Rattus norvegicus and Mus mus-
culus (EBI, [39]).

Phylogenetic reconstructions
For every yeast and rat peroxisomal protein, homologous
sequences (E < 0.01) were retrieved using Smith-Water-
man comparisons against the aforementioned 144 com-
plete proteomes. Only sequences that aligned with at least
one third of the query sequence were selected. Sequences
were aligned using MUSCLE [40]. Neighbour Joining (NJ)
trees were made using Kimura distances as implemented
in ClustalW [41]. Positions with gaps were excluded and
1000 bootstrap iterations were performed. Maximum
Likelihood (ML) trees were derived using PhyML v2.1b1
[42], with a four rate gamma-distribution model, before
and after excluding from the alignment positions with
gaps in 10% or more of the sequences. In all cases NJ and
ML trees were manually examined to search for consistent

patterns indicating the origin of the peroxisomal proteins.
Trees in which eukaryotic proteins clustered together,
within the Bacteria or the Archaea and with a specific
prokaryotic out-group were classified as having that phyl-
ogenetic origin (e.g. Figure 1b). Trees were only regarded
as resolved when both the NJ tree and the ML tree agreed
to the level of resolution required, e.g. a specific bacterial
group as a sister clade of the peroxisomal group of pro-
teins, or when at least the ML tree had the level of resolu-
tion required while the NJ tree did not point to another
origin of a protein.

Reconstruction of yeast, rat peroxisomal metabolisms and 
their ancestral states
Annotated biochemical and cellular functions of the yeast
and rat peroxisomal proteins were mapped onto meta-
bolic KEGG maps [43] and are represented in Figure 5,
indicating their phylogenetic origin by a color-code. Pro-
teins known or predicted to be membrane-associated are
depicted close to the membrane. The minimal ancestral
opisthokont peroxisome was reconstructed by combining
proteins that are present in both yeast and rat peroxisomal
proteomes or that are present in only one of the two pro-
teomes but have orthologs in plants with a peroxisomal
location or are described as putative peroxisomal proteins
in Araperox database [31]. The minimal ancestral eukary-
otic proteome is formed by those proteins of the ancestral
opisthokont proteome that are also found in the genomes
of plants, Typanosoma brucei and Leishmania major. Cata-
lase and Fox1 that are absent from glycosomes were nev-
ertheless included for the reasons explained in the results
and discussion section.
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Reviewers' comments
Reviewer's report 1
Arcady Mushegian. Bioinformatics center. Stowers insti-
tute for medical research. Kansas City. Missouri. USA.

1. I suggest that the relationship with ERAD is addressed
further, e.g. by including ERAD components into Table 1
and by adding detail to Figure 2A.

Response:

We now indicate in the table those peroxisomal proteins
that show homology with components of the ERAD path-
way. In order to provide more detail to figure 2.A we have
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included the role of ubiquitine in both the processes of
ERAD and peroxisomal import. Moreover we have re-
arranged the proteins and arrows so that their mechanism
of action is clearer. Nevertheless the exact functioning of
either ERAD or the PEX5 pathway for protein import has
not completely been resolved.

2. What is the identity of actinomycete-like, cyanobacte-
ria-like, and "unresolved" components of peroxisome in
Figure 1? What is the explanation for the existence of the
first two groups? What can be said about functions of
"resolved" vs "unresolved" groups – any trends there?

Response:

The identity of the actinomycete-like and cyanobacteria-
like proteins is indicated now in the text, they can also be
seen in Figure 3 and the table. We do not have a plausible
explanation for the origin of these proteins and that is
now mentioned in the text. We discuss as well the
observed functional dichotomy observed in the proteins
with prokaryotic or eukaryotic ancestry for the resolved
cases as well as the preponderance of enzymes in the unre-
solved cases.

3. On the ancestral reconstruction: which parsimony was
used – unweighted or weighted? Are opisthocont and
eukaryotic sets of PEX genes functionally coherent, or are
there missing components?

Response:

We used a simple parsimony approach in deciding where
certain proteins appeared in evolution: a protein is sup-
posed to have been present at the root of the smallest par-
tition containing all genomes that have that gene. The
functional coherence of the PEX subsets is difficult to
assess, since many PEX proteins have no specific function
assigned. However, at least for the ancestral eukaryotic
peroxisome the subset of PEX proteins recovered are all
involved in peroxisomal protein import, as indicated in
the text.

Reviewer's report 2
Gáspár Jékely. European Molecular Biology Laboratory.
Heidelberg, Germany.

This paper makes a compelling argument for the autoge-
nous evolutionary origin of the peroxisome. Although
this was not a surprise given recent cell biological findings
showing that peroxisomes grow from the endoplasmic
reticulum, the autogenous origin of the organelle is now
clearly backed by the systematic bioinformatic analysis of
its proteome. Most interestingly Gabaldón et al. found
that some components of the peroxisomal proteome (the

Pex5 pathway) are evolutionary derivatives of the endo-
plasmic reticulum assisted decay (ERAD) pathway.

The paper is technically sound and well written, I only
have a few comments.

1) I have a problem about how the authors define that a
protein has eukaryotic origin. For example the Cdc48/
Sec18/Pex6 family seems to have descended from archae-
bacterial AAA ATPases. What the tree shown in Fig. 1A
shows is rather that the multiplication of this ancestral
ATPase leading to several paralogs was an eukaryotic
event. So the protein family clearly has prokaryotic origin,
it is the formation of distinct paralogs that occurred dur-
ing eukaryote evolution. This should be explained better
in the text and this group should be referred to differently,
like 'originated by eukaryote-specific duplication'.

Response:

We specifically want to make a distinction between hori-
zontally transferred genes and "ancient genes" that were
already present at the evolutionary split between the line-
age leading to the Archaea and the one leading to the
eukaryotes. Although in the case of CDC48 and Pex1 a
case can indeed be made that CDC48 represents the
ancestral function, given its level of sequence identity with
the Archaeal sequences, and that PEX1 resulted from a
gene duplication, such a clear scenario is rarely present.
We have put more emphasis on the distinction between
horizontally transferred genes and genes already present
in ancient eukaryotes in the text, and mention the CDC48
duplication explicitly now.

2) The reconstruction of the ancestral state of the peroxi-
somal proteome hinges on the accepted topology of the
eukaryotic tree. If Kinetoplastids are not early branching
but the root lies between animals and plants, then one
would probably get a different picture. This alternative
reconstruction should also be presented and/or the effect
of tree topology on the results should be discussed.

Response:

The consequences of using an alternative topology in the
reconstruction of the ancestral proteome are now men-
tioned in the figure legend. They indeed lead to a larger set
of ancestral Peroxisomal proteins.

3) Several of the eukaryote-specific Pex proteins are not
discussed in the text. One is left wondering what could
have been the evolutionary origin of these proteins. If it is
not clear for most of them, this should be mentioned
briefly.
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Response:

We tried hard to ascertain the origin of all Pex proteins,
unfortunately for the Pex proteins not discussed in the text
we could not find homologies with other proteins of
known function or these were too weak to be considered
reliable. We now explicitly mention this fact.

Reviewer's report 3
John M. Logsdon, Jr., Department of Biological Sciences,
Roy J. Carver Center for Comparative Genomics, Univer-
sity of Iowa, Iowa City, IA 52242 USA

Comments:

This paper reports the "phylogenomic" analysis of perox-
isomal proteins with an aim to distinguish between an
endosymbiotic vs. endogenous origin of this organelle in
eukaryotic cells. This has been a long-standing question in
the evolution of eukaryotic cells and these authors have
provided a compelling analysis that rejects the hypothesis
that the peroxisome is of endosymbiotic origin. Instead,
the data indicate an endogenous origin of peroxisomes
from the endoplasmic reticulum.

The authors compiled a curated set of peroxisomal pro-
teins from two major model systems in which global pro-
teomic studies of the peroxisome have been done: yeast
and rat. These protein sets, thus, represent a large fraction
of the peroxisomal proteome. The authors then used a sys-
tematic and rigorous analysis procedure to identify all of
the homologs of these proteins from among available
complete genomes (prokaryotic and eukaryotic). For all
peroxisomal proteins and their homologs, phylogenetic
trees were reconstructed and the topologies were evalu-
ated to determine the evolutionary history of each perox-
isomal gene. The analysis methodology used is
appropriately robust to the questions asked.

1) Although I wholly recommend the publication of this
work in Biology Direct, it should be noted that, during the
process of review, another paper reporting the same con-
clusions has appeared as an "Advance Access" publication
at Molecular Biology and Evolution:

A. Schlüter, R. Ripp, S. Fourcade, J. L. Mandel, O. Poch, A.
Pujol, "The Evolutionary Origin of Peroxisomes: An ER-
Peroxisome Connection". I am satisfied that the
approaches taken here are sufficiently different than those
used by Schlüter et al. and thus merit separate publication.
However, it would be helpful for the authors here to refer
to the Schlüter et al. paper in their revision and to com-
pare and contrast their approaches and results if at all pos-
sible. In addition, it is suggested that the authors consider

changing their title so as to not so closely resemble the
Schlüter et al. paper.

Response:

The Schlüter paper addresses the origin of Peroxisomal
proteins without bacterial homologs. As can be seen from
our analysis there is actually a conflict in the conclusion
one can draw from on the one hand the presence of pro-
teins with alpha-proteobacterial ancestry and on the other
hand from the presence of proteins with ER ancestry. One
can only resolve this by addressing the retargeting of pro-
teins with alpha-proteobacterial ancestry as we have done
in our analysis. We explicitly refer to the Schlüter paper
and its observation of the link with the ER in the conclu-
sion, and have changed the title of our paper.

2) Figure 3, and the verbiage associated with it (last para-
graph of "Peroxisomal proteins..." section), is confusing
and should either be clarified (expanded) or deleted. The
figure seems too abstract to be useful. What do the dashed
arrows mean?

Response:

Figure 3 depicts the moving of DNA and protein localiza-
tion in evolution, which is rather central to the manu-
script. We have rephrased the legend, including an
explanation of the meaning of the dashed arrows.

3) Figure 4 is unnecessary to the main message of the
paper and could instead be included as a supplement. In
fact, it would seem that the phylogeny of this gene family
would be a more relevant figure, given the verbiage in the
manuscript.

Response

We have left Figure 4 in. It includes the most relevant part
of the phylogeny of the citrate synthase genes and does
illustrate how the retargeting of proteins has continued in
recent evolution and is even visible in the sequences.

4) The phylogenetic trees that are provided as supplemen-
tary data are supplied as a single webpage http://
www.cmbi.ru.nl/~jagabald/peroxisome_trees.html with
the trees given in newick format. Although providing
these data in a supplemental format is perfectly accepta-
ble, the authors should provide graphic versions of each
tree. Indeed, the abbreviations used for the sequences/
taxa in these trees are apparently not defined anywhere in
the manuscript. Thus, a key to the taxa is at a minimum
required, but even better would be a clear labeling of all
of the taxon names on all of trees.
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Response:

The taxonomic names of the species and the trees are
being included.
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